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a b s t r a c t 

Recently, the tensor train (TT) rank has received much attention for tensor completion, 

due to its ability to explore the global low-rankness of tensors. However, existing methods 

still leave room for improvement, since the low-rankness itself is generally not sufficient 

to recover the underlying data. Inspired by this, we consider a novel tensor completion 

model by simultaneously exploiting the global low-rankness and local smoothness of vi- 

sual data. In particular, we use low-rank matrix factorization to characterize the global TT 

low-rankness, and framelet and total variation regularization to enhance the local smooth- 

ness. We develop an efficient proximal alternating minimization algorithm to solve the 

proposed new model with guaranteed convergence. Extensive experiments on various data 

demonstrated that the proposed method outperforms compared methods in terms of vi- 

sual and quantitative measures. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

As the high-dimensional generalization of vectors and matrices, tensors play an increasingly significant role in computer

vision. However, during the acquisition process, observed tensor data often contain missing entries, which severely degrades

the data quality and limits the processing tasks. Therefore, tensor completion is a fundamental and important problem in

high-dimensional data processing, such as color image and video completion [1–4] , hyperspectral images recovery [5,6] , and

seismic data reconstruction [7] . 

The low-rank regularization is a powerful tool for tensor completion, namely low-rank tensor completion (LRTC). Math-

ematically, the LRTC issue is modeled as 

min 

M 

rank (M ) , 

s.t. P �(M ) = P �(T ) , (1)

where M ∈ R n 1 ×···×n l denotes the underlying tensor, T ∈ R n 1 ×···×n l denotes the observed tensor, and P �( · ) is the projection

operator on �, which is the index of observed entries. A central issue in LRTC is the characterization of the low-rankness
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of tensors. Below we briefly review several representative works on this topic, including CANDECOMP/PARAFA (CP) rank [8] ,

Tucker rank [9] , tubal rank [10] , and tensor train (TT) rank [11] . 

1.1. The Related Work 

The CP rank [8] denotes the smallest number of rank-one tensors, which generate the target tensor as their sum. Several

heuristic methods have been proposed for CP rank minimization [12–14] . However, the computation of the CP-rank is NP-

hard [15] , which limits the application to practical problems. 

The Tucker rank [16] denotes a vector composed of unfolding matrices ranks of the target tensor. For an l th-order tensor

M ∈ R n 1 ×n 2 ×···×n l , its Tucker rank [8] is given by 

rank tc (M ) := ( rank (M (1) ) , rank (M (2) ) , . . . , rank (M (l) )) , 

where M (i ) ∈ R n i ×�k � = i n k is the mode- i unfolding of M . There exist several methods for tucker rank minimization. Liu et al.

[17] proposed to replace the nonconvex rank function with its convex surrogate the sum of nuclear norms (SNN) and for-

mulated tensor completion as a convex optimization problem. Because of calculating the singular value decomposition of

unfolding matrices in every iteration, minimizing the SNN suffers from high computational cost for some large-scale prob-

lems. To reduce the computational complexity, Xu et al. [18] proposed a LRTC model by performing low-rank matrix factor-

ization to each unfolding matrix of the underlying tensor. However, the Tucker rank only explores the correlation between

one mode and rest modes of the tensor [19] , owing to the unbalanced unfolding scheme. 

The tensor tubal rank is the number of nonzero singular tubes of the target tensor [10] . More precisely, a tensor M ∈
R n 1 ×n 2 ×n 3 is decomposed 

M = U ∗ S ∗ V, (2) 

where S ∈ R n 1 ×n 2 ×n 3 is an f -diagonal 1 tensor containing the singular tubes of M , U ∈ R n 1 ×n 1 ×n 3 and V ∈ R n 2 ×n 2 ×n 3 are or-

thogonal tensors. Zhang et al. [20] applied the tensor tubal rank to LRTC by minimizing its convex surrogate tensor nuclear

norm (TNN). However, the tensor tubal rank is not much effective in characterizing the correlation within higher-order

tensors. 

Recently, the TT rank [11] has shown a powerful capacity for characterizing the correlations between different modes in

higher-order tensors. For a higher-order tensor M ∈ R n 1 ×n 2 ×···×n l , the TT rank [21] is 

rank tt (M ) := ( rank (M [1] ) , rank (M [2] ) , . . . , rank (M [ l−1] )) , 

where M [ i ] ∈ R 
�i 

k =1 
n k ×�l 

k = i +1 
n k denotes the mode- (1 , 2 , . . . , k ) canonical matricization of M . TT rank is built on a well bal-

anced matricization scheme and can complement the correlations between a few modes and the rest modes compared to

Tucker rank. Due to its desired performance, Bengua et al. [19] proposed two TT rank-based optimization methods to handle

the LRTC problem. The first method minimizes the convex nuclear norm surrogate of TT rank (SiLRTC-TT), i.e., 

min 

M 

l−1 ∑ 

i =1 

αi ‖ M [ i ] ‖ ∗, 

s.t. P �(M ) = P �(T ) , (3) 

where αi are positive satisfying 
∑ l−1 

i =1 αi = 1 . The second method factorizes each M [ i ] into the product of two smaller matrices

(TMac-TT), i.e., 

min 

M ,X i ,Y i 

l−1 ∑ 

i =1 

αi 

2 

‖ X i Y i − M [ i ] ‖ 

2 
F , 

s.t. P �(M ) = P �(T ) , (4) 

where X i ∈ R (�
i 
k =1 

n k ) ×r i and Y i ∈ R 
r i ×(�l 

k = i +1 
n k ) are factor matrices, and r i denotes the matrix rank of M [ i ] . The results restored

by SiLRTC-TT and TMac-TT suffer from serious block-artifacts, due to these two methods borrowed ket augmentation (KA)

(see Section 2.3 for more details) to transform a lower-order tensor to a higher-order tensor. In order to tackle this issue,

Ding et al. [22] considered to reduce the block-artifacts by introducing the total variation (TV) regularizer, which often

suffers from artifacts. 

1.2. Motivations and contributions 

The above methods still leave room for further improvement, since the low-rankness itself is generally not sufficient to

recover the underlying data. As another significant prior, smoothness appears widely in real-world high-dimensional data.

