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a b s t r a c t

In this paper, we propose a novel model for remote sensing images destriping, which
includes the Schatten 1/2-norm and the unidirectional first-order and high-order total
variation regularization. The main idea is that the stripe layer is low-rank, and the
desired image possesses smoothness across stripes. Therefore, we use the Schatten
1/2-norm regularization to depict the low-rankness of stripes, and use the unidirectional
total variation and the unidirectional high-order total variation to guarantee the smooth-
ness of the underlying image. We develop the alternating direction method of multipliers
algorithm to solve the proposed model. Extensive experiments on synthetic and real
data are reported to show the superiority of the proposed method over state-of-the-art
methods in terms of both quantitative and qualitative assessments.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Moderate resolution imaging spectroradiometer (MODIS) images and hyperspectral images are frequently affected by
stripe noise, which is a common phenomenon in a large number of spaceborne and airborne multidetector spectrometer
imageries [1,2]. Stripe noise has often resulted from the relative error of the calibration of each detector, and the relative
gain and offset variations of all detectors. Besides, stripe noise is usually mixed with random Gaussian noise. These
undesirable interferences limit applications of the underlying image, such as classification [3], object segmentation [4,5],
target detection [6], and scene analysis [7]. Therefore, destriping is indeed considerable and essential preprocessing
for remote sensing images. We show in Fig. 1 a destriping example of wide stripe noise, where the local results and
the residual error (the difference with the original image and the recovered image) suggest that the proposed method
performs well in terms of noise suppression and visual quality.

Traditional destriping methods include filtering-based methods and statistics-based methods. Filtering-based methods
perform destriping by a transform-domain filtering, such as Fourier transform [8] and wavelet decomposition [9,10].
These approaches heavily rely on the selection of the transform domain, and may remove the coefficients related to
important image details. Statistics-based methods mainly focus on analyzing the distribution of stripes, such as histogram
matching [11,12] and moment matching [13]. These methods are time-saving and easy to implement, but they often
require that the statistical properties of the digital number for each sensor are the same. Thus, statistics-based methods
cannot effectively remove the frequency pulse caused by stripes.

∗ Corresponding author.
E-mail addresses: 201621100120@std.uestc.edu.cn (J.-H. Yang), xlzhao122003@163.com (X.-L. Zhao), nkmth0307@126.com (T.-H. Ma),

chenyong1872008@163.com (Y. Chen), tingzhuhuang@126.com (T.-Z. Huang), dingmeng56@163.com (M. Ding).

https://doi.org/10.1016/j.cam.2019.06.004
0377-0427/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2019.06.004
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2019.06.004&domain=pdf
mailto:201621100120@std.uestc.edu.cn
mailto:xlzhao122003@163.com
mailto:nkmth0307@126.com
mailto:chenyong1872008@163.com
mailto:tingzhuhuang@126.com
mailto:dingmeng56@163.com
https://doi.org/10.1016/j.cam.2019.06.004


J.-H. Yang, X.-L. Zhao, T.-H. Ma et al. / Journal of Computational and Applied Mathematics 363 (2020) 124–144 125

Fig. 1. An example of removing wide stripe noise (three lines together). Top row from left to right: the degraded image, result by the proposed
method, and the residual image. Bottom row: zoomed-in results of (a) and (b).

Destriping is regarded as an inverse problem whose solution is usually ill-posed. Thus, regularization methods have
received much attention for stripe noise removal. The main idea is to restrain the solution space according to a prior
knowledge [14–19]. Based on an edge-preserving Huber–Markov image prior, Shen and Zhang [20] proposed a maximum
a posteriors (MAP)-based method for destriping. By exploiting the direction signature of stripes, Bouali and Ladjal [21]
proposed a variational algorithm by introducing a unidirectional total variational model (UTV) for MODIS image destriping.
For further improvement, Zhou et al. [22] introduced a robust hybrid UTV model with two combined l1 data-fidelity to
handle stripe noise of MODIS and hyperspectral images. Chang et al. [23] proposed a joint UTV and framelet regularization
method to address destriping problems, where they used the total variation (TV) to remove stripe noise effectively and
framelet to preserve image details.

Although the aforementioned methods achieve satisfactory performance, they ignore the structure prior to stripe noise.
Recently, to conquer this drawback, some works aim at exploiting the structure feature of stripe noise. Liu et al. [24] used
the l0-norm-based regularization to characterize the global sparse distribution of stripes, but the sparsity assumption is
not satisfied when stripes are too dense. Chen et al. [25] utilized the l2,1-regularization to characterize the group sparsity
of stripes, and adopted TV regularization to explore the spatial piecewise smooth structure of images. Chang et al. [26]
analyzed the low-rankness of stripes and used the nuclear norm to extract stripe noise. These destriping methods achieve
excellent performance on thin and regular stripes, but they cannot effectively remove agminated, banding, and irregular
stripes while producing the staircase effect in destriping images. In addition, they do not fully exploit the directional and
structural characteristics of stripes, especially when removing wide stripes. In summary, there leaves plenty of room for
future investigation on improving the performance and the application range of destriping methods.

