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a b s t r a c t 

Recently, tensor train rank, defined by a well-balanced matricization scheme, has been 

shown the powerful capacity to capture the hidden correlations among different modes 

of a tensor, leading to great success in tensor completion problem. Most of the high- 

dimensional data in the real world are more likely to be grossly corrupted with sparse 

noise. In this paper, based on tensor train rank, we consider a new model for tensor robust 

principal component analysis which aims to recover a low-rank tensor corrupted by sparse 

noise. The alternating direction method of multipliers algorithm is developed to solve the 

proposed model. A tensor augmentation tool called ket augmentation is used to convert 

lower-order tensors to higher-order tensors to enhance the performance of our method. 

Experiments of simulated data show the superiority of the proposed method in terms of 

PSNR and SSIM values. Moreover, experiments of the real rain streaks removal and the real 

stripe noise removal also illustrate the effectiveness of the proposed method. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Principal component analysis (PCA), as a classical data analysis and dimension reduction method, has been widely ap-

plied in various applications, such as computer vision [1–4] , diffusion magnetic resonance imaging (MRI) [5,6] , hyperspectral

image recovery [7,8] , and video recovery [9–13] . PCA focuses on reconstructing the low-rank component from the original

data with noise corruption. According to the dimensions of the data, there are mainly two kinds of PCA methods: the

matrix-based method and the tensor-based method. 

Matrix-based PCA decomposes a matrix D ∈ R n 1 ×n 2 into the sum of a low-rank component Z and a noise component S ,

i.e., D = Z + S. When S is small multidimensional Gaussian noise, traditional PCA [14] seeks the best rank- k estimate of Z by

minimizing 

arg min 

Z 

‖ D − Z‖ 

2 
F , 

s.t. rank (Z) ≤ k. (1)
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However, traditional PCA cannot effectively handle large Gaussian noise and severe outliers that are common in practical

data. Consequently, robust PCA (RPCA) [15] overcomes this shortcoming by modeling S as a sparse component, i.e., 

arg min Z,S ‖ Z‖ ∗ + ‖ S‖ 1 , 

s.t. D = Z + S, 
(2) 

where ‖ Z ‖ ∗ = 

∑ 

r σr (Z ) denotes the nuclear norm of Z, σ r ( Z ) (r = 1 , 2 , . . . , min (n 1 , n 2 )) is the r th singular value of Z , ‖ S‖ 1 =∑ 

i j | s i j | denotes the l 1 -norm of S and s ij is the ( i, j )th element of S . The minimization problem (2) is motivated by the fact

that nuclear norm and l 1 -norm provide the tightest convex relaxation for the rank of matrix and l 0 -norm, respectively. 

Tensor PCA focuses on dimension reduction and analysis for high-dimensional data. In practice, we often encounter high-

dimensional data, such as color images, videos, and medical data. Traditional RPCA methods process the high-dimensional

data by transforming it into a matrix [16] . Such an operation seriously destroys the intrinsic tensor structure of high-

dimensional data and increases the computational cost of data analysis. Recently, tensor RPCA (TRPCA) was developed based

on tensor algebra [17–19] . TRPCA decomposes an l th-order tensor D ∈ R n 1 ×n 2 ×···×n l into the sum of a low-rank tensor Z and

the sparse noise S, i.e., 

arg min Z, S rank (Z) + λ‖S‖ 0 , 

s.t. D = Z + S. 
(3) 

A central issue in TRPCA is the definition of the tensor rank. However, the definition of a tensor rank is not unique

compared with the matrix rank. Two classical tensor rank definitions are CANDECOMP/PARAFA (CP) rank and Tucker rank

[20] . CP rank [20] is defined as the smallest number of rank-one tensors formed by the vector outer product. However, the

minimization of CP rank is NP-hard, and it is hard to establish a solvable relaxation form for it [21] . Tucker rank [20] is

defined as 

rank tc (Z) := ( rank (Z (1) ) , rank (Z (2) ) , . . . , rank (Z (l) )) , 

where Z (i ) ∈ R n i ×(n 1 ···n i −1 n i +1 ···n l ) is the mode- i matricization of Z . In order to effectively minimize the Tucker rank, Liu et al.

[22] proposed the sum of nuclear norms (SNN), 
∑ l 

i =1 αi ‖ Z (i ) ‖ ∗, as the convex surrogate of Tucker rank, where { αi } l i =1 
are

positive constants satisfying 
∑ l 

i =1 αi = 1 . Based on this surrogate, Huang et al. [17] proposed the following TRPCA: 

arg min Z, S 
l ∑ 

i =1 

αi ‖ Z (i ) ‖ ∗ + λ‖S‖ 1 , 

s.t. D = Z + S, 

(4) 

where ‖S‖ 1 is the sum of the absolute values of all entries in S . However, Tucker rank cannot appropriately capture the

global correlation of a tensor. The reason is that only a single mode represents the matrix row in Z ( i ) which is an unbalanced

matricization scheme (one mode versus the rest) [23] . For instance, when all the modes have the same dimension ( n 1 =
· · · = n l = n ), the dimension of Z ( i ) is n × n l−1 . Looking at the matrix, Tucker and its convex relaxation cannot fully capture

the correlation between high-dimensional data. Thus, its low-rankness does not make the optimization problem (4) efficient

in addressing the rank optimization problem (3) . 