For example, a video exhibits smoothness in spatial dimensions and temporal smoothness due to the little change between
1 A tensor is defined f -diagonal if all frontal slices are diagonal matrixes. 
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Fig. 1. Motivations and effectiveness of the proposed method. (a) The original tensor carphone , (b) and (c) the smoothness in the spatial and temporal 

dimensions, (d) and (e) the sparsity in the framelet domain and the gradient domain, (f) and (h) frames of the reconstructed results with SR = 0 . 1 by 

the proposed method and TT+TV (without framelet regularization in the proposed model), (g) and (i) the intensity of a tube of the restored video by the 

proposed method and TT+framelet (without TV regularization in the proposed model). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

adjacent frames. Inspired by this nature, we build a low-rank tensor completion model to simultaneously exploit the global

low-rankness and the local spatial-temporal smoothness. We propose the following model: 

min 

X,Y, M 

l−1 ∑ 

i =1 

αi 

2 

‖K (M ) [ i ] − X i Y i ‖ 

2 
F + λ1 ‖ W M 

T 
(3) ‖ 1 , 1 + λ2 ‖ D s M (3) ‖ 1 , 1 , 

s.t. P �(M ) = P �(T ) , (5)

where M is the underlying tensor, K is the KA operator, X = (X 1 , X 2 , . . . , X l−1 ) and Y = (Y 1 , Y 2 , . . . , Y l−1 ) are factor matrices.

In the model (5) , the first term is the low-rank matrix factorizations for characterizing the global TT low-rankness of the

tensor. The second term is the framelet regularization to capture the abundant details. And the third term is to enhance the

temporal smoothness of the tensor by the TV regularization (see Section 3.1 for details). Compared with the model in [22] ,

our model takes into account not only the superior performance of the framelet regular to TV, but also the consideration of

the temporal smoothness. 

To illustrate our motivation, we test the video carphone with the sampling rate (SR) = 0.1 in Fig. 1 as an example. We

obtain three insights from Fig. 1 . First, the visual data show the smoothness prior in the spatial and temporal dimensions;

see the sparse approximation shown in Fig. 1 (d) and (e). Second, the framelet prior can preserve details and promote spatial

smoothness of the underlying tensor; see Fig. 1 (f) and (h). Third, TV prior is necessary to keep the smoothness of the tensor

in the temporal dimension; see Fig. 1 (g) and (i), where the intensity of a tube of the recovered result in the proposed

method is smoother and nearer to the original one. 

The contribution of our work is summarized into three parts. First, a novel tensor completion model is proposed by

simultaneously exploiting the global low-rankness and local smoothness of visual data. Second, we develop a proximal al-

ternating minimization (PAM) algorithm for solving the proposed model with global convergence analysis. Third, extensive

numerical experiments demonstrate the outperformance of the proposed method over the other compared methods. 

There are five sections in this paper. Section 2 presents some preliminary knowledge. Section 3 shows the proposed

model and the PAM algorithm with guaranteed convergence. Section 4 provides experimental results. Section 5 concludes

this paper. 

2. Preliminaries 

2.1. Tensor basics 

We use capital letters to denote matrices (e.g., M ) and calligraphic letters to denote tensors (e.g., M ). A tensor is formed

from a high-dimensional array and the number of tensor dimensions denotes its mode. Given an l th-order tensor M ∈
R n 1 ×n 2 ×···×n l , some notations are given below. 

The Frobenius norm of M is ‖M‖ F := 

√ 

�n 1 �n 2 · · ·�n l 
x 2 n 1 n 2 ···n l , where x n 1 n 2 ···n l is the (n 1 , n 2 , . . . , n l ) -th element of M ∈

R n 1 ×n 2 ×···n l . 
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The mode- i unfolding of M denotes the process to unfold the tensor into a matrix M (i ) ∈ R n i ×�k � = i n k [8] . The Tucker rank

of M is r = (M (1) , M (2) , . . . , M (l) ) . 

The mode- (1 , 2 , . . . , k ) canonical matricization of M is denoted as M [ i ] ∈ R 
�i 

k =1 
n k ×�l 

k = i +1 
n k [11,21] . The matrix M [ i ] could

be formed by the following reshape function in MATLAB, i.e., 

M [ i ] = reshape (M , �i 
k =1 n k , �

l 
k = i +1 n k ) . (6) 

We denote “unreshape”, i.e., unreshape [ i ] (M [ i ] ) := M , as the inverse operator of reshape. The TT rank of M is r =
(M [1] , M [2] , · · · , M [ l−1] ) . The detailed introduction of TT can be seen in [11] . 

2.2. Framelet 

In this subsection, we introduce briefly the framelet system. We mainly show the univariate framelets, because of the

bivariate framelets can be computed from univariate framelets [23] . If any f ∈ L 2 ( R ) has 

f = 

∑ 

g∈ X 
〈 f, g〉 g, 

where 〈 · , · 〉 denotes the inner product of L 2 ( R ), and the system X ⊂ L 2 ( R ) is named a tight frame of L 2 ( R ). For a finite set

� = { ψ 1 , ψ 2 , . . . , ψ r } ⊂ L 2 (R ) , a wavelet (also called affine) system X ( �) is defined as 

X (�) = { 2 

k/ 2 ψ t (2 

k · − j) : ψ t ∈ �; 1 ≤ t ≤ r; k, j, t ∈ Z} , 
where Z represents an integer set. Particularly, each function ψ t (t = 1 , 2 , . . . , r) are called a (tight) framelets if X ( �) is a

(tight) frame for L 2 ( R ), and the all system X ( �) is named a (tight) wavelet frame system. 

We give the discrete form of framelet. The L-level framelet decomposition of a discrete image f is { f = 〈 f, 2 −L/ 2 ψ t (2 −L ·
− j) 〉} . If the discrete image f ∈ R mn is a vector, the decomposition coefficients could be considered as a linear operator Wf

with W ∈ R k × mn and W 

T W = I, where W 

T denotes the inverse framelet operator. Thus, a tight frame system in R mn can be

formed from the row vectors of W . For the tensor cases, we test in the bivariate case. We can obtain the corresponding

transform matrix by the Kronecker product (see [24] for details). In the following, we still employ W to denote the bivariate

framelet transform. 

2.3. KA 

KA [19] is a tensor augmentation tool. The augmented tensor by using KA explores the low-rank structure more obviously

than the original one. As a result, KA is a helpful pretreatment step for TT rank-based optimization. 

The original KA is designed for casting a grey scale image to a higher-order tensor by a block structured way [25] .