In this paper, we propose a novel destriping model based on the Schatten 1/2-norm, UTV, and the unidirectional high-
order total variation (UHTV) regularization by exploring the intrinsically directional and structural features of stripes.
Our motivation has two folds. First, the image layer is smooth in the vertical direction of stripe noise (see Fig. 2), thus
UTV and UHTV are used to restrain the smooth subspace while reducing the staircase effect. Second, the stripe noise
is approximately rank-one, as shown the singular value decomposition in Fig. 2, so the Schatten 1/2-norm is used
to characterize the low-rankness of stripe noise. To the best of our knowledge, there is no work using UHTV for the
destriping problem. An efficient alternating direction method of multipliers (ADMM)-based algorithm is designed to solve
the proposed model. The main contributions of the proposed method are summarized below.

1. We use UTV and UHTV to alleviate staircase effects of the estimated image. Moreover, they also help to exclude the
stripes along the vertical direction in the estimated image.

2. We use the Schatten 1/2-norm to characterize the low-rankness of stripes; meanwhile, it also has a simple
closed-form solution [27].

The remainder of this paper is organized as follows. In Section 2, we present the proposed model and some prior
knowledge by fully considering the structure and the direction of stripes. In Section 3, the ADMM-based optimization
algorithm is formulated. In Section 4, we show extensive experimental results on simulated and real data to confirm the
effectiveness and robustness of the proposed method. In Section 5, we discuss the effects of regularization terms and
regularization parameters to restored results, and numerically demonstrate the convergence of the proposed algorithm.
In Section 6, we conclude this paper.
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Fig. 2. Framework of the proposed method. The degraded image is decomposed into the image layer and the stripe layer (top row). After analyzing
the first-order and high-order gradients of the image layer and singular values of the stripe layer, they have different distinct properties or
characteristics (bottom row). Thus, the image layer and the stripe layer are projected to smooth subspace and low-rank subspace, respectively.

2. The proposed model

In this Section, we propose a new destriping model based on the low-rank prior, UTV, and UHTV. The stripes effect is
considered as additive noise in remote sensing images [21], so the degradation model can be written as

Y = U + S + N, (1)

where Y , U , S, and N ∈ Rm×n denote the observed image, the desired data, the additive stripe component, and the Gaussian
white noise with rows and columns as m × n, respectively.

We use UTV and UHTV to restrain the smooth subspace and use the Schatten 1/2-norm to characterize the
low-rankness of stripe noise, so our model is formulated by

argmin
U,S

1
2
∥U + S − Y∥

2
F + λ1∥S∥1/2

s1/2 + λ2∥DxU∥1 + λ3∥D2
xxU∥1, (2)

where ∥U + S − Y∥
2
F is the data-fidelity term, the last three terms are the regularization terms, ∥S∥1/2

s1/2 =
∑r

i=1 σ
1/2
i

(Schatten 1/2-norm) represents the L1/2 quasi-norm of all the singular values {σi}
r
i=1 of the matrix S, Dx and D2

xx denote
the first-order gradient operator and the high-order gradient operator across stripes direction, respectively, ∥·∥1 represents
the sum of absolute value of all elements, λ1, λ2, and λ3 are the regularization parameters. In the following sections, we
give the motivation for each regularization term.

2.1. UTV and UHTV

The TV-based regularization has been widely used in various applications, owing to its desirable edge-preserving
property [28–32]. Fig. 3 presents the directional gradients for the degraded image and the original image (e.g., MODIS). It is
worth noting that the gradients along stripes are not affected by stripe lines, but the horizontal gradients are absolutely
different. Furthermore, compared with the intensities of a random row in Fig. 3(f) and (i), we find that stripes mainly
damage the sparseness of the horizontal gradient of the original image, which implies the smoothness along the horizontal
direction in the estimated image. Therefore, we use UTV to preserve the sharp edges and the piece-wise smoothness of
the original image.

TV-based recovery methods usually have the staircase effect [33–36]. For wide stripes, high-order TV (HTV) can
maintain the smoothness of the image better than TV, while reducing the staircase effect. Taking vertical stripes as an
example, we show the high-order gradients of the degraded image and the original image in Fig. 4, respectively. These
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Fig. 3. The directional gradients for the degraded image and the original image. This figure shows that the stripes only affect the horizontal gradient
of the desired image.

images suggest that the stripes mainly damage the smoothness of the desired image along the xx-direction. Therefore, it
is reasonable to use UHTV to keep the high-order smoothness of the image and reduce the staircase effect caused by TV.

[High-order Gradients: D2U =

(
DxxU DxyU
DyxU DyyU

)
.]

2.2. Schatten 1/2-norm

Next, we study the structure property of stripe noise. Fig. 2 shows that stripe noise is approximately rank-one. Since
direct rank minimization is NP-hard and is difficult to solve, it is generally relaxed by nuclear norm minimization.
However, the nuclear norm is a biased approximation of the rank, which leads to suboptimal solutions [37]. From Fig. 5,
it is easy to observe that L1/2 quasi-norm approximates the matrix rank better than the nuclear norm. So, we apply the
Schatten 1/2-norm to restrain the low-rankness of stripes.

