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Visual Data Recovery
Sheng Liu , Jinsong Leng, Xi-Le Zhao , Haijin Zeng , Graduate Student Member, IEEE,

Yao Wang , and Jing-Hua Yang

Abstract— Recently, transform-based tensor nuclear norm
(TNN) methods have received increasing attention as a powerful
tool for multi-dimensional visual data (color images, videos, and
multispectral images, etc.) recovery. Especially, the redundant
transform-based TNN achieves satisfactory recovery results,
where the redundant transform along spectral mode can remark-
ably enhance the low-rankness of tensors. However, it suffers
from expensive computational cost induced by the redundant
transform. In this paper, we propose a learnable spatial-spectral
transform-based TNN model for multi-dimensional visual data
recovery, which not only enjoys better low-rankness capability
but also allows us to design fast algorithms accompanying it.
More specifically, we first project the large-scale original tensor to
the small-scale intrinsic tensor via the learnable semi-orthogonal
transforms along the spatial modes. Here, the semi-orthogonal
transforms, serving as the key building block, can boost the
spatial low-rankness and lead to a small-scale problem, which
paves the way for designing fast algorithms. Secondly, to further
boost the low-rankness, we apply the learnable redundant trans-
form along the spectral mode to the small-scale intrinsic tensor.
To tackle the proposed model, we apply an efficient proximal
alternating minimization-based algorithm, which enjoys a theo-
retical convergence guarantee. Extensive experimental results on
real-world data (color images, videos, and multispectral images)
demonstrate that the proposed method outperforms state-of-the-
art competitors in terms of evaluation metrics and running time.

Index Terms— Tensor completion, semi-orthogonal transform,
redundant transform, tensor nuclear norm, proximal alternating
minimization algorithm.
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I. INTRODUCTION

TENSOR is a high-dimensional extension of vector/matrix,
which provides a flexible and efficient mathematical

representation for multi-dimensional visual data. Conse-
quently, tensor representation plays an important role in
real-world applications, e.g., image/video reconstruction and
classification [1], [2], [3], [4], [5]. However, due to the
limitations of the imaging device and environment, the col-
lected multi-dimensional visual data is usually corrupted, e.g.,
video pixel missing [6], image graffiti [7], and thick cloud
occlusion for remote sensing images [8], which hinders their
subsequent applications [9], [10]. Recovering underlying data
from the missing or corrupted partial observation, i.e., tensor
completion, is a classical inverse problem in multi-dimensional
image processing. Due to the non-uniqueness and instability
of the solution to the inverse problem, the key to the recovery
of multi-dimensional visual data is to efficiently characterize
and leverage the prior knowledge.

Low-rankness is suggested to characterize the intrin-
sic structure of multi-dimensional visual data as the prior
knowledge. The multi-dimensional visual data is generally
self-correlated with low-rank structures, such as color images,
videos, and multispectral images (MSIs). Thus, the low-rank
tensor completion (LRTC) methods that exploit the under-
lying low-rank structure of data show promise for solving
multi-dimensional visual data recovery problems [11], [12],
[13], [14]. The LRTC method can be mathematically formu-
lated as

min
X

rank∗(X ), s.t. XΩ = OΩ , (1)

where X is the underlying tensor, O is the observed tensor,
Ω is the index set of observed entries in O, and rank∗(·)

is denoted as a specific type of tensor rank based on the
corresponding rank assumption. The mainstream tensor ranks
include CANDECOMP/PAEAFAC (CP) rank [15], Tucker
rank [16], [17], tensor train rank [12], [18], tensor ring
rank [19], [20], fully-connected tensor network rank [21],
[22], and tensor tubal rank induced by tensor singular value
decomposition (t-SVD) [23], [24].

The recent t-SVD has received increasing attention due to
its excellent ability in capturing the widespread spatial-shifting
correlations in real-world data [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33]. Kilmer et al. defined tensor
tubal rank [23] and multi-rank [24] by using circulant algebra
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with the framework of t-SVD. However, it is NP-hard to
minimize the multi-rank of target tensors directly. To overcome
this issue, Zhang et al. [25] employed tensor nuclear norm
(TNN) as the convex surrogate of the tensor multi-rank and
proposed a corresponding LRTC method. Lu et al. [26] defined
an average rank and proposed the corresponding TNN, and
further proved that this TNN is the convex envelope of the
tensor average rank with the unit ball of the tensor spectral
norm. Additionally, Wu et al. [28] proposed the tensor Qatar
Riyal (QR) decomposition based on t-SVD, and employed
the tensor QR to define TNN on small-scale tensors. In the
t-SVD framework, the keystone is the orthogonal and prede-
fined discrete Fourier transform (DFT) [23], which restricts the
characterization of low-rankness of multi-dimensional visual
data.