Recently, KA has been extended to the lower-order tensors, such as third-order tensors. For instance, KA reshapes a color

image M ∈ R m 1 ×m 2 ×3 ( m 1 × m 2 = 2 n × 2 n is the pixel number in the image) into an l th-order tensor ˜ M ∈ R n 1 ×n 2 ×···×n l , where

l ≥ 3, 3 m 1 m 2 = �l 
d=1 

n d , and n d is a block structured processing. 

The details of the structured block addressing procedure of KA is introduced as follows. First, we consider the initial

smallest block (labeled as i 1 ) with size 2 × 2 related to the color channel j and represent this block as ˜ M = 

∑ 4 
i 1 =1 c i 1 j e i 1 ,

where c i 1 j is the pixel value related to the color channel j and e i 1 is the orthonormal base with e 1 = (1 , 0 , 0 , 0) , e 2 =
(0 , 1 , 0 , 0) , e 3 = (0 , 0 , 1 , 0) , and e 4 = (0 , 0 , 0 , 1) . Then, the block with size 2 × 2 × 3 corresponding to three color channels

can be written as ˜ M = 

∑ 4 
i 1 =1 

∑ 3 
j=1 c i 1 j e i 1 � u j , where u j is also an orthonormal base with u 1 = (1 , 0 , 0) , u 2 = (0 , 1 , 0) , and

u 3 = (0 , 0 , 1) and � denotes the Kronecker product, see Fig. 2 (a). Next, we consider a larger block (labeled as i 2 ) with size

4 × 4 × 3 as shown in Fig. 2 (b). Similarly, we have ˜ M = 

∑ 4 
i 2 =1 

∑ 4 
i 1 =1 

∑ 3 
j=1 c i 2 i 1 j e i 2 � e i 1 � u j . This block addressing procedure

is performed step by step until it can present all the pixels in the image. Finally, the general form of ˜ M is given by 

˜ M = 

4 ∑ 

i 1 , ... ,i n =1 

3 ∑ 

j=1 

c i n , ... ,i 1 j e i n � · · · � e i 1 � u j . (7) 

An extensive overview can be found in [19] . 

The processing of transforming a k th order tensor M ∈ R m 1 ×m 2 ×···×m k into an l th order tensor ˜ M ∈ R n 1 ×n 2 ×···×n l using KA

can be expressed as a linear operator K : R m 1 ×m 2 ×···×m k → R n 1 ×n 2 ×···×n l , where l ≥ k and �k 
i =1 

m i = �l 
j=1 

n j . It is worth noting

that KA just rearranges the tensor elements without changing their values, so that ‖M‖ F = ‖ ˜ M ‖ F . 

3. Tensor completion combing TT rank minimization and smoothness 

This section has two parts. Section 3.1 presents the proposed model with the discussions. Section 3.2 gives an efficient

algorithm and establishes its convergence. 
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Fig. 2. Illustration of KA to cast a color image to a higher-order tensor. (a) A block with size 2 × 2 × 3. (b) A block with size 2 2 × 2 2 × 3. 
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3.1. The proposed model 

We propose a tensor completion model by combing TT rank minimization with hybrid smoothness regularization as

follows: 

min 

X,Y, M 

l−1 ∑ 

i =1 

αi 

2 

‖K (M ) [ i ] − X i Y i ‖ 

2 
F + λ1 ‖ W M 

T 
(3) ‖ 1 , 1 + λ2 ‖ D s M (3) ‖ 1 , 1 , 

s.t. P �(M ) = P �(T ) , (8)

where K(M ) = 

˜ M ∈ R n 1 ×n 2 ×···×n l is the augmented tensor by KA, X = (X 1 , X 2 , · · · , X l−1 ) and Y = (Y 1 , Y 2 , · · · , Y l−1 ) are factor

matrices, αi are positive weight parameters satisfying 
∑ j−1 

i =1 
αi = 1 , λ1 and λ2 are regularization parameters. This model

focuses on third-order tensors and can be generalized to high-order tensors. Below we present the details of each regular-

ization term and discuss their functions. 

The first term ‖K(M ) [ i ] − X i Y i ‖ 2 F 
is the TT low-rank regularization term for the augmented tensor ˜ M . For convenience,

we rewrite it as ‖ ˜ M [ i ] − X i Y i ‖ 2 F in the following, where ˜ M [ i ] is the mode- i canonical matricization of ˜ M , X i ∈ R (�
i 
k =1 

n k ) ×r i ,

 i ∈ R 
r i ×(�l 

k = i +1 
n k ) , and r i denotes the rank of the matrix M [ i ] . We adopt KA for transforming the third-order tensor into the

higher-order one for enhancing the TT low-rank structure included in the original one. The term can capture the global

low-rankness of the higher-order tensor well by exploring the correction of different modes. 

The second term ‖ W M 

T 
(3) 

‖ 1 , 1 is the framelet regularization term, where W denotes the framelet transformation matrix

with W 

T W = I and M (3) is the mode-3 unfolding of M . For M ∈ R n 1 ×n 2 ×n 3 , M 

T 
(3) 

can be rewritten as 

M 

T 
(3) = (( m 

1 
(3) ) 

T , ( m 

2 
(3) ) 

T , . . . , ( m 

n 3 
(3) 

) T ) , 

where m 

i 
(3) 

∈ R 1 ×n 1 n 2 (i = 1 , 2 , . . . , n 3 ) indicates the the vectorization of each frame. Since the multi-level structure of tight

frame systems and the diversity of filters [26] , we use the framelet regularizer for spatial smoothness since it is good at

preserving abundant details of the underlying tensor. 

The third term ‖ D s M (3) ‖ 1,1 is the TV regularization term, where D s indicates the vertical derivative operator and

‖ D s M (3) ‖ 1,1 is the isotropic TV of M (3) ∈ R n 3 ×n 1 n 2 . 

(D ∫ (M (3) )) i, j 
= 

{
(M (3) ) k +1 ,i − (M (3) ) k,i , 1 ≤ k ≤ n 3 − 1 , 

(M (3) ) 1 ,i − (M (3) ) n,i , k = n 3 , 

and 

‖ D s M (3) ‖ 1 , 1 = 

∑ 

1 ≤k ≤n 3 , 1 ≤i ≤n 1 n 2 

| D s M (3) | k,i . 

The term has the ability to effectively keep edge information and smoothness [27–29] . Thus, this term characterizes the

smoothness along the temporal dimension. 
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We remark that most of work consider the theoretical recoverability of matrix/tensor completion under convex setting

[20,30–32] . Their results cannot be directly extended to our model (8) , because of the simultaneous low-rank and sparsity

structure characterization [33] , and the objective function is non-convex. 