Recently, based on the tensor-tensor product and tensor singular value decomposition (t-SVD), the tensor tubal rank and

its convex surrogate tensor nuclear norm (TNN) are proposed to characterize the informational and structural complexity of

multilinear data [24,25] . For a third-order tensor Z ∈ R n 1 ×n 2 ×n 3 , Lu et al. [18] applied TNN to TRPCA 

arg min Z, S 
n 3 ∑ 

i =1 

αi ‖ ̄Z (i ) ‖ ∗ + λ‖S‖ 1 , 

s.t. D = Z + S, 

(5) 

where Z̄ (i ) is the i th frontal slice of Z̄ = fft (Z, [] , 3) and fft denotes the Fast Fourier Transform; see more details in [24,26] . By

the definition of TNN, the correlations along the first and the second modes are characterized by the t-SVD while that along

the third mode is encoded by the embedded circular convolution [27] . This implies that the TNN lacks a direct measure of

the low-rankness of the third dimension. 

More recently, the tensor train (TT) rank has become an active research topic thanks to its definition from a well-balanced

matricization scheme. For an l th-order tensor Z ∈ R n 1 ×n 2 ×···×n l , the TT rank is defined as 

rank tt (Z) := ( rank (Z [1] ) , rank (Z [2] ) , . . . , rank (Z [ l−1] )) , 

where Z [ i ] ∈ R 
�i 

k =1 
n k ×�l 

k = i +1 
n k is the mode- (1 , 2 , . . . , k ) matricization of Z (see Section 2.1 ). It is worth reminding that Z [ i ] 

is obtained by matricizing along the first k modes and the rest l − k modes. Compared with Tucker rank, TT rank can

complement the correlations between different modes, by providing the mean of the correlation between a few modes

(rather than a single mode) and the rest of the tensor. Inspired by its desired nature, Lee and Cichocki [28] used low TT

rank for the singular value decomposition (SVD) of large-scale matrices. Rauhut et al. [29] used low TT rank to achieve the

steepest descent iteration of the large-scale least-squares problem. Directly minimizing the TT rank is NP-hard. Thus, TT
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nuclear norm (TTNN) [23] , as the convex surrogate of the TT rank, is defined as ‖Z‖ ∗ = 

∑ l−1 
i =1 αi ‖ Z [ i ] ‖ ∗. Particularly, Bengua

et al. [23] applied TTNN to the low-rank tensor completion problem with good performance. 

In this paper, we incorporate the advantages of TTNN into the TRPCA problem by considering the following TTNN-based

TRPCA model: 

arg min Z, S 
l−1 ∑ 

i =1 

αi ‖ Z [ i ] ‖ ∗ + λ‖S‖ 1 , 

s.t. D = Z + S, 

(6)

where αi are positive weight parameters satisfying 
∑ l−1 

i =1 αi = 1 , λ is a positive parameter. The alternating direction method

of multipliers (ADMM) algorithm is developed to solve the proposed model. Moreover, a tensor augmentation technique

ket augmentation (KA) is introduced to enhance the performance of our method. Numerical experiments are conducted

on synthetic data including the recovery of color images, MRI images, hyperspectral images, and color videos. It is worth

mentioning that the problems of rain streaks removal of videos and stripe noise removal of hyperspectral images are also

tested to prove the effectiveness of the proposed method. Extensive numerical experiments reveal the superiority of the

proposed method over the compared methods. 

The paper proceeds as follow. In Section 2 , we introduce the corresponding notations and preliminaries. In Section 3 , we

apply the ADMM to solve the proposed model. In Section 4 , numerical experiments are reported. Finally, we summarize this

paper in Section 5 . 

2. Notations and preliminaries 

In this section, we describe the notations and preliminaries used throughout the paper. 

2.1. Notations 

A tensor is a high-dimensional array and its order (or mode) is the number of its dimensions. We denote scalars as low-

ercase letters, i.e., z , vectors as boldface lowercase letters, i.e., z , matrices as capital letters, i.e., Z , and tensors as calligraphic

letters, i.e., Z . 

The Frobenius norm of an l th-order tensor Z ∈ R n 1 ×n 2 ×···×n l is ‖Z‖ F = 

√ 

�n 1 �n 2 · · ·�n l 
z 2 n 1 n 2 ···n l , where z n 1 n 2 ···n l is the

(n 1 , n 2 , . . . , n l ) th element of tensor Z . 

Mode- i matricization (also known as mode- i unfolding or flattening) of a tensor Z ∈ R n 1 ×n 2 ×···×n l is the process of

unfolding or reshaping the tensor into a matrix Z (i ) ∈ R n i ×(n 1 ···n i −1 n i +1 ···n l ) . The Tucker rank of the tensor Z is a vector

r = (r 1 , r 2 , · · · , r l ) , where r l is the rank of the corresponding matrix Z ( i ) . 

Mode- (1 , 2 , . . . , k ) matricization of a tensor Z ∈ R n 1 ×n 2 ×···n l is denoted as Z [ i ] ∈ R p i ×q i ( p i = �i 
k =1 

n k , q i = �l 
k = i +1 

n k ). In

MATLAB, it can be implemented by the reshape function 

Z [ i ] = reshape [ i ] (Z, p i , q i ) . (7)

The inverse operator of reshape is denoted as “unreshape”, i.e., Z = unreshape [ i ] (Z [ i ] ) . The TT rank is defined as the vector

r = (r 1 , r 2 , · · · , r l−1 ) , where r i is the matrix rank of Z [ i ] . The detailed description of TT can be found in [30] . 