3. The ADMM algorithm

In this Section, we design an effective algorithm to solve the proposed model based on ADMM [38–41], which is an
effective strategy for solving large-scale optimization problems. The proposed model (2) forms the following equivalent
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Fig. 4. The high-order directional gradients for the degraded image and the original image (undergo a same linear enhancement for better
visualization). This figure shows that the stripes mainly damage the smoothness of the desired image along the xx-direction.

Fig. 5. Approximation of the rank function using different functions.

constrained problem by introducing three auxiliary variables D1 = S,D2 = DxU,D3 = D2
xxU:

E(U, S) =
1
2
∥U + S − Y∥

2
F + λ1∥D1∥

1/2
s1/2 + λ2∥D2∥1 + λ3∥D3∥1,

s.t. D1 = S,D2 = DxU,D3 = D2
xxU,

(3)

where ∥D1∥
1/2
s1/2 is the Schatten 1/2-norm (see formula 2) of the variable D1. The augmented Lagrangian function of (3) is

given by

L(U, S,D1,D2,D3, J1, J2, J3, ) =
1
2
∥U + S − Y∥

2
F + λ1∥D1∥

1/2
s1/2 + λ2∥D2∥1 + λ3∥D3∥1

+
δ

2
∥D1 − S −

J1
δ

∥
2
F +

γ

2
∥D2 − DxU −

J2
γ

∥
2
F +

c
2
∥D3 − D2

xxU −
J3
c

∥
2
F ,

(4)



J.-H. Yang, X.-L. Zhao, T.-H. Ma et al. / Journal of Computational and Applied Mathematics 363 (2020) 124–144 129

where J1, J2, and J3 are Lagrangian multipliers and δ, γ , and c are penalty parameters. Then ADMM iterates as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Uk+1, Sk+1) = argmin
U,S

L(U, S,Dk
1,D

k
2,D

k
3, J

k
1, J

k
2, J

k
3),

(Dk+1
1 ,Dk+1

2 ,Dk+1
3 ) = arg min

D1,D2,D3
L(Uk+1, Sk+1,D1,D2,D3, Jk1, J

k
2, J

k
3),

Jk+1
1 = Jk1 + δ(Dk+1

1 − Sk+1),

Jk+1
2 = Jk2 + γ (Dk+1

2 − DxUk+1),

Jk+1
3 = Jk3 + c(Dk+1

3 − D2
xxU

k+1),

(5)

Below we give the details of solving each subproblem.
• (U , S)-subproblem. The (U, S)-subproblem is

(Uk+1, Sk+1) = argmin
U,S

1
2
∥U + S − Y∥

2
F +

δ

2
∥Dk

1 − S −
Jk1
δ

∥
2
F

+
γ

2
∥Dk

2 − DxU −
Jk2
γ

∥
2
F +

c
2
∥Dk

3 − D2
xxU −

Jk3
c

∥
2
F .

(6)

The solution satisfies the following normal equation:[
P I
I I + δI

][
U
S

]
=

[ Q

Y + δI(Dk
1 −

Jk1
δ
)

]
, (7)

where P = I + γDT
xDx + c(D2

xx)
TD2

xx and Q = Y + γDT
x (D

k
2 −

Jk2
γ
)+ c(D2

xx)
T (Dk

3 −
Jk3
c ). It can be solved efficiently in the Fourier

domain as in [28].
• (D1, D2, D3)-subproblem. Since D1, D2, and D3 are decoupled with each other, they can be solved separately.
(1) D1-subproblem

Dk+1
1 = argmin

D1
λ1∥D1∥

1/2
s1/2 +

δ

2
∥D1 − Sk+1

−
Jk1
δ

∥
2
F (8)

has the following closed-form solution by Half threshold operator [42,43]:

Dk+1
1 = UHλ(Σ)V T , (9)

where Sk+1
+

Jk1
δ

= UΣV T is the singular value decomposition of Sk+1
+

Jk1
δ
, Σ = diag(σ1, σ2, . . . , σr ), U and V are m × r

and n × r matrices with orthonormal columns, respectively, λ =
2λ1
δ
, and

Hλ(x) =

⎧⎨⎩
2
3
x(1 + cos(

2Π
3

−
2ϕ(x)
3

)), |x| >

3√54
4

λ
2
3 ,

0, others,

(ϕ(x) = arccos( λ
8 (

|x|
3 )−

3
2 )).