3.2. The PAM solver with convergence 

We employ the proximal alternating minimization (PAM) [34] to resolve the nonconvex problem (8) into three convex

subproblems. Specifically, X, Y , and M are iteratively computed as follows: ⎧ ⎨ 

⎩ 

X 

t+1 = arg min X f (X, Y t , M 

t ) + 

ρ
2 
‖ X − X 

t ‖ 

2 
F , 

Y t+1 = arg min Y f (X 

t+1 , Y, M 

t ) + 

ρ
2 
‖ Y − Y t ‖ 

2 
F , 

M 

t+1 = arg min M 

f (X 

t+1 , Y t+1 , M ) + 

ρ
2 
‖M − M 

t ‖ 

2 
F , 

(9) 

where f (X, Y, M ) is the objective function in (8) , ρ is a positive parameter, and the superscripts t denote the iteration

indices. Next, we discuss more details for solving the X, Y , and M subproblems. 

1. ( X−subproblem) Since the minimization X−subproblem with reference to each X i is decoupled, we decomposed it into

l − 1 independent problems as follows: 

X 

t+1 
i 

= arg min 

X i 

αi 

2 

‖ X i Y 
t 
i − ˜ M 

t 
[ i ] ‖ 

2 
F + 

ρ

2 

‖ X i − X 

t 
i ‖ 

2 
F . (10) 

Its closed-form solution is 

X 

t+1 
i 

= (αi 
˜ M 

t 
[ i ] (Y 

t 
i ) 

T + ρX 

t 
i )(αi Y 

t 
i (Y 

t 
i ) 

T + ρI) −1 , (11) 

where I ∈ R r i ×r i is an identity matrix. Its computational complexity is X i is O (r i �
l 
k =1 

n k ) . 

2. ( Y −subproblem) Similarly, we decomposed the Y −subproblem into l − 1 independent problems as follows: 

Y t+1 
i 

= arg min 

Y i 

αi 

2 

‖ X 

t+1 
i 

Y i − ˜ M 

t 
[ i ] ‖ 

2 
F + 

ρ

2 

‖ Y i − Y t i ‖ 

2 
F . (12) 

Similarly, its closed-form solution is 

Y t+1 
i 

= (αi (X 

t+1 
i 

) T X 

t+1 
i 

+ ρI) −1 ((αi X 

t+1 
i 

) T ˜ M 

t 
[ i ] + ρY t i ) . (13)

The cost of computing Y i is O (r i �
l 
k =1 

n k ) . 

3. ( M−subproblem) The M−subproblem is 

M 

t+1 = arg min 

P �(M )= P �(T ) 

l−1 ∑ 

i =1 

αi 

2 

‖ X 

t+1 
i 

Y t+1 
i 

− ˜ M [ i ] ‖ 

2 
F + λ1 ‖ W M 

T 
(3) ‖ 1 , 1 + λ2 ‖ D s M (3) ‖ 1 + 

ρ

2 

‖M − M 

t ‖ 

2 
F . (14)

We iteratively solve the convex optimization problem (14) by the alternating direction method of multipliers (ADMM)

[35] . We introduce auxiliary variables {A i } l−1 
i =1 

, Z , and P to transform the M -subproblem into the following problem: 

arg min 

M 

l−1 ∑ 

i =1 

αi 

2 

‖ X 

t+1 
i 

Y t+1 
i 

− A i [ i ] ‖ 

2 
F + λ1 ‖ Z‖ 1 , 1 + λ2 ‖ P ‖ 1 , 1 + 

ρ

2 

‖M − M 

l ‖ 

2 
F , 

s.t. P �(A i ) = P �(T ) , A i = 

˜ M , Z = W M 

T 
(3) , P = D s M (3) . (15) 

Due to the variables in (15) can be regarded as two groups M and ({A i } l−1 
i =1 

, Z, P ) , (15) can directly apply the framework of

ADMM [36] . First, we consider the corresponding augmented Lagrangian function of (15) 

L (M , A i , Z, P, C i , E, F ) = 

l−1 ∑ 

i =1 

αi 

2 

‖ X 

t+1 
k 

Y t+1 
k 

− A i [ i ] ‖ 

2 
F + 

l−1 ∑ 

i =1 

βi 

2 

∥∥∥A i − ˜ M + 

C i 
βi 

∥∥∥2 

F 

+ λ1 ‖ Z‖ 1 , 1 + 

γ1 

2 

∥∥∥∥Z − W M 

T 
(3) + 

E 

γ1 

∥∥∥∥
2 

F 

+ λ2 ‖ P ‖ 1 , 1 

+ 

γ2 

2 

∥∥∥∥P − D s M (3) + 

F 

γ2 

∥∥∥∥
2 

+ 

ρ

2 

‖M − M 

t ‖ 

2 
F , (16) 
F 
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where {C i } l−1 
i =1 

, E , and F denote Lagrangian multipliers, and { βi } l−1 
i =1 

, γ 1 and γ 2 are penalty parameters. Then, ADMM use the

following scheme to solve the problem (15) : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

M 

t+1 ,k +1 = arg min M 

L (M , A 

k 
i 
, Z k , P k , C k 

i 
, E k , F k ) , 

(A 

k +1 
i 

, Z k +1 , P k +1 ) = arg min (A i ,Z,P) L (M 

t+1 ,k +1 , A i , Z, P, C k 
i 
, E k , F k ) , 

C k +1 
i 

= C k 
i 

+ βi (A 

k +1 
i 

− M 

t+1 ,k +1 ) , 

E k +1 = E k + γ1 (Z k +1 − W (M 

t+1 ,k +1 
(3) 

) T ) , 

F k +1 = F k + γ2 (P k +1 − D s M 

t+1 ,k +1 
(3) 

) . ] 

(17)

We remark that the calculations of {A i } l−1 
i =1 

, Z, P are independent since L is decoupled about them. Following, we give some

details on each step of the ADMM. 
• Calculation of M . Given {A 

k 
i 
} l−1 

i =1 
, Z k , P k , {C k 

i 
} l−1 

i =1 
, E k , and F k , M 

t+1 ,k +1 is to solve the following a least squares prob-

lem: 