Many researchers have considered different transforms in
t-SVD to characterize the low-rankness of tensors [34], [35],
[36], [37], [38], [39]. Lu et al. [34] and Xu et al. [35] utilized
the discrete cosine transform (DCT) and achieved the superior
performance than the DFT. Kernfeld et al. [36] declared that
a more generalized tensor-tensor product can be constructed
by replacing the DFT with any linear transforms. Furthermore,
Jiang et al. [37] suggested a semi-invertible framelet transform,
which breaks the limitation of linear invertible transforms.
However, the above transform matrices are data-independent
and thus lack flexibility. To extend the flexibility of the trans-
form matrices, it is necessary to design learning-based methods
to make the transform matrices data-dependent [38], [39],
[40], [41], [42]. Song et al. [38] suggested a unitary matrix
that is generated by singular value decomposition (SVD) of a
mode-3 unfolding matrix of the tensor. Jiang et al. [39] built
a learnable redundant dictionary with low-rank coding as the
transform matrix to define TNN named the dictionary-based
TNN (DTNN) and achieved remarkable success in characteriz-
ing low-rankness. The success of DTNN lies in the redundant
transform which is used to explore the low-rank structure of
tensors. However, the redundant transform suffers from high
computation cost, especially for large-scale tensors, where
series SVDs are the main bottleneck.

To address the challenge computational issue, many fast
algorithms were developed [43], [44], [45], [46], [47].
Zhang et al. [43] proposed a random t-SVD to solve this issue.
They constructed a semi-orthogonal projection using a random
tensor to project a large-scale tensor into a small-scale tensor,
so that the SVD can be calculated on the small-scale tensor to
reduce computational cost. Zhang et al. [44] designed a fast
algorithm by bilateral random projections, which are utilized
to constrain the tubal rank of the intrinsic tensor. Wang et al.
[45] employed the random projection technique and the power
of the block Krylov iteration to accurate frequent directions
algorithm. By random projection, these fast algorithms have
gained computational advantages at the cost of accuracy.

A natural question is can we reduce computational cost
without sacrificing recovery performance under the t-SVD
framework? To answer this question, we propose the learn-
able spatial-spectral transform-based tensor nuclear norm
(LS2T2NN) model for LRTC. In the LS2T2NN model,
we project the large-scale original tensor to the small-scale

TABLE I
NOTATIONS AND THE CORRESPONDING EXPLANATIONS

intrinsic tensor with learnable semi-orthogonal transforms
along the spatial modes, which boosts the spatial low-rankness
and allows us to design efficient optimization algorithms.
There are many efficient algorithms (e.g., proximal alternating
minimization (PAM)) available for solving nonconvex and
nonsmooth optimization problems. To solve the proposed
model, we apply PAM to design a solving algorithm with a
theoretical convergence guarantee. The aforementioned idea is
illustrated in Fig. 1.

Our contributions are three-fold:

• Armed with the learnable semi-orthogonal transforms
along the spatial modes and the redundant transform
along the spectral mode, we propose the LS2T2NN model
for multi-dimensional visual data recovery, which enjoys
better low-rankness characterization and allows us to
design efficient algorithms.

• To tackle the proposed model, we apply PAM to
design a solving algorithm and establish the convergence
guarantee.

• Extensive numerical experiments on videos, MSIs, and
color images demonstrate that the proposed LS2T2NN
has the superior performance compared with other state-
of-the-art LRTC methods in terms of evaluation metrics
and running time.

The rest of the paper is organized as follows. In Section II,
we introduce some notations and preliminaries. In Section III,
we propose the LS2T2NN model for LRTC and discuss the
relationship between LS2T2NN and DTNN with theoretical
analysis. In addition, we present an efficient PAM-based
algorithm for LS2T2NN, which enjoys a theoretical conver-
gence guarantee. The experimental results are illustrated and
discussed in Section IV. The conclusion is drawn in Section V.