2.2. Ket augmentation 

Ket augmentation (KA) [23] is a tensor augmentation technique that essentially represents a lower-order tensor to a

higher-order one. A significant property of KA is that the augmented tensor exhibits the local data structure more clearly

than the original one under the TT decomposition [31] . If the tensor is slightly correlated, its augmented version has low TT

rank. Therefore, KA can fully explore the potential of TT rank-based optimization and is a useful preprocessing step for TT

rank minimization. 

The procedure of KA. We use KA to transform a lower-order tensor to a higher-order one by rearranging the elements of

the tensor data. Given a tensor Z ∈ R m ×n ×p , the KA procedure involves three steps. First, we factorize m = m 1 × m 2 × · · · ×
m q and n = n 1 × n 2 × · · · × n q , and reshape Z to Z 1 of size m 1 × m 2 × · · · × m q × n 1 × n 2 × · · · × n q × p. Second, we permute

the order of dimensions of Z 1 to generate Z 2 of size m 1 × n 1 × m 2 × n 2 × · · · × m q × n q × p. Third, we reshape Z 2 to the

augmented result ˜ Z of size m 1 n 1 × m 2 n 2 × · · · × m q n q × p. 

We give an example to explain the procedure of KA. Given a tensor Z ∈ R 8 ×27 ×4 , first, we factorize 8 = 2 × 2 × 2 and

27 = 3 × 3 × 3 , and reshape Z to Z 1 of size 2 × 2 × 2 × 3 × 3 × 3 × 4. Second, we permute the order of dimensions of Z 1 to

generate Z 2 of size 2 × 3 × 2 × 3 × 2 × 3 × 4. Third, we reshape Z 2 to the augmented result ˜ Z of size 6 × 6 × 6 × 4. 

Interesting readers can refer to [23] for an extensive overview. 
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2.3. Framework of ADMM 

In this section, we recall the general convergence result of ADMM [32] . Consider the following convex optimization

problem with separable structure: 

arg min x , y f ( x ) + g( y ) , 

s.t. A x + B y = b , x ∈ X, y ∈ Y, 
(8) 

where f : R 

m → R and g : R 

n → R are closed proper convex functions, X ⊆ R 

m and Y ⊆ R 

n are closed convex sets, A ∈ R 

l×m 

and B ∈ R 

l×n are matrices, and b ∈ R 

l is a given vector. The augmented Lagrangian function of (8) is 

L ( x , y , z ) = f ( x ) + g( y ) + 〈 z , A x + B y − b 〉 + 

β

2 

‖ A x + B y − b ‖ 

2 
2 , (9)

where z is the Lagrangian multiplier and β is a penalty parameter. ADMM iterates as ⎧ ⎪ ⎨ 

⎪ ⎩ 

x 

k +1 = arg min x f ( x ) + 〈 z k , A x 〉 + 

β
2 
‖ A x + B y k − b ‖ 

2 
2 , 

y k +1 = arg min y g( y ) + 〈 z k , B y 〉 + 

β
2 
‖ A x 

k +1 + B y − b ‖ 

2 
2 , 

z k +1 = z k + τβ(A x 

k +1 + B y k +1 − b ) , 

(10) 

where τ is the step length and the superscript k refers to the iteration index. The following theorem establishes the conver-

gence of ADMM. 

Lemma 1 (Theorem B.1 in [1]) . Assume that the solution set of (8) is nonempty and there exists ( x 0 , y 0 ) ∈ ri ( dom f × dom g) ∩ P,

where P is the constraint set in (8) . Assume also that both A 

T A and B T B are positive definite . Let { ( x k , y k , z k ) } be generated from

the ADMM algorithm.If the step length τ ∈ (0 , (1 + 

√ 

5 ) / 2) , then the sequence { ( x k , y k ) } converges to an optimal solution to

(8) and { z k } converges to an optimal solution to the dual problem of (8) . Therefore, the sequence { ( x k , y k , z k ) } generated from

the ADMM algorithm is convergent. 

3. The proposed algorithm 

In this section, we develop ADMM [33–35] for solving the convex optimization problem (6) . First, we covert (6) to the

following problem by introducing auxiliary variables U i (i = 1 , 2 , . . . , l − 1) and Y: 

arg min Z, S 
l−1 ∑ 

i =1 

αi ‖ U i ‖ ∗ + λ‖Y‖ 1 , 

s.t. U i = Z [ i ] , D = Z + S, Y = S. 

(11) 

The linear constraints can be reformulated as the following matrix-vector multiplication form: ⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

I I 
0 I 
I 0 

. . . 
I 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(
z 
s 

)
+ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 . . . 0 

−I 0 0 . . . 0 

0 −I 0 . . . 0 

. . . 
0 0 0 . . . −I 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

y 
u 1 

u 2 

. . . 
u l−1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

d 

0 

0 

. . . 
0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, (12) 

where I denotes the identify matrix, z , s , y , { u i } l−1 
i =1 

and d denote the vectorization of Z, S, Y, { U i } l−1 
i =1 

and D, respectively. We

separate all the variables into two groups, ( Z, S) and ( Y, { U i } l−1 
i =1 

), and decompose the objective function as f + g with f = 0

and g = 

∑ l−1 
i =1 αi ‖ U i ‖ ∗ + λ‖Y‖ 1 . Then the minimization problem (11) fits the framework of ADMM (8) . The corresponding

augmented Lagrangian function of (11) is given by 

L (Z, S, Y, { U i } l−1 
i =1 

, { C i } l−1 
i =1 

, E, J ) 

= 

l−1 ∑ 

i =1 

(
αi ‖ U i ‖ ∗ + 〈 C i , U i − Z [ i ] 〉 + 

βi 

2 

‖ U i − Z [ i ] ‖ 

2 
F 

)
+ λ‖Y‖ 1 + 〈J , Y − S〉 + 

σ

2 

‖Y − S‖ 

2 
F + 〈E, D − Z − S〉 + 

γ

2 

‖D − Z − S‖ 

2 
F , (13) 

where C i , E, and J are Lagrangian multipliers and β i , γ , and σ are penalty parameters. 