M 

t+1 ,k +1 = arg min 

M 

l−1 ∑ 

i =1 

βi 

2 

‖A 

k 
i − ˜ M + C k i /βi ‖ 

2 
F + 

γ1 

2 

‖ Z k − W M 

T 
(3) + E k /γ1 ‖ 

2 
F 

+ 

γ2 

2 

‖ P k − D s M (3) + F k /γ2 ‖ 

2 
F + 

ρ

2 

‖M − M 

t ‖ 

2 
F . (18)

Assuming periodic boundaries, M 

t+1 ,k +1 has the following solution in the Fourier domain 

M 

t+1 ,k +1 
(3) 

= F 

−1 

(
(F ( 

∑ l−1 
i =1 βi ((A 

k 
i 
) (3) + (C k 

i 
) (3) ) + γ1 (W 

T (Z k + E k /γ1 )) 
T + ρM 

t 
(3) 

+ γ2 D 

T 
s (P k + F k /γ2 )) 

F ( 
∑ l−1 

i =1 βi + γ1 + γ2 D 

T 
s D s + ρ) 

)
, (19)

where F is the discrete Fourier transform and F 

−1 denotes the inverse Fourier transform. Therefore, 

M 

t+1 ,k +1 = fold (3) (M 

t+1 ,k +1 
(3) 

) . (20)

The complexities of calculating M is mainly in calculating the fast Fourier transforms on a matrix with size n 3 ×�k � = 3 n k ,
and its time complexities is O (n 3 

3 
+ ( 

∑ l 
k =1 log n k + n 3 + lm 

2 )�l 
k =1 

n k ) , where m is the number of filters and l denotes the

level of the framelet system. 
• Calculation of A i . Given M 

t+1 ,k +1 , Z k , P k , C k 
i 
, E k , and F k , we compute A 

k +1 
i 

as follows: 

{A 

k +1 
i 

} = arg min 

P �(A i )= P �(T ) 

l−1 ∑ 

i =1 

αi 

2 

‖ X 

t+1 
i 

Y t+1 
i 

− A i [ i ] ‖ 

2 
F + 

l−1 ∑ 

i =1 

βi 

2 

‖A i − ˜ M 

t+1 ,k +1 + C k i /βi ‖ 

2 
F 

= arg min 

{A i } 

l−1 ∑ 

i =1 

(
αi 

2 

‖ unreshape [ i ] (X 

t+1 
i 

Y t+1 
i 

) − A i ‖ 

2 
F + 

βi 

2 

‖A i − ˜ M 

t+1 ,k +1 + C k i /βi ‖ 

2 
F 

)
. (21)

The optimal function of computing A i is quadratic, thus, A i can be solved separately 

A 

k +1 
i 

= P �c 

(
αi unreshape [ i ] (X 

t+1 
i 

Y t+1 
i 

) + βi ˜ M 

t+1 ,k +1 − C k 
i 

αi + βi 

)
+ P �(T ) . (22)

The calculation of A i involves the product of X i and Y i with sizes (�i 
k =1 

n k ) × r i and r i × (�l 
k = i +1 

n k ) , whose time complexities

is O ((r i + 1)�l 
k =1 

n k ) . 

• Calculation of Z . Given M 

t+1 ,k +1 , A 

k +1 
i 

, P k , C k 
i 
, E k , and F k , Z k +1 can be computed by 

Z k +1 = arg min 

Z 

λ1 ‖ Z‖ 1 , 1 + 

γ1 

2 

‖ Z − W (M 

t+1 ,k +1 
(3) 

) T + E k /γ1 ‖ 

2 
F . (23)

It can be solved by the soft shrinkage operator 

Z k +1 = max {| W (M 

t+1 ,k +1 
(3) 

) T − λ1 /γ1 | , 0 } W (M 

t+1 ,k +1 
(3) 

) T − E k /γ1 

| W (M 

t+1 ,k +1 
(3) 

) T − E k /γ1 | 
, (24)

where the division is operated component-wise and we assume 0 · (0 / 0) = 0 . The cost of computing Z is O (lm 

2 �l 
k =1 

n k ) . 

• Calculation of P . Given M 

t+1 ,k +1 , A 

k +1 
i 

, Z k +1 , C k 
i 
, E k , and F k , the P can be computed by 

P k +1 = arg min 

Y 

λ2 ‖ P ‖ 1 , 1 + 

γ2 

2 

‖ P − D s (M 

t+1 ,k +1 
(3) 

) T + F k /γ2 ‖ 

2 
F . (25)
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Similarly, the closed-form solution is 

P k +1 = max 

{
| D s (M 

t+1 ,k +1 
(3) 

) T − F k /γ2 | − λ2 

γ2 

, 0 

}
D s (M 

t+1 ,k +1 
(3) 

) T − F k /γ2 

| D s (M 

t+1 ,k +1 
(3) 

) T − F k /γ2 | 
, (26) 

which complexities is O (n 3 �
l 
k =1 

n k ) . 

It is clear that every subproblem in ADMM for solving the (15) can be solved accurately, thus, the convergence of ADMM

is guaranteed [37] . Algorithm 1 presents the PAM algorithm for solving (8) . And its total complexity is 

Algorithm 1 The PAM algorithm to solve (8). 

Input: The observed data T ∈ R n 1 ×... ×n l , index set �. 

1: Parameters: αi , βi , i = 1 , . . . , l − 1 , λ1 , λ2 , f , γ1 , γ2 , ρ . 

2: Initialize: X 0 , Y 0 , M 

0 , ε = 1 e − 5 , outer iteration t out = 100 , inner iteration k inner = 15 . 

3: Outer iteration: While t ≤ t out and not converged 

4: for i = 1 to l − 1 do 

5: solve X i by (11); 

6: solve Y i by (13); 

7: Inner iteration: While k ≤ k inner and not converged do 

8: Update M by solving (20); 

9: Update A i by solving (22); 

10: Update Z by solving (24); 

11: Update P by solving (26); 

12: Update C k , E, F via (17); 

13: End 

14: End 

Output: The restored data M . 

O 

(( l−1 ∑ 

i =1 

r i + 

l ∑ 

k =1 

log n k + n 3 + lm 

2 
)
�l 

k =1 n k + n 

3 
3 

)
. 

Now, we show the convergence of the Algorithm 1 . For convenience, we rewrite the objective function (8) as 

f (X, Y, M ) = f 1 ( X, Y, M ) + f 2 (M ) , (27) 

where f 1 (X, Y, M ) = 

∑ l−1 
i =1 

αi 
2 ‖K(M ) [ i ] − X i Y i ‖ 2 F 

and f 2 (M ) = λ1 ‖ W M 

T 
(3) 

‖ 1 , 1 + λ2 ‖ D s M (3) ‖ 1 , 1 . 
The following convergence theory will be used to illustrate the convergence of PAM algorithm. 