(2) D2-subproblem

Dk+1
2 = argmin

D2
λ2∥D2∥1 +

γ

2
∥D2 − DxUk+1

−
Jk2
γ

∥
2
F (10)

has the following closed-form solution by the soft shrinkage operator [44,45]:

Dk+1
2 = max(|DxUk+1

+
Jk2
γ

| −
λ2

γ
, 0) ◦

DxUk+1
+

Jk2
γ

|DxUk+1 +
Jk2
γ
|

, (11)

where ◦ denotes component-wise multiplication and the division is also performed component-wise. The convention
0 ◦

0
0 = 0 is assumed.
(3) D3-subproblem

Dk+1
3 = argmin

D3
λ3∥D3∥1 +

c
2
∥D3 − D2

xxU
k+1

−
Jk3
c

∥
2
F (12)
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can be similarly solved by

Dk+1
3 = max(|D2

xxU
k+1

+
Jk3
c

| −
λ3

c
, 0) ◦

D2
xxU

k+1
+

Jk3
c

|D2
xxUk+1 +

Jk3
c |

. (13)

Therefore, the ADMM algorithm for solving the proposed model is summarized as follows:

Algorithm 1 : The alternating direction method with multipliers for solving (2).
Input: data Y , parameters λ1, λ2, λ3.
Initialize: U = Y , S = 0, D1, D2, D3, J1, J2, J3, ϵ = 1e − 5, maxiter = 300.

1: While (∥Uk+1
− Uk

∥F/∥Uk
∥F > ϵ and k ≤ maxiter ) Do

2: Update (Uk+1, Sk+1) by (7).
3: Update Dk+1

1 by (9).
4: Update Dk+1

2 and Dk+1
3 by (11) and (13), respectively.

5: Update Jk+1
1 , Jk+1

2 , and Jk+1
3 by (5), respectively.

6: End Do
Output: Restored image Uk+1 and stripe noise Sk+1.

4. Experiments

Section 4.1 gives experimental settings. Sections 4.2 and 4.3 present destriping experiments using simulated data and
real data, respectively.

4.1. Experimental setting

We compare our method with the unidirectional total variational model [21] (denoted as UTV) and the low-rank-
based single-image decomposition model [26] (denoted as LRSID). We choose these competing methods because they
consider both direction property and structure property of stripe noise, which makes the comparison persuasive and
comprehensive.

Stripe generation. For simulated data, we generate the degraded images by the following steps. First, the original
images are coded to an 8-bit scale. Second, stripes with intensity [0, 255] and tiny (0.01) Gaussian white noise are added
to the original images. Third, the striped images are normalized to [0, 1]. For simplicity, different stripes added to remote
sensing images will be denoted as a vector with three elements, e.g., (Per/Non-Per, intensity, r), where ‘Per/Non-Per’
denotes periodical stripes or nonperiodical stripes, ‘intensity’ denotes the absolution value of the added stripes, and ‘r ’
represents the stripe ratio within the image.

Qualitative and quantitative indices. For simulated data, we use the visual impact and the mean cross-track profile
(x-axis stands for the column number of the image, and the y-axis represents the mean value of each column) as qualitative
indices of the restored image. Since the ground-truth image is available, we use quantitative indices including the peak
signal-to-noise ratio (PSNR) [46] and the structural similarity index (SSIM) [47] to evaluate the quality of the restored
image, which are defined as follows:

PSNR = 10 log10
mn(maxU )2

∥U − U∗∥
2
F
,

SSIM =
(2µUµU∗ )(2σUU∗ + c2)

(µ2
U + µ2

U∗ + c1)(σ 2
U + σ 2

U∗ + c2)
,

where U∗ is the true image, U is the recovered image, maxU is the maximum pixel of the image, µU and µU∗ are the
mean values of images U and U∗, σU and σU∗ are the standard variances of U and U∗, respectively, σUU∗ is the covariance
of U and U∗, and c1, c2 > 0 are constants. Higher PSNR and SSIM values imply better image quality.

For real data, since the ground-truth is unknown, we choose no-reference evaluation indices including noise reduction
(NR) [1,20], mean relative deviation (MRD) [1,20], and the inverse coefficient of variation (ICV) [20]. NR measures the
effectiveness of stripe removal, ICV evaluates the level of removing stripe noise, and MRD measures the distortion of
the original image caused by the adopted destriping method. Higher values of NR and ICV mean a better destriping
performance, and lower values of MRD mean better image detail preservation. In addition, the qualitative assessments
include the mean cross-track profile and power spectrum (x-axis is the normalized frequencies of the image, and the
y-axis denotes the mean power spectrum of all rows in the image with a logarithmic scale).

Parameter setting. Regularization parameters λ1, λ2, and λ3 in (2) balance the data fidelity and the regularization
terms. The hand-tuned strategy is used for these parameters. We empirically set their ranges as λ1 ∈ [0, 1], λ2 ∈

[0.0001, 0.01], λ3 ∈ [0.0001, 0.01], and penalty parameters (δ, γ , and c) in the range of [0.00001, 0.01] and optimize them
to attain the highest PSNR value in the simulated experiments or the best visual performance in the real experiments.
For the compared methods, the parameters are set as the suggested values in the references.
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Fig. 6. Destriping results for the three lines together case (intensity = 10) (each value in parentheses represents the corresponding PSNR value of
the restored image). Top row: the original image and recovered images. Bottom row: the degraded image and residual error images.

4.2. Simulated data

In our simulated experiments, we test the proposed method on two kinds of stripe cases: periodical stripes and
nonperiodical stripes. The hyperspectral image of Washington DC Mall1 and MODIS image2 band 32 are used to assess
the performance of the proposed method.