Now, we establish the convergence of the proposed algorithm. We show that our model satisfies the assumptions in

Lemma 1 , which implies the convergence of the proposed ADMM solver. The proof is divided into three parts. First, we

show that the solution set of (6) is nonempty. It is clear that the objective function of (6) , denote by E(Z, S) , is proper,

continuous, and convex. According to the Weierstrass’ theorem [36,37] , it remains only to show the coercivity of E(Z, S) ,
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i.e., for every sequence { (Z 

k , S k ) } such that ‖Z 

k ‖ F + ‖S k ‖ F → ∞ , we have lim k →∞ 

E(Z 

k , S k ) = ∞ . We prove it by contra-

diction. Suppose that there exists a subsequence of { (Z 

k , S k ) } (also denoted as { (Z 

k , S k ) } ) that { E(Z 

k , S k ) } is bounded, we

have that 
∑ l−1 

i =1 αi ‖ Z [ i ] ‖ ∗ and ‖S‖ 1 are bounded. Using the equivalence of norms we deduce that {‖Z 

k ‖ F } and {‖S k ‖ F } are

bounded. Then { (Z 

k , S k ) } is a bounded sequence, which is a contradiction. So the solution set of (6) is nonempty. Second,

it is clear that P in our model is an affine space, then there exists (Z 0 , S 0 ) ∈ ri ( dom f × dom g) ∩ P . Third, we have that A 

T A

and B T B are positive definite, since both A and B in (12) are full column rank, where A and B denote the coefficient ma-

trices of the variables ( z T , s T ) T and ( y T , u 

T 
1 
, u 

T 
2 
, . . . , u 

T 
l−1 

) T in (12) , respectively. According to the Lemma 1 , the sequence

{Z 

k , S k , Y 

k , { U i } l−1 
i =1 

, { C i } l−1 
i =1 

, E k , J 

k } generated from the proposed ADMM algorithm is convergent. 

Thus, ADMM is based on the following iterative scheme: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(Z 

k +1 , S k +1 ) = arg min Z, S L (Z, S, U 

k 
i 
, Y 

k , C k 
i 
, E k , J 

k ) , 

(Y 

k +1 , U 

k +1 
i 

) = arg min Y, U i L (Z 

k +1 , S k +1 , U i , Y, C k 
i 
, E k , J 

k ) , 

C k +1 
i 

= C k 
i 

+ τβi (U 

k +1 
i 

− Z k +1 
[ i ] 

) , 

E k +1 = E k + τγ (D 

k +1 − Z 

k +1 − S k +1 ) , 

J 

k +1 = J 

k + τσ (Y 

k +1 − S k +1 ) , 

(14)

where the superscript k refers to the iteration index. Following, we give the details of solving each subproblem. 

1 . (Z, S) -subproblem The (Z, S) -subproblem is a least squares problem 

(Z 

k +1 , S k +1 ) = arg min 

Z, S 

l−1 ∑ 

i =1 

(
〈 C k i , U 

k 
i − Z [ i ] 〉 + 

βi 

2 

‖ U 

k 
i − Z [ i ] ‖ 

2 
F 

)
+ 〈J 

k , Y 

k − S〉 + 

σ

2 

‖Y 

k − S‖ 

2 
F 

+ 〈E k , D − Z − S〉 + 

γ

2 

‖D − Z − S‖ 

2 
F 

= arg min 

Z, S 

l−1 ∑ 

i =1 

βi 

2 

‖ U 

k 
i − Z [ i ] + C k i /βi ‖ 

2 
F + 

σ

2 

‖Y 

k − S + J 

k /σ‖ 

2 
F + 

γ

2 

‖D − Z − S + E k /γ ‖ 

2 
F . (15)

The objective function of (15) is represented by F (Z, S) . Using the optimal condition ∂ F /∂ Z = 0 and ∂ F /∂ S = 0 [38] , we

have ( 

l−1 ∑ 

i =1 

βk + γ

) 

Z + γ S = 

l−1 ∑ 

i =1 

βi ( unreshape [ i ] (U 

k 
i + C k i ) /βi ) + γ (D + E k /γ ) (16)

and 

γZ + (γ + σ ) S = γ (D + E k /γ ) + σ (Y 

k + J 

k /σ ) . (17)

Then the Z and S can be exactly obtained as following: 

Z 

k +1 = 

(
γN 

k − (γ + σ ) M 

k 
)
/ 

( 

γ 2 −
( 

l−1 ∑ 

i =1 

βi + γ

) 

(γ + σ ) 

) 

(18)

and 

S k +1 = 

( 

γM 

k −
( 

l−1 ∑ 

i =1 

βi + γ

) 

N 

k 

) 

/ 

( 

γ 2 −
( 

l−1 ∑ 

i =1 

βi + γ

) 

(γ + σ ) 

) 

, (19)

where M 

k = 

∑ l−1 
i =1 βi ( unreshape [ i ] (U 

k 
i 

+ C k 
i 
) /βi ) + γ (D + E k /γ ) and N 

k = γ (D + E k /γ ) + σ (Y 

k + J 

k /σ ) . The computational

complexities of updating the variables Z and S are O (�l 
i =1 

n i ) . 