Lemma 1 [34] . Let f : R n → R ∪ + ∞ be a proper lower semi-continuous function. Let x t t ∈ N ⊂ R n be a sequence so that 

H1. ∀ t ∈ N, there is f (x t+1 ) + a ‖ x t+1 − x t ‖ 2 2 ≤ f (x t ) with a constant a ∈ (0 , + ∞ ) ; 

H2. ∀ t ∈ N , ∃ ω 

t+1 ∈ ∂ f (x t+1 ) , and ‖ ω 

t+1 ‖ 2 ≤ b‖ x t+1 − x t ‖ 2 holds with a constant b ∈ (0 , + ∞ ) ; 

H3. ∃ { x t j } j∈ N and x̄ ∈ R n so that 

x t j → x̄ and f (x t j ) → f ( ̄x ) , as j → ∞ . 

If f satisfies the KL property [38] at x̄ , then 

(i) x t → x̄ ; 

(ii) 0 ∈ ∂ f ( ̄x ) , where x̄ is a critical point of f. 

Next, we show that the function f (27) and the sequence (X t , Y t , M 

t ) generated by PAM algorithm satisfy the conditions

of Lemma 1. Therefore, we establish the following convergence theorem: 

Theorem 1. Assume that Algorithm 1 generate the bounded sequence (X t , Y t , M 

t ) . Then, it can converge to a critical point of f. 

Proof. We prove it in three steps, according to the assumptions in Lemma 1. 

First, we show that f is a proper lower semi-continuous function. Because of f 1 is a C 1 Lipschitz continuous gradient

function and f 2 is lower semicontinuous and proper, the f is a proper lower semi-continuous function. 

Second, the iterative sequence (X t , Y t , M 

t ) generated by PAM algorithm satisfies the conditions H 1, H 2, H 3 in Lemma 1.

It is worth noting that Algorithm 1 is an example of algorithm (61)-(62)-(63) displayed in [34] with B i = ρI (more details

see [34] ). Thus, the sequence (X t , Y t , M 

t ) satisfies the condition H1, H2, and H3. 

Third, we show that f satisfies the KL property at each (X t , Y t , M 

t ) ∈ dom ( f ) by proving that f is semi-algebraic on

dom( f ). Since finite sums and finite products of semi-algebraic functions are semi-algebraic [34] , it keeps showing that

f 1 (X, Y, M ) and f 2 (M ) are semi-algebraic. In fact, f 1 (X, Y, M ) is a polynomial of (X, Y, M ) , since the reshape operator is a

linear mapping between finite-dimension spaces. Then f is semi-algebraic, since polynomials are semi-algebraic functions
1 
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Fig. 3. The numerical results corresponding to parameters: λ1 , λ2 , γ 1 , γ 2 , and ρ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[34] . The function f 2 (M ) is a finite linear combination of the absolute value function and linear polynomials, which are

semi-algebraic. Therefore, f 2 is a semi-algebraic function. Then, f is semi-algebraic. 

According to Lemma 1, the bounded sequences generated by Algorithm 1 converge to a critical point of f . Therefore, the

proof is complete. �

4. Numerical experiments 

To test the effectiveness and superiority of the proposed LRTC method, we employ a set of well-known methods for

comparison, namely, HaLRTC [17] , t-SVD [20] , SiLRTC-TT [19] , and TMac-TT [19] . We perform all methods on two testing

data including color images and videos. All test tensors are scaled into the interval [0, 255]. All numerical experiments are

tested in MATLAB R2012a with an Intel Core i7-8700M 3.70 GHz and 8 GB. 

We utilize the peak signal-to-noise ratio (PSNR) [39] and the structural similarity index (SSIM) [40] to measure the

quantitative indexes of recovered results. PSNR (dB) satisfies the human subjective sensation and SSIM matches the quality

perception of the human visual system. The higher the PSNR and SSIM value, the better the recovery result. The PSNR and

SSIM values of the higher-order tensor can be obtained by calculating the mean of all frames. 

We stop our algorithm when the outer iteration t > t out or the relative error of the tensor M satisfies 

‖M 

k +1 − M 

k ‖ F 

‖M 

k ‖ F 

≤ 10 

−5 . (28)

Effect of tuning parameters . Our method involves the following parameters: αi in (8) controlling the low-rankness of the

underlying tensor, regularization parameters λ1 and λ2 , penalty parameters β i , γ 1 , and γ 2 , and proximal parameter ρ . 

For αi , we set 

αi = 

δi ∑ l−1 
i =1 δi 

with δi = min (�i 
k =1 n k , �

l 
k = i +1 n k ) , (29)

where i = 1 , . . . , l − 1 . For β i , we set βi = fαi and empirically choose f from one value in {0.005, 0.01}. Next, we test the

effect of regularization parameters λ1 and λ2 , penalty parameters γ 1 and γ 2 , and proximal parameter ρ . Fig. 3 shows the

PSNR and SSIM curves corresponding to the parameters involved in the proposed algorithm on the video data mobile with

SR = 0 . 1 . We get two findings: (1) the proposed method is sensitive to the regularization parameters λ1 , λ2 , γ 1 , and γ 2 ,

and the PSNR and SSIM curves are concave with unique optimal parameter settings which can be obtained by the hand-

tuning strategy; (2) the proposed method is robust with respect to ρ , with little effect on the completion performance.

Based on these observations, we empirically search the optimal parameter settings for λ1 and λ2 in the range [0.1, 1] with

the increment 0.1, γ 1 and γ 2 in the candidate set: {0.001, 0.01, 0.1}, and fix ρ = 0 . 001 . More specifically, we set γ1 = 0 . 01 ,

γ2 = 0 . 001 , and ρ = 0 . 001 for all experiments. For color images, we set parameters λ1 = 0 . 5 and λ2 = 0 because of the

low correlation between the three color channels. For videos, we set λ1 = 0 . 5 and λ2 = 0 . 5 . We try our best to tune the

parameters involved in the competing methods as suggested in the reference papers to obtain the highest PSNR value. 