(1) Periodical stripes. We simulate periodic stripes that every three and two lines are grouped and the absolute value of
the stripe line pixels is the same. Fig. 6 shows the destriping results of three lines together. It can be observed clearly that
UTV has relatively poor performance with obvious residual stripes, see Fig. 6(b). At the same time, some boundaries are
blurred after destriping by LRSID, and there still exists residual stripes in the restored result, see Fig. 6(c). In contrast, the
proposed method shows better visual performance. For a more objective assessment, residual error images (the logarithm
operation of the difference with the original image and recovered image) are presented. The residual error of the proposed
method has fewer stripes information and details information. Besides, in Fig. 7, we plot the intensities of a random row
of Fig. 6. In comparison, the curve produced by the proposed method holds almost the same curve as the original one. It
demonstrates that the proposed method can reduce staircase artifacts.

Figs. 8 and 9 show the destriping images and the estimated stripes of different methods for thin stripes (Per, 50, 0.2)
and wide stripes (Per, 10, 0.8) removal. We can view that the competing methods exhibit residual stripes and blur effects.
The proposed method precisely extracts the stripe component, without losing image structures or bringing blur effects.
From the mean comparison of Fig. 8(j), the estimated stripe component obtained by the proposed method is the closest
to the original one, especially in the stripe-free regions.

Fig. 10 shows the column mean cross-track profiles of Figs. 6 and 9 as examples. There are many residual stripes
existing in the image by UTV, so column mean cross-track profile curve has a large rise and fall (see Fig. 10(b)). Meanwhile,
compared with the original mean cross-track profile, LRSID has too many spines. The column mean cross-track profile
of the proposed method has almost the same curve as the original one, which is consistent with the visual analysis. The
above observations also hold for other periodical stripes experiments.

(2) Nonperiodical stripes. Figs. 11 and 12 present the destriping results for nonperiodic thin stripes (Non-Per, 10,
0.2) and wide stripes (Non-Per, 10, 0.8), respectively. The proposed method can resolve the residual stripes issue without
introducing blurring. On the contrary, for wide stripes, LRSID method overlooks much texture information by blurring
images, see Fig. 12(d). Meanwhile, from the stripe components in Figs. 11 and 12, our method precisely estimates and
separates the true stripe components.

(3) Quantitative assessment. Tables 1–3 show the PSNR (dB) and SSIM values of the simulated experiments. The
results suggest that our method achieves the highest PSNR and SSIM values in most cases. The results of Tables 1–3 are
consistent with the visual comparison.

1 https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html.
2 https://ladsweb.nascom.nasa.gov/.

https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
https://ladsweb.nascom.nasa.gov/
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Fig. 7. An example of reducing staircase effects.

Table 1
PSNR (dB) and SSIM results of the test methods for stripe noise of two lines and three lines together.

Stripe noise Image Method Intensity = 10 Intensity = 50 Intensity = 0–50 Intensity = 100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Hyperspectral Degraded 32.97 0.939 19.00 0.502 24.06 0.743 12.97 0.244
Periodical UTV 43.43 0.998 39.15 0.994 37.88 0.994 36.91 0.990
Image LRSID 42.24 0.994 38.31 0.989 36.91 0.991 37.76 0.990

Two lines Proposed 45.89 0.998 40.55 0.994 37.76 0.994 39.31 0.994
together MODIS Degraded 32.97 0.815 18.91 0.234 24.06 0.501 12.97 0.083

Periodical UTV 37.76 0.994 35.98 0.985 34.56 0.992 34.81 0.976
Image LRSID 44.30 0.993 41.41 0.985 37.29 0.984 41.06 0.986

Proposed 46.35 0.995 43.92 0.993 38.52 0.991 42.38 0.994
Hyperspectral Degraded 31.21 0.918 17.23 0.417 22.33 0.689 11.21 0.170
Periodical UTV 38.63 0.994 28.67 0.974 32.03 0.983 23.27 0.935
Image LRSID 39.03 0.991 29.18 0.981 32.44 0.984 23.47 0.937

Three lines Proposed 40.40 0.996 29.23 0.985 33.24 0.991 23.60 0.954
together MODIS Degraded 31.21 0.765 17.23 0.178 22.33 0.437 11.21 0.057

Periodical UTV 36.30 0.987 28.67 0.982 29.31 0.878 23.35 0.959
Image LRSID 41.58 0.991 29.50 0.982 32.46 0.974 23.63 0.952

Proposed 42.17 0.998 29.51 0.991 32.18 0.990 23.58 0.985

In summary, the proposed method provides better qualitative and quantitative results.

4.3. Real data

The proposed method is tested on three real MODIS data sets3 for destriping, see Fig. 13. For horizontal stripe noise,
we transpose them into vertical stripes for processing.

3 https://compression.jpl.nasa.gov/hyperspectral/imagedata/.

https://compression.jpl.nasa.gov/hyperspectral/imagedata/
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Fig. 8. Destriping results for the simulated periodic thin stripes case (Per, 50, 0.2) (each value in parentheses represents the corresponding PSNR
value of the restored image). Top row: the original image and recovered images. Middle row: stripe components. Bottom row: mean comparison (j)
between the stripes estimated by the original added, UTV, LRSID, and the proposed method.