II. NOTATIONS AND PRELIMINARIES

Throughout this paper, the notations are listed in Table I
and the preliminaries used are summarized as follows:

Definition 1 (Mode-p product [48]): The mode-p product
of a tensor X and a matrix U is defined as

Y = X ×p U = foldp(U X(p)). (2)

Definition 2 (Tensor-tensor product [49]): The tensor-tensor
product (t-product) Z = X ∗ Y of X ∈ Rn1×n2×n3 and
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Fig. 1. Frameworks of DTNN and LS2T2NN. (a) The small-scale tensor E t is obtained by applying learnable semi-orthogonal transforms to X t along
the spatial modes. (b) The spectral encoding, utilizing the learnable redundant transform, is performed on E t along the spectral mode. (c) The low-rank
representation operation is performed on each frontal slice of Z t . (d) The spectral decoding, utilizing the learnable redundant transform, is performed on
Z t+1 along the spectral mode. (e) The spatial decoding, utilizing the learnable semi-orthogonal transforms, is performed on E t+1 along the spatial modes.

Y ∈ Rn2×n4×n3 is a tensor of size n1 ×n4 ×n3, whose (i, j)-th
tube is given by

Z(i, j, :) =

n2∑
k=1

X (i, k, :) ⋆ Y(k, j, :), (3)

where ⋆ denotes the circular convolution operation of two
tubes.

Definition 3 (Identity tensor, orthogonal tensor, and
f -diagonal tensor [49]): The identity tensor I ∈ Rn×n×n3 is
that the first frontal slice is the identity matrix and other frontal
slices are all zeros. A tensor Q ∈ Rn×n×n3 is orthogonal if
and only if it satisfies QH

∗ Q = Q ∗ QH
= I, where QH

is the conjugate transpose of Q. If each frontal slice of the
tensor is diagonal, then it is an f-diagonal tensor.

Definition 4 (t-SVD [23], [49]): For X ∈ Rn1×n2×n3 , it can
be factored as

X = U ∗ S ∗ VH , (4)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal
tensors, and S ∈ Rn1×n2×n3 is a f-diagonal tensor.

Definition 5 (Tensor tubal-rank and tensor multi-rank [23],
[24]): For X ∈ Rn1×n2×n3 , the tubal rank of X denoted as
rankt (X ) is the number of nonzero tubes of S from the X =

U ∗ S ∗ VH , i.e.,

rankt (X ) := #{i : S(i, i, :) ̸= 0}. (5)

The tensor multi-rank of X denoted as rankm(X ) is a vector
whose k-th element is the rank of k-th frontal slice of X̂ ,
where X̂ = X ×3 F and F is the DFT matrix.

Definition 6 (TNN [25], [26]): For X ∈ Rn1×n2×n3 , the
tensor nuclear norm (TNN) of X is denoted by

∥X∥TNN ≜
1
n3

n3∑
k=1

∥Zk∥∗, (6)

where X = Z ×3 F⊤ and Zk is the k-th frontal slice of Z .

Definition 7 (DTNN [39]): For X ∈ Rn1×n2×n3 , the
dictionary-based TNN (DTNN) of X is denoted by

∥X∥DTNN ≜
ñ3∑

k=1

∥Zk∥∗, (7)

where X = Z ×3 D and ∥D(:, k)∥2 = 1, k = 1, · · · , ñ3, ñ3 is
number of columns of D.

III. MODEL AND ALGORITHM

In this section, we first propose the LS2T2NN model
and discuss the relationship between LS2T2NN and DTNN
with theoretical analysis. We then design the corresponding
solution algorithm. Finally, we discuss the convergence and
computational complexity of the algorithm.

A. Proposed LS2T2NN Model

The redundant transform can enhance the low-rankness of
the frontal slices of the transformed tensor and produces
significant recovery results. However, the significant recovery
results come at the cost of an increase in the number of
frontal slices of the transformed tensor, which results in an
expensive computational cost in SVD calculations with the t-
SVD framework. To reduce the computational burden, some
fast algorithms have emerged with cheaper SVD calculations
by projecting the original tensor to a small-scale tensor. These
fast algorithms have gained computational advantages at the
cost of accuracy. It can be seen from Fig. 2 that the recovery
results by both DTNN and random t-SVD (RTSVD) methods
are presented on video data Flight. These two methods are
typical representatives of the transform-based TNN methods
[34], [35], [36], [37], [38], [39], [40], [41], [42] and fast
TNN-based methods [43], [44], [45], [46], [47]. The results
indicate that DTNN provides superior restoration accuracy, but
at the cost of higher computational complexity, while RTSVD
offers lower computational cost but less impressive recovery
result. In other words, the results show that DTNN faces
computational limitations and that the performance of RTSVD
is limited by stagnation.
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Fig. 2. The visual results at the 10th frame, PSNR, and running time obtained
by different methods on the video Flight under a sampling rate of 0.1.