Effect of the framelet system . We test the effect of the framelet system, which mainly determined by two factors: the

framelet function ψ and the decomposition level. In our experiment, we consider three framelet functions: the Haar wavelet,

the piecewise linear framelet, and the piecewise cubic framelet (denoted as function = Haar, Linear, and Cubic, respectively),

with three levels 1, 2, and 4. Table 1 lists the restore performance of the proposed method under different framelet systems
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Table 1 

Numerical performance of the proposed method on image house corresponding to different framelet functions and levels. 

Framelet systems Function Haar Linear Cubic 

Level 1 2 4 1 2 4 1 2 4 

Metrics PSNR 26.32 26.79 26.88 27.49 27.46 27.41 27.95 27.68 27.37 

SSIM 0.7643 0.7721 0.7740 0.7843 0.7841 0.7827 0.7907 0.7866 0.7831 

Table 2 

Numerical performance of the five algorithms with random missing entries on color images. 

Image SR 0.1 0.2 0.3 0.4 

Method PSNR SSIM TIME PSNR SSIM TIME PSNR SSIM TIME PSNR SSIM TIME 

peppers HaLRTC 16.24 0.3325 18 20.31 0.5357 19 23.37 0.6851 19 26.06 0.7899 19 

t-SVD 16.61 0.2514 188 20.30 0.4496 188 23.40 0.6067 204 26.02 0.7310 189 

SiLRTC-TT 18.86 0.5244 118 22.13 0.6827 77 24.38 0.7785 69 26.44 0.8438 50 

TMac-TT 19.51 0.4135 320 25.00 0.7269 353 27.48 0.8220 161 29.21 0.8697 73 

Ours 25.27 0.8155 5202 27.73 0.8842 4612 29.48 0.9129 5460 31.00 0.9351 5332 

barbara HaLRTC 18.00 0.3924 16 21.72 0.5959 21 24.53 0.7307 21 26.93 0.8202 25 

t-SVD 18.31 0.3600 168 22.01 0.5736 218 24.99 0.7261 196 27.82 0.8294 199 

SiLRTC-TT 20.04 0.5307 110 22.86 0.6861 74 25.10 0.7872 55 27.16 0.8550 39 

TMac-TT 19.28 0.4012 406 25.05 0.7463 256 27.70 0.8363 152 29.41 0.8816 62 

Ours 24.57 0.7732 13115 27.85 0.8542 12981 29.38 0.8914 12049 30.47 0.9179 13147 

baboon HaLRTC 17.36 0.2854 18 19.78 0.4432 17 21.43 0.5729 17 22.87 0.6771 16 

t-SVD 17.34 0.2532 219 19.61 0.4171 196 21.29 0.5571 204 22.99 0.6715 190 

SiLRTC-TT 18.19 0.3224 126 20.34 0.4775 85 21.88 0.6067 66 23.27 0.7056 47 

TMac-TT 19.30 0.3828 339 21.55 0.5398 125 22.73 0.6356 81 23.51 0.7097 37 

Ours 20.64 0.4805 12770 22.29 0.6266 13199 23.57 0.7199 12655 24.91 0.7946 12825 

house HaLRTC 20.02 0.4733 21 23.69 0.6575 24 26.72 0.7749 22 29.27 0.8486 22 

t-SVD 20.53 0.3879 191 24.50 0.6047 217 27.53 0.7443 195 30.26 0.8293 198 

SiLRTC-TT 21.38 0.5949 104 24.32 0.7210 68 26.92 0.8064 53 29.04 0.8632 41 

TMac-TT 24.14 0.6429 327 28.32 0.7854 110 29.85 0.8303 46 31.06 0.8640 45 

Ours 27.95 0.7907 4768 30.02 0.8410 4039 31.57 0.8747 2928 32.71 0.9009 1509 

Lena HaLRTC 18.56 0.4106 19 22.27 0.6025 21 25.02 0.7335 22 27.45 0.8235 20 

t-SVD 18.87 0.3469 191 22.57 0.5562 194 25.33 0.7015 205 28.09 0.8104 195 

SiLRTC-TT 20.96 0.5924 92 24.00 0.7384 61 26.26 0.8228 48 28.33 0.8811 39 

TMac-TT 23.36 0.6553 287 26.97 0.8130 99 28.68 0.8610 61 29.66 0.8916 59 

Ours 26.39 0.8168 13064 28.04 0.8702 12491 29.63 0.9048 11956 30.93 0.9265 10958 

 

 

 

 

 

 

 

T  

 

 

 

 

 

 

 

 

on color image house with SR = 0 . 1 . We observe that both the framelet function and the level have an influence on the

complete performance. In our work, we choose the framelet system (function = Cubic and level = 1) in all experiments for the

highest PSNR values. 

4.1. Color image completion 

We test the performance of the proposed method on color images completion, including random missing and structural

missing. In particular, structural missing is more complex than random missing, so structural missing is more challenging. 

Random Missing . We randomly sample entries for color images with size 256 × 256 × 3. The sampling rates (SRs) are set

as 0.1, 0.2, 0.3, and 0.4, respectively. For the low-rank matrix factorizations term in (8) , the color image is transformed into

a ninth-order ˜ M ∈ R 4 ×4 ×4 ×4 ×4 ×4 ×4 ×4 ×3 by KA. 

Fig. 4 compares the visual quality of color images for random sampling entries with SR = 0 . 1 . Obviously, there are many

artifacts in the recovered results by HaLRTC and t-SVD, which lead to a poor visual effect. The recovered images of SiLRTC-

T and TMac-TT contain serious block-artifacts. As a comparison, the proposed method keeps the smoothness and provides

clear details, which can be seen from the enlarged regions. 

Table 2 summarizes the numerical performance (PSNR and SSIM) and execution time (in seconds) of restored results

using five utilized LRTC approaches on color images with different SRs. It is clear that the best results are denoted in bold.

From Table 2 , the proposed method achieves higher numerical results at the cost of more running time. 

Structural Missing . Fig. 5 shows the recovered performance on color images for the structural missing case, including

black stripes and texts. The proposed method yields a much better visual effect in keeping details and structures. However,

the results obtained by HaLRTC and t-SVD remain a large number of missing entries, especially for black stripes. SiLRTC-TT

can perform comparatively completing results, but it can still clearly see the outlines of text on the recovered image. In

addition, the recovered images by TMac-TT suffer from serious block-artifacts. 