(1) Periodical stripes. Fig. 14 shows the destriping results of band 30 and band 27 of the Terra MODIS data as examples
of periodic stripes. In comparison, the proposed method can achieve a better destriping performance. Clearly, UTV and
LRSID both bring varying degrees of blur to useful information in the destriping process.

Fig. 15 presents the stripe components. It is clear that UTV extracts additional background information on the stripe
component. Due to the emergence of the blur, the stripe component of LRSID damages the partial structures. A visual
assessment clearly shows that the proposed approach can separate the complete stripe component.

Fig. 16 shows the mean cross-track profiles before and after destriping. The mean cross-track profile of UTV method is
over-smoothing, indicating some fine details are simultaneously smoothed. On the contrary, the LRSID method provides
a barbed curve. By comparison, the proposed method is neither over smooth nor loss of details information.

Fig. 17 shows the power spectrum results. For the proposed method, which not only can remove all stripes, but also
preserve the essential details. In fact, UTV provides a good smoothing of the power spectrum curve but at the cost of a
blur of details from the original images.

(2) Nonperiodical stripes. Fig. 18 shows the experiment results of the nonperiodical stripes image. In this case, LRSID
shows a better performance. However, it pays the price of losing the details of the image, as shown the estimated
stripes in Fig. 18(n). In addition, the column mean cross-track profiles and the power spectrum curves of UTV are over
smoothed, while LRSID has many small spines. This demonstrates that UTV and LRSID damage useful information in the
destriping process, whereas the proposed method removes the noise component much more accurately and preserves
useful information completely.
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Fig. 9. Destriping results for the simulated periodic wide stripes case (Per, 10, 0.8) (each value in parentheses represents the corresponding PSNR
value of the restored image). Top row: the original image and recovered images. Middle row: stripe components. Bottom row: mean comparison (j)
between the stripes estimated by the original added, UTV, LRSID, and the proposed method.

(3) Quantitative assessment. Table 4 presents the MRD, NR, and ICV evaluation results of different methods. Although
UTV achieves the highest NR and ICV values from the Terra MODIS band 30, it pays the price of removing much important
texture information in the resulting images. In comparison, the proposed method can simultaneously obtain competitive
values and provide high-quality destriped images. Although our method is slightly slower than compared methods, our
method achieves the better result in terms of both quantitative and qualitative assessments.

5. Discussions

In this Section, we will discuss the effects of the regularization terms and the regularization parameters in our model.

5.1. Regularization terms

In our method, the low-rankness of stripe component, the along-stripe smoothness, and the across-stripe discontinuity
as constraint terms simultaneously estimate the stripe layer and the image layer. To study the role of each regularization
term, we show different settings of regularization terms in Fig. 19. Compared the residual errors (the difference with the
original image and the recovered image) with Fig. 19(f) and (h), there are many obvious residual stripes in Fig. 19(f).
It demonstrates that UHTV is necessary to keep the smoothness of the image and exclude the wide stripe noise. While
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Fig. 10. The first two rows: column mean cross-track profiles of Fig. 6. The last two rows: column mean cross-track profiles of Fig. 9.

compared with Fig. 19(g) and (h), Fig. 19(g) contains a lot of details, which proves that the Schatten 1/2-norm is more
precise for depicting the low-rankness compared with the nuclear norm. Therefore, by combining UTV, UHTV, and the
Schatten 1/2-norm constraints into the optimization problem, our method can recover clear images almost without
residual stripes. In summary, we demonstrate that UHTV is effective to alleviate the staircase effect so as to keep the
smoothness of the image, and the Schatten 1/2-norm can accurately describe the structure property of stripe noise.
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Fig. 11. Destriping results for the simulated nonperiodic thin stripes case (Non-Per, 10, 0.2) (each value in parentheses represents the corresponding
PSNR value of the restored image). Top row: the original image and recovered images. Bottom row: stripe components.

Fig. 12. Destriping results for the simulated nonperiodic wide stripes case (Non-Per, 10, 0.8) (each value in parentheses represents the corresponding
PSNR value of the restored image). Top row: the original image and recovered images. Bottom row: stripe components.

Fig. 13. The real data: (a) Terra MODIS band 30 (periodic); (b) Terra MODIS band 27 (periodic); (b) Terra MODIS band 33 (nonperiodic).
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Fig. 14. Top row: destriping results of periodic stripes in Terra MODIS band 30. Bottom row: destriping results of periodic stripes in Terra MODIS
band 27.

Table 2
PSNR (dB) results of the test methods for different stripe noise.