The variables Y and U i are decoupled with each other, so they can be solved separately. 

2 . Y-subproblem The Y-subproblem is 

Y 

k +1 = arg min 

Y 
λ‖Y‖ 1 + 〈J 

k , Y − S k +1 〉 + 

σ

2 

‖Y − S k +1 ‖ 

2 
F 

= arg min 

Y 
λ‖Y‖ 1 + 

σ

2 

‖Y − S k +1 + J 

k /σ‖ 

2 
F . (20)

It has the following closed-form solution by the soft shrinkage operator [39] : 

Y 

k +1 = max (|S k +1 − J 

k /σ | − λ

σ
, 0) ◦ S k +1 − J 

k /σ

|S k +1 − J 

k /σ | , (21)

where ◦ denotes the Hadamard product and the division is performed component-wise. The convention 0 ◦ 0 
0 = 0 is as-

sumed. The complexities of computing Y is O (�l 
i =1 

n i ) . 
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3. U i -subproblem The U i -subproblem is 

U 

k +1 
i 

= arg min 

U i 

l−1 ∑ 

i =1 

αi ‖ U i ‖ ∗ + 〈 C k i , U i − Z k +1 
[ i ] 

〉 + 

βi 

2 

‖ U i − Z k +1 
[ i ] 

‖ 

2 
F 

= arg min 

U i 

l−1 ∑ 

i =1 

(
αi ‖ U i ‖ ∗ + 

βi 

2 

‖ U i − Z k +1 
[ i ] 

+ C k i /βi ‖ 

2 
F 

)
. (22) 

Since the U i -subproblem can be decomposed into l − 1 independent subproblems for U i , it can be solved in parallel as 

arg min 

U i 

αi ‖ U i ‖ ∗ + 

βi 

2 

‖ U i − Z k +1 
[ i ] 

+ C k i /βi ‖ 

2 
F , (23) 

which has the closed-form solution [40] 

U 

k +1 
i 

= U�αi /βi 
V 

T , (24) 

where Z k +1 
[ i ] 

− C k 
i 
/βi = U�V T , �αi /βi 

= diag ( max (�r,r − αi /βi , 0)) , and �r,r is the r th singular value of �. Its complex-

ity is O (�l−1 
i =1 

min (p 2 
i 
q i , p i q 

2 
i 
)) ( p i = �i 

k =1 
n k , q i = �l 

k = i +1 
n k ) operations. Finally, we summarize the proposed algorithm in

Algorithm 1 . The total cost of computing all the variables at each iteration is O (�l 
i =1 

n i + �l−1 
i =1 

min (p 2 
i 
q i , p i q 

2 
i 
)) . 

Algorithm 1 ADMM for solving (6) . 

Input: the observed tensor D, parameters λ, f , γ , and σ . 

Output: the restored tensor Z and sparse noise tensor S . 

1: Initialize Z = D, U i , Y , C i , E , J , maximum iterations K = 200 , and τ = 1 . 1 . 

2: While ‖Z 

k +1 − Z 

k ‖ F / ‖Z 

k ‖ F > ε and k ≤ K Do 

3: Updating Z and S via (18) and (19); 

4: Updating Y via (21); 

5: Updating U i via (24); 

6: Updating Multipliers C i , E , and J via (14); 

7: End Do 

4. Numerical experiments 

In this section, we evaluate the performance of the proposed TTNN-based method (denoted as “TTNN”) for restoring

observed high-dimensional images as simulation experiments including color images, MRI images, hyperspectral images, 

and color videos. We also test the real world video rain streaks and hyperspectral image stripes removal problems. We

compare the results with two TRPCA methods, including the method based on Tucker rank [41] (denoted as “SNN”) and the

method based on tensor tubal rank [18] (denoted as “TNN”). All test tensors are normalized between [0, 1] to allow a fair

quantitative evaluation. 

The quality of recovered tensors is measured by the peak signal-to-noise ratio (PSNR) [42] and the structural similarity

index (SSIM) [43] , which are defined as 

PSNR = 10 log 10 

N(Z max ) 2 

‖ Z − Z ∗‖ 

2 
F 

and 

SSIM = 

(2 μZ μZ ∗ )(2 σZ Z ∗ + C 2 ) 

(μ2 
Z 

+ μ2 
Z ∗ + C 1 )(σ 2 

Z 
+ σ 2 

Z ∗ + C 2 ) 
, 

where Z ∗ is one band (frame) of the true tensor, Z is one band (frame) of the recovered tensor, N denotes the total number

of pixels in the image, Z max is the maximum pixel value of the image, μZ and μZ ∗ are the mean values of images Z and Z ∗,

σ Z and σZ ∗ are the standard variances of Z and Z ∗, σZ Z ∗ is the covariance of Z and Z ∗, and C 1 and C 2 > 0 are constants. The

PSNR (dB) and SSIM values for a higher-order tensor are obtained by calculating average PSNR and SSIM values for all bands

(frames). Higher PSNR and SSIM values imply better image quality. 