Table 3 presents the quality indexes by different approaches with structural missing entries and marks the best results in

bold for clarity. It is clear that for different images and structural missing cases, the proposed method consistently performs

better on PSNR and SSIM values. 
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Fig. 4. Recovered color images for random missing entries with SR = 0 . 1 . From top to bottom: the original data, the observed data, the recovered results 

by HaLRTC, t-SVD, SiLRTC-TT, TMac-TT, and Our method, respectively. From left to right: peppers, barbara, baboon, house, and lena. 
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Fig. 5. Recovered color images with fixed missing entries. From left to right: the original image, the observed image, the recovered results by HaLRTC, 

t-SVD, SiLRTC-TT, TMac-TT, and Our method, respectively. From top to bottom: house-1, house-2, lena-1, lena-2, barbara-1, and barbara-2. 

Table 3 

Numerical performance of the five algorithms with structural missing entries on color images. 

Method HaLRTC t-SVD SiLRTC-TT TMac-TT Ours 

Image PSNR SSIM TIME PSNR SSIM TIME PSNR SSIM TIME PSNR SSIM TIME PSNR SSIM TIME 

house-1 27.98 0.8976 8 28.09 0.8959 142 30.30 0.9327 38 30.65 0.9234 21 34.30 0.9578 2768 

house-2 10.91 0.4741 7 10.91 0.4741 126 28.49 0.9254 25 26.80 0.9149 8 31.06 0.9577 2336 

lena-1 26.24 0.8742 10 26.17 0.8687 145 28.37 0.9165 37 27.74 0.9042 55 30.56 0.9493 4519 

lena-2 11.79 0.5008 7 11.79 0.5008 147 30.66 0.9279 26 31.54 0.9383 9 34.34 0.9682 2027 

barbara-1 36.83 0.9779 3 36.47 0.9749 168 36.61 0.9802 13 36.45 0.9764 17 39.59 0.9894 1187 

barbara-2 11.65 0.4298 4 11.65 0.4298 236 26.89 0.8710 88 29.16 0.8763 116 30.25 0.9383 2627 

 

 

 

The convergence analysis. In Theorem 1, we theoretically prove that under bounded assumptions, the sequences generated

by Algorithm 1 converges to a critical point. To demonstrates the convergence of the PAM algorithm in numerical, Fig. 6

displays the relative error between two successive restored tensor M 

k and M 

k +1 , i.e., ‖M 

k +1 − M 

k ‖ F / ‖M 

k ‖ F on the color

image house and Lena with SR = 0 . 1 . We can see that the relative error curves keep declining over the iterations. 
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Fig. 6. Curves of relative error values versus iterations. (a) house and (b) lena . 

Fig. 7. Recovered gray videos for random missing entries with SR = 0 . 1 . The recovered results by different methods on videos with SR = 0 . 1 . From left to 

right: the original image, the observed image, the recovered results by HaLRTC, t-SVD, SiLRTC-TT, TMac-TT, and Our method, respectively. 

 

 

 

 

 

 

 

4.2. Video completion 

The algorithms are also tested on gray videos, including mobile and bus . 2 The size of all test videos is 256 × 256 × 30.

To fully explore the TT low-rankness, we cast the third-order video tensor into a fifth-order tensor with size of

16 × 16 × 16 × 16 × 30 by KA. 

Fig. 7 compares one frame of restored videos mobile and bus with SR = 0 . 1 . From the visual comparison, our method out-

performs HaLRTC, t-SVD, SiLRTC-TT, and TMac-TT in remaining details and structures. Fig. 8 presents the random pixel values

along with the temporal mode of these restored videos with different methods in SR = 0 . 1 , which shows their smoothness

in the temporal mode. It is clear that the proposed method preserves the smoothness in the temporal mode of the restored

videos, and the figure has a better touch of the original than other methods. This phenomenon illustrates the power of

promoting the smoothness of the proposed method in the temporal direction. 
2 http://trace.eas.asu.edu/yuv/ . 

http://trace.eas.asu.edu/yuv/
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Fig. 8. The pixel values of the recovered videos mobile and bus ( SR = 0 . 1 ) by HaLRTC, t-SVD, SiLRTC-TT, TMac-TT, and Our method, respectively. 
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Fig. 9. The quality indexes for each frame of videos mobile and bus ( SR = 0 . 1 ). 

 

 

 

Fig. 9 plots the numerical (PSNR and SSIM) curves for each frame of the videos, respectively. Clearly, for each frame, our

method obtains the highest values in terms of PSNR and SSIM. Table 4 shows the PSNR and SSIM values of completed videos

with different SRs. We find from it that the proposed method obtains higher values in most cases, which is agree with the

visual results shown in Fig. 7 . 
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Table 4 

Numerical performance of the five algorithms on gray videos. 

Video SR 0.05 0.1 0.2 

Method PSNR SSIM TIME PSNR SSIM TIME PSNR SSIM TIME 

mobile HaLRTC 12.12 0.1885 17 13.66 0.2685 15 15.79 0.4213 12 

t-SVD 14.40 0.2176 2669 15.97 0.3381 2652 18.28 0.5112 3845 

SiLRTC-TT 14.16 0.2646 993 15.66 0.3862 650 17.88 0.5772 590 

TMac-TT 15.97 0.3525 279 17.23 0.4803 283 19.09 0.6112 115 

Ours 16.85 0.4769 17835 18.14 0.5985 17769 21.12 0.7927 17737 

bus HaLRTC 15.74 0.3296 102 17.63 0.4165 75 19.84 0.5570 44 

t-SVD 18.20 0.3270 3982 19.65 0.4413 5019 21.83 0.6011 4029 

SiLRTC-TT 17.00 0.3344 910 18.46 0.4174 755 20.36 0.5601 531 

TMac-TT 16.73 0.2489 356 18.82 0.4247 373 20.86 0.5698 232 

Ours 19.11 0.4513 17256 20.34 0.5392 16706 21.53 0.6393 17377 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

In this paper, we propose a new tensor completion model using low-TT-rank constraint and the hybrid smoothness reg-

ularization. Specifically, we use low-TT-rank matrix factorization to exploit the global low-rankness and utilize the framelet

and TV regularization to enhance the local smoothness of the expected tensor. An effective PAM-based algorithm is designed

for solving the proposed model. Meanwhile, the sequences generated by the proposed algorithm converges to a critical point,

thus we theoretically prove the convergence. Numerical experiments using various tensor data show the effectiveness of the

proposed method in keeping the local smoothness in the spatial and temporal dimensions. 

In the future, we will research the theoretical results of the proposed model, investigate a faster numerical algorithms

with convergence, and extend the proposed method to other image processing tasks. 
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