Image Method Stripe noise

Intensity = 10 Intensity = 50 Intensity = 0–50 Intensity = 100

r = 0.2 r = 0.6 r = 0.8 r = 0.2 r = 0.6 r = 0.8 r = 0.2 r = 0.6 r = 0.8 r = 0.2 r = 0.6 r = 0.8

Hyperspectral Degraded 35.22 30.45 29.20 21.24 16.47 15.22 26.43 21.41 20.33 15.22 10.45 9.20
Periodical UTV 43.84 43.34 44.15 38.03 37.74 38.95 38.28 36.08 34.48 36.87 36.22 37.53
Image LRSID 42.98 44.00 45.56 37.59 39.18 40.38 37.06 34.71 32.5 35.49 37.13 38.54

Proposed 43.84 44.23 46.21 39.11 38.46 42.39 38.9 36.4 34.87 37.66 38.04 40.62
Hyperspectral Degraded 35.14 30.34 29.10 21.16 16.35 15.12 25.86 21.84 20.21 15.14 10.34 9.10
Non-Periodical UTV 39.68 37.64 36.56 31.70 29.03 27.23 33.63 32.34 30.42 27.96 24.61 23.79
Image LRSID 40.39 38.26 37.08 31.97 32.16 27.56 32.94 31.17 29.68 28.73 25.79 24.3

Proposed 42.1 39.65 38.24 34.65 32.63 31.44 36.22 35.68 34.22 32.44 29.6 29.62
MODIS Degraded 35.22 30.45 29.20 21.24 16.47 15.22 26.43 21.41 20.33 15.22 10.45 9.20
Periodical UTV 37.86 37.51 37.64 36.07 35.52 35.80 36.23 33.75 34.33 34.97 34.40 34.84
Image LRSID 43.31 43.29 43.44 38.40 40.43 41.60 39.35 34.89 34.90 38.60 39.64 41.77

Proposed 45.03 45.48 46.00 41.01 41.92 43.99 40.91 36.08 36.03 40.36 40.30 41.93
MODIS Degraded 35.14 30.34 29.10 21.16 16.36 15.12 25.86 21.84 20.21 15.14 10.34 9.10
Non-Periodical UTV 42.72 40.62 35.11 32.03 28.70 27.13 33.34 31.10 30.49 29.12 24.63 23.54
Image LRSID 41.74 39.25 36.91 31.91 30.10 25.07 33.04 31.37 30.90 28.55 25.55 22.83

Proposed 41.29 40.64 37.32 32.11 29.36 27.06 33.75 31.63 30.86 29.27 24.73 23.75

5.2. Parameters

In our model, there are three regularization parameters λ1, λ2, and λ3. It is worth reminding that parameter λ3 depends
on the width of stripes, and larger values should be chosen for wider stripes. To show their effects on the destriping
performance, we give an analysis by using a simulated experiment (two lines together, intensity = 10) as an example.
In Figs. 20–22, we show the PSNR and SSIM values with respect to the parameters λ1, λ2, and λ3, respectively. From
Fig. 20, we can find that the PSNR curve (λ2 = 0.0006 and λ3 = 0.0003) reaches the highest point at λ1 = 0.28, and
the SSIM value tends to be stable when λ1 ∈ [0.2, 0.4]. For robustness, we choose the optimal parameter λ1 in the range
[0, 1]. Similarly, we empirically set λ2 ∈ [0.0001, 0.01] and λ3 ∈ [0.0001, 0.01]. The hand-tuned strategy is used for three
regularization parameters as follows: (1) empirically fix λ2 = 0.001 and λ3 = 0.0001, tune λ1 = i∗10−1 (i = 0, 1, . . . , 10)
for the highest PSNR value. (2) Then fix λ1, tune λ2, λ3 = i ∗ 10−3

+ j ∗ 10−4 (i, j = 0, 1, . . . , 10) for the highest PSNR
value.
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Table 3
SSIM results of the test methods for different stripe noise.

Image Method Stripe noise

Intensity = 10 Intensity = 50 Intensity = 0–50 Intensity = 100

r = 0.2 r = 0.6 r = 0.8 r = 0.2 r = 0.6 r = 0.8 r = 0.2 r = 0.6 r = 0.8 r = 0.2 r = 0.6 r = 0.8

Hyperspectral Degraded 0.964 0.898 0.872 0.651 0.373 0.320 0.851 0.636 0.602 0.405 0.151 0.122
Periodical UTV 0.997 0.997 0.997 0.993 0.992 0.994 0.995 0.993 0.992 0.992 0.991 0.993
Image LRSID 0.996 0.997 0.997 0.991 0.992 0.992 0.989 0.987 0.984 0.984 0.987 0.989

Proposed 0.997 0.997 0.998 0.994 0.992 0.996 0.994 0.993 0.992 0.992 0.993 0.995
Hyperspectral Degraded 0.968 0.913 0.887 0.685 0.406 0.344 0.845 0.680 0.612 0.460 0.165 0.122
Non-Periodical UTV 0.995 0.992 0.992 0.980 0.969 0.954 0.982 0.980 0.975 0.954 0.922 0.889
Image LRSID 0.994 0.993 0.991 0.982 0.982 0.967 0.973 0.957 0.955 0.966 0.935 0.902