The convergence criterion of our proposed algorithm is defined by computing the relative error of the tensor Z between

two successive iterations as follows: 

‖Z 

k +1 − Z 

k ‖ F 

‖Z 

k ‖ F 

≤ 10 

−4 . (25) 

In our experiment, the weights αi are defined as 

αi = 

δi ∑ l−1 δi 

with δi = min (�i 
k =1 n k , �

l 
k = i +1 n k ) , (26) 
i =1 
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Fig. 1. Restored results of color images with the noise level 30%. From top to bottom: Lena, Peppers, and Monarch. From left to right: the original data, 

the observed data, the recovered results by SNN, TNN, and TTNN, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where i = 1 , . . . , l − 1 . We choose βi = fαi , where f is empirically chosen from one of the following values in {0.1, 1, 1.5, 2}.

In addition, we empirically set the regularization parameter λ∈ [0.01, 0.1] with increment of 0.01 and penalty parameters

γ ∈ [0.0 01, 0.0 03] and σ ∈ [0.0 01, 0.01] with increment of 0.001. For the compared method SNN, we empirically set regu-

larization parameters α1 , α2 ∈ [5, 30] with increment of 2 and α3 ∈ [0.2, 6] with increment of 0.4 and select the penalty

parameter from the set { 10 −5 , 10 −4 , 10 −3 } . The parameter in TNN is optimized according to the author’s suggestion in [18] .

For synthetic data, we optimize parameters of each method to attain the highest PSNR value in all experiments. For real

data, we choose the parameters to get a good visual quality. 

All numerical experiments are performed on Windows 10 64-bit and MATLAB R2012a running on a desktop equipped

with an Intel(R) Core(TM) i7-6700M CPU with 3.40 GHz and 8 GB of RAM. 

4.1. Synthetic data 

In the simulated experiments, taking the noise level 30% as an example, the observed image is obtained by randomly

setting 30% of the pixels to random values [0, 1], and the positions of the corrupted pixels are unknown. 

4.1.1. Color images 

In this section, we evaluate the proposed method on color images. The size of the test data is 256 × 256 × 3. In the

low-rank term of (6) , the third-order tensor Z ∈ R 256 ×256 ×3 is transformed into a ninth-order ˜ Z ∈ R 4 ×4 ×4 ×4 ×4 ×4 ×4 ×4 ×3 to

explore the TT low-rankness by using KA. Fig. 1 shows the experiment results by SNN, TNN, and the proposed TTNN. It is

clear that the restored results by the proposed method are visually better than those by SNN and TNN. Table 1 summarizes

the recovered quantitative results of different noise levels for SNN, TNN, and TTNN, respectively. From this table, one can

observe that our method obtains the best results with respect to PSNR and SSIM. 

4.1.2. MRI images 

We use MRI data of size 256 × 256 × 10 as the test data in this subsection. The third-order tensor is converted to a ninth-

order tensor of size 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 10 by using KA. Fig. 2 shows a band of the test MRI image recovered by

all compared methods. Clearly, the restored results obtained by the TTNN are visually better than those obtained by SNN

and TNN. Fig. 3 shows the PSNR and SSIM values of every frame. Note that every frame recovered by the proposed method

is higher than that recovered by SNN and TNN. Table 2 shows the average PSNR and SSIM values of the MRI image with

different sparse noise levels, and they are consistent with the visual comparison. 
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Table 1 

The average PSNR (dB) and SSIM values obtained by SNN, TNN, and TTNN for color images with different noise levels. 

Image Method Sparse Noise Levels 

10% 30% 50% 

PSNR SSIM PSNR SSIM PSNR SSIM 

Lena Observed 18.73 0.3636 13.98 0.1495 11.72 0.0809 

SNN 30.57 0.8890 25.37 0.7644 20.43 0.5234 

TNN 29.87 0.9288 25.35 0.6892 17.51 0.2261 

TTNN 34.98 0.9627 28.20 0.8457 23.13 0.7002 

Peppers Observed 17.93 0.3575 13.19 0.1528 10.93 0.0863 

SNN 29.24 0.8319 23.00 0.7014 17.79 0.4144 

TNN 26.98 0.8936 22.22 0.5684 15.19 0.1794 

TTNN 30.86 0.9174 24.61 0.7762 20.08 0.5923 

Pallon Observed 18.48 0.2705 13.68 0.0901 11.44 0.0473 

SNN 31.86 0.8542 27.81 0.8188 21.95 0.5950 

TNN 31.14 0.9319 27.02 0.7164 17.73 0.1743 

TTNN 36.19 0.9577 30.27 0.8711 23.64 0.6834 

Carnev Observed 15.62 0.2294 10.83 0.0823 8.59 0.0431 

SNN 29.16 0.7617 24.09 0.5688 19.36 0.2082 

TNN 26.67 0.8521 23.84 0.4336 14.09 0.1027 

TTNN 31.90 0.9124 26.28 0.6537 20.21 0.2435 

Cat Observed 18.13 0.4235 13.34 0.1713 11.15 0.0905 

SNN 31.47 0.9010 25.37 0.7346 19.48 0.4206 

TNN 32.58 0.9534 25.25 0.7098 16.79 0.2475 

TTNN 35.70 0.9712 28.42 0.8607 22.30 0.6096 

Monarch Observed 18.31 0.4546 13.60 0.2141 11.34 0.1218 

SNN 29.86 0.9127 22.44 0.7084 17.48 0.3980 

TNN 28.79 0.9432 22.28 0.6408 15.75 0.2546 

TTNN 32.97 0.9605 24.76 0.8676 20.01 0.6055 

Lochness Observed 17.29 0.3458 12.49 0.1336 10.30 0.0685 

SNN 30.56 0.8452 25.90 0.6914 18.50 0.3979 

TNN 30.92 0.8936 25.55 0.6321 15.62 0.1928 

TTNN 33.66 0.9372 27.81 0.7776 20.41 0.5442 

Fig. 2. Restored results of MRI image with the noise levels 10%, 20%, and 30%, respectively. From top to down: the noise level 10%, 20%, and 30%. From left 

to right: the original data, the observed data, the recovered results by SNN, TNN, and TTNN, respectively. 
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Table 2 

The average PSNR (dB) and SSIM values obtained by SNN, TNN, and TTNN for MRI image with different noise levels. 

Method Sparse Noise Levels 

10% 20% 30% 

PSNR SSIM PSNR SSIM PSNR SSIM 

Observed 17.21 0.3820 14.23 0.2366 12.42 0.1631 

SNN 29.06 0.8607 24.32 0.6990 21.10 0.5231 

TNN 30.99 0.8572 24.49 0.6110 19.78 0.4269 

TTNN 32.53 0.9314 28.23 0.8231 24.08 0.6618 

Fig. 3. The PSNR and SSIM values of all bands of the recovered MRI image (the noise level 30%) by SNN, TNN, and TTNN, respectively. 

Fig. 4. Restored results of hyperspectral images with the noise level 10%. From left to right: the original data, the observed data, the recovered results by 

SNN, TNN, and TTNN, respectively. 

 

 

 

 

 

 

 

4.1.3. Multispectral images 

In this subsection, the Toy 1 and WashtonDC 2 data are used to test the performance of different methods. We only select

a part of them (of size 256 × 256 × 10) as the testing multispectral images. Fig. 4 shows a band of the test hyperspectral im-

ages reconstructed by the proposed method and two compared method. It is observed that the proposed method is able to

produce visually superior results than the compared methods. The PSNR and SSIM values of each band of the reconstructed

multispectral images for the noise level 10% are shown in Fig. 5 . We can see that the PSNR and SSIM values in all bands

obtained by the proposed method are better than those obtained by the compared methods. In addition, Table 3 shows nu-

merical comparisons of different methods for recovering multispectral images with different sparse noise levels. In contrast,

our advantages are more obvious when the noise level is lower. 
1 http://www1.cs.columbia.edu/CAVE/databases/multispectral . 
2 https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html . 

http://www1.cs.columbia.edu/CAVE/databases/multispectral
https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
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Table 3 

The average PSNR (dB) and SSIM values obtained by SNN, TNN, and TTNN for multispectral images with different noise 

levels. 

Image Method Sparse Noise Levels 

10% 20% 30% 

PSNR SSIM PSNR SSIM PSNR SSIM 

Toy Observed 16.00 0.2496 12.99 0.1490 11.20 0.1042 

SNN 36.41 0.9623 31.68 0.8635 28.01 0.8687 

TNN 41.66 0.9953 39.30 0.9912 35.78 0.9572 

TTNN 50.33 0.9987 41.71 0.9951 36.27 0.9848 

WashtonDC Observed 17.95 0.6130 14.91 0.4363 13.15 0.3288 

SNN 28.01 0.9382 24.21 0.8503 21.57 0.7545 

TNN 35.54 0.9919 32.84 0.9843 29.06 0.9559 

TTNN 44.58 0.9986 36.31 0.9939 29.98 0.9742 

Table 4 

The average PSNR (dB) and SSIM values obtained by SNN, TNN, and TTNN for color videos with different noise levels. 

Video Method Sparse Noise Levels 

10% 20% 30% 

PSNR SSIM PSNR SSIM PSNR SSIM 

Bus Observed 18.00 0.489 15.01 0.3362 13.24 0.2499 

SNN 25.86 0.9405 24.27 0.8654 22.05 0.6664 

TNN 24.16 0.9028 22.81 0.8419 22.03 0.7592 

TTNN 31.81 0.9702 27.14 0.9322 23.95 0.8112 

Mobile Observed 17.37 0.5785 14.41 0.4315 12.58 0.3333 

SNN 22.55 0.8423 20.60 0.6900 18.01 0.5244 

TNN 19.84 0.7659 18.56 0.6711 17.63 0.5527 

TTNN 27.59 0.9244 23.81 0.8516 21.05 0.7283 

News Observed 17.19 0.3398 14.23 0.2197 12.46 0.1577 

SNN 28.26 0.9250 26.69 0.9018 24.64 0.7944 

TNN 25.94 0.9095 24.65 0.881 23.44 0.8427 

TTNN 38.25 0.9901 34.52 0.9810 29.71 0.9530 

Fig. 5. The PSNR and SSIM values of all bands of the recovered multispectral image Toy (the noise level 10%) by SNN, TNN, and TTNN, respectively. 

 

 

 

 

 

 

4.1.4. Color videos 

In this section, we test the proposed method on three color videos, including bus, mobile , and news . 3 The size of all

test videos is 243 × 256 × 3 × 27. We reshape the tensor to a ninth-order tensor of size 6 × 6 × 6 × 6 × 6 × 6 × 6 × 6 × 3 for

experiments. 