Proposed 0.997 0.996 0.995 0.992 0.989 0.988 0.994 0.993 0.992 0.989 0.982 0.979
MODIS Degraded 0.888 0.719 0.666 0.404 0.145 0.116 0.677 0.371 0.345 0.201 0.045 0.035
Periodical UTV 0.991 0.991 0.994 0.991 0.990 0.984 0.993 0.992 0.993 0.982 0.981 0.977
Image LRSID 0.987 0.984 0.982 0.978 0.977 0.986 0.988 0.986 0.989 0.981 0.979 0.995

Proposed 0.993 0.993 0.994 0.976 0.985 0.993 0.993 0.988 0.991 0.988 0.989 0.991

MODIS Degraded 0.902 0.757 0.705 0.455 0.174 0.134 0.682 0.410 0.348 0.272 0.056 0.040
Non-Periodical UTV 0.994 0.992 0.994 0.988 0.980 0.978 0.992 0.976 0.986 0.981 0.973 0.971
Image LRSID 0.991 0.983 0.986 0.946 0.971 0.894 0.969 0.970 0.973 0.956 0.951 0.944

Proposed 0.996 0.995 0.993 0.990 0.984 0.985 0.992 0.987 0.987 0.984 0.983 0.987

Fig. 15. Top row: stripe components of Terra MODIS band 30. Bottom row: stripe components of Terra MODIS band 27.

5.3. Numerical convergence of the proposed algorithm

To numerically illustrate the convergence of the proposed algorithm, we test two images, the hyperspectral image of
Washington DC Mall and Terra MODIS image band 32 degraded by stripe noise that every three lines are grouped (intensity
= 10). Fig. 23 shows the relative error curves of the successive restored image Uk and Uk+1, i.e., ∥Uk+1

− Uk
∥F/∥Uk

∥F .
From Fig. 23, we can observe that the relative error keeps decreasing as the iteration number increases and our algorithm
is convergent numerically.

5.4. Oblique stripe

The proposed model not only can handle the vertical stripes, but also can work on the oblique stripe with the aid of
the shear operator [48]. We first use the shear operator to straighten the oblique stripe (see Fig. 24(c)), and then use the
proposed method and compared methods to deal with the straightened image. Finally, the restored image is obtained by
using the inverse shear operator. Fig. 24 shows the destriping results of three methods for the oblique stripe. Visually, we
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Fig. 16. Column mean cross-track profiles of Fig. 14.

Fig. 17. Power spectrums of Fig. 14.

Table 4
Quantitative indices (NR, MRD, ICV, and Time (in seconds)) of the test methods for real
experiments.
Image Index UTV LRSID Proposed

Terra MODIS band 30

NR 1.4349 1.1662 1.2490
MRD 0.0836 0.0184 0.0192
ICV 11.8818 9.3914 10.2635
Time 1.46 35.00 52.30

Terra MODIS band 27

NR 1.8431 1.3575 1.9909
MRD 0.1670 0.0673 0.0649
ICV 48.0788 34.2230 33.6266
Time 1.41 31.71 52.13

Terra MODIS band 33

NR 1.0192 1.5601 1.0984
MRD 0.3420 0.0494 0.0415
ICV 15.2490 4.4345 30.5643
Time 0.89 20.07 29.36
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Fig. 18. Destriping results of nonperiodic stripes in Terra MODIS band 33. The first row: destriping results. The second row: column mean cross-track
profiles. The third row: power spectrums. The fourth row: stripe components.

can observe that the proposed method is able to remove the oblique stripe in contrast with UTV and LRSID. Moreover,
the performance of the proposed method is better than UTV and LRSID in terms of PSNR values.

6. Conclusions

In this work, we propose a novel model to remove stripe noise from remote sensing images. The proposed model uses
UTV and UHTV to ensure the smoothness of the image, and uses the Schatten 1/2-norm to restrain the low-rankness
of stripes. Besides, based on the framework of ADMM, we present an efficient algorithm to solve the proposed model.
Experiments using both simulated and real data demonstrate the effectiveness of the proposed model to remove stripe
noise in visual quality and quantitative indexes.

In addition, the proposed method not only works well on horizontal and vertical stripes, but works on oblique stripes.
In future work, we will consider generalized mixed noise [49].
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Fig. 19. Effectiveness of the proposed method (the stripe noise of four lines together, intensity = 100). Top row: (a) the original image, (b) the
degraded image. Middle row: the recovered images. (c) The proposed method without the UHTV, (d) the nuclear norm instead of the Schatten
1/2-norm in the proposed method, (e) the proposed method. Bottom row: the residual error images. (f) The residual image of (c), (g) the residual
image of (d), (h) the residual image of (e).

Fig. 20. The behavior of (a) PSNR values and (b) SSIM values with respect to the regularization parameter λ1 .
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Fig. 21. The behavior of (a) PSNR values and (b) SSIM values with respect to the regularization parameter λ2 .

Fig. 22. The behavior of (a) PSNR values and (b) SSIM values with respect to the regularization parameter λ3 .

Fig. 23. Curves of relative error values versus iterations.

Fig. 24. Destriping results of different methods for the oblique stripe. The value in parentheses represents the corresponding PSNR (dB) value of
the restored image.
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