In Fig. 6 , we illustrate the restored results of one frame of bus, mobile , and news by SNN, TNN and TTNN, with the

noise level 30%. It is obvious that our method visually outperforms SNN and TNN in preserving details and structure of

underlying videos. The PSNR and SSIM values against the frame number are plotted in Fig. 7 . It is clear that the proposed

method obtains higher quality results in all frames. Table 4 summarizes the average PSNR and SSIM values of all videos
3 http://trace.eas.asu.edu/yuv/ . 

http://trace.eas.asu.edu/yuv/
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Fig. 6. One frame of the test videos recovered by different methods with the noise level 30%. From up to down: bus, mobile , and news . From left to right: 

the original data, the observed data, the recovered results by SNN, TNN, and TTNN, respectively. 

Fig. 7. The PSNR and SSIM values of all frames of the recovered video mobile (the noise level 30%) by SNN, TNN, and TTNN, respectively. 

 

 

 

 

 

 

recovered by different methods for different noise levels. We observe that the proposed method consistently outperforms

the compared methods in terms of PSNR and SSIM values. 

4.2. Real data 

In the previous section, we simulated random sparse noise. However, in the real world, sparse noise does not obey the

above discussion, such as rain streaks in videos and stripe noise in hyperspectral images. So in this section, we test the

effectiveness of the proposed method for the real-world data. 

4.2.1. Video rain streaks removal 

The real video is recorded by the authors of [10] on a rainy day. The size of the real video is 243 × 256 × 3 × 27. Fig. 8

shows three frames of the rain streaks removal results. Qualitatively, our method shows the best visual performance on

simultaneously removing rain and preserving details. We can see that there are still many rain streaks on the results of

SNN, while TNN destroys some spatial details, for instance, the leaves in the video. 
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Fig. 8. Restored results on video rain streaks removal. From left to right: the real data, the recovered results by SNN, TNN, and TTNN, respectively. 

Fig. 9. Restored results on hyperspectral image stripes removal. From up to down: Hyperion and Urban. From left to right: the real data, the recovered 

results by SNN, TNN, and TTNN, respectively. 

 

 

 

 

4.2.2. Hyperspectral images stripes removal 

Two real-world hyperspectral images are used in our experiments to further test the performance of the proposed

method including the Hyperion 4 and the Urban . 5 In our experiment, we only use subregions of size 256 × 256 × 10 which are

corrupted by stripe noise. Some representative destriping results are shown in Fig. 9 . By comparing the destriping results, it

is observed that SNN and TNN fail to remove heavy stripe noise. The superior performance of the proposed method can be

easily observed in the labeled boxes, where our method removes stripe noise and preserves most of the details. 
4 http://remote-sensing.nci.org.au/ . 
5 http://www.tec.army.mil/hypercube . 

http://remote-sensing.nci.org.au/
http://www.tec.army.mil/hypercube
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Fig. 10. The PSNR and SSIM values with respect to the regularization parameter λ. 

Fig. 11. The PSNR and SSIM values with respect to penalty parameters. (a) γ and (b) σ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Discussions 

Parameters selection . We study the influences of the regularization parameter λ and penalty parameters γ and σ . Taking

color images (Cat, Lena, and Peppers) as examples, we test three color images corrupted by the sparse noise level 30%. The

PSNR and SSIM values with respect to the regularization parameter λ are plotted in Fig. 10 . It can be observed that restored

images Cat and Lena achieve the highest PSNR and SSIM values with λ in 0.05 and 0.06 nearby, respectively. Fig. 11 (a) and

(b) show the PSNR and SSIM values with respect to penalty parameters γ and σ , respectively. From Fig. 11 (a), it is shown

that PSNR and SSIM curves perform obvious improvement when γ is increased from 0 to 0.001. Moreover, we also observe

that PSNR and SSIM curves are slowly declining when γ further goes increasing. In Fig. 11 (b), it also can be observed that

PSNR and SSIM curves tend to be stable with respect to the parameter σ . Since our experiments involve various data and

different sparse noise levels, we empirically set the optimal range of regularization parameter λ to [0.01,0.1] with increment

of 0.01, and set the penalty parameter ranging as γ ∈ [0.0 01, 0.0 03] and σ ∈ [0.001, 0.01] with increment of 0.001 in this

paper. 

The effect of KA. Fig. 12 shows the recovered results by the proposed method with and without KA. We observe that the

proposed method with KA achieves better visual performance compared with those without KA. The reason is that KA can

effectively exploit the low-TT-rank structure hidden in the original data, by transforming it into a higher-order tensor. In

fact, without KA, the TT rank for a third-order tensor only explores the correlation along the first and third modes, while

KA helps TT to capture the intrinsic correlations among local structures. Thus, we use KA to enhance the performance of

the proposed method. 
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Fig. 12. The effect of KA. From left to right: the original data, the observed data, the recovered results by TTNN without and with KA, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

TRPCA focuses on efficiently recovering low-rank and sparse components from the observed high-dimensional data. The

key of TRPCA is to characterize the low-rankness of tensors. In this paper, we introduced TTNN into the TRPCA problem

by taking into full consideration the global correlation of the high-dimensional data. The ADMM have been designed to

solve the proposed model. In the simulations with various high-dimensional data sets, TTNN showed better results than

SNN and TNN, which are two of the state-of-the-art TRPCA methods. For the real-world data experiments, e.g., the rain

streaks removal of videos and the stripe noise removal of hyperspectral images, our method obtained visually more satisfied

restoration results 
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