To reduce computational cost without sacrificing recov-
ery performance with the t-SVD framework, we first utilize
learnable semi-orthogonal transforms as spatial projections
to project the large-scale original tensor onto a small-scale
intrinsic tensor. Next, we apply a learnable redundant trans-
form along the spectral mode to the small-scale intrinsic
tensor. Therefore, we model a tensor nuclear norm, called the
learnable spatial-spectral transform-based tensor nuclear norm
(LS2T2NN), which is defined as

∥X∥LS2T2NN ≜
ñ3∑

k=1

∥Zk∥∗, (8)

where X = Z ×1 T 1 ×2 T 2 ×3 D, T⊤

1 T 1 = Ir×r , T⊤

2 T 2 =

Ir×r , and ∥D (:, k)∥2 = 1, k = 1, · · · , ñ3. It is worth noting
that T 1, T 2, and D are learnable at each iteration. Based on
LS2T2NN, we design a corresponding LRTC model, which
can be formulated mathematically as

min
X ,Z,

D,T1,T2

ñ3∑
k=1

∥Zk∥∗, s.t. X = Z ×1 T 1 ×2 T 2 ×3 D,

T⊤

1 T 1 = Ir×r , T⊤

2 T 2 = Ir×r ,

∥D (:, k)∥2 = 1, k = 1, · · · , ñ3,XΩ = OΩ ,

(9)

where T 1 ∈ Rn1×r and T 2 ∈ Rn2×r are learnable semi-
orthogonal transforms, and D ∈ Rn3×ñ3 is the learnable
redundant transform, and Ω is the index set of observed entries
in O.

The advantages of our model are two-fold. First, our model
can boost the low-rank representation. Second, our model
can help reduce the computational cost by transforming the
problem from size n1 × n2 to r × r , where r ≪ min(n1, n2).
We demonstrate the first advantage through theoretical and
numerical analysis. From a theoretical perspective, given an
underlying tensor X ∈ Rn1×·×nN and T i ∈ Rni ×ri , we have
rank(X ×1 T⊤

1 · · · ×N T⊤

N ) ≤ rank(X ) [50]. This inequality
proves that semi-orthogonal transforms can boost the low-rank
representation. Additionally, Fig. 3 illustrates the accumulation
energy ratio (AccEgy) [51] with the corresponding percent-
age of singular values of recovery results by TNN, DTNN,
and LS2T2NN on video and MSI. This numerical analysis
emphasizes that LS2T2NN results in a more concentrated
energy distribution of singular values compared with TNN and
DTNN, indicating its superior low-rank representation.

Remark 1: To reduce the computational cost, our strat-
egy is from a model perspective, which differs from
the random algorithm [43] that is a classic representa-
tion from an algorithmic perspective. Thus, our projection

Fig. 3. The AccEgy with the corresponding percentage of singular values
of recovered results by TNN, DTNN, and LS2T2NN.

is a data-dependent learnable semi-orthogonal transform.
Unlike the data-independent random projection, the learnable
semi-orthogonal transform is embedded in the model, which
is updated by (34) or (36) at each iteration.

Next, an interesting question is what is the relationship
between LS2T2NN and DTNN? For a given redundant trans-
form D, we can find a relationship between LS2T2NN and
DTNN, i.e.,

∥X∥LS2T2NN ≤ ∥X∥DTNN. (10)

Before discussing this relationship, we introduce a lemma.
Lemma 1: (Von Neuman’s Trace Inequality [52]). If matri-

ces M and N with size m × n have singular values σ1(M) ≥

σ2(M) ≥ · · · ≥ σr (M), and σ1(N) ≥ σ2(N) ≥ · · · ≥ σr (N),
respectively, where r = min(m, n). Then, we have

Tr
(

M⊤N
)

≤

r∑
i=1

σi (M) σi (N) .

Specially, if M is a semi-orthogonal matrix, we can get

Tr
(

M⊤N
)

≤

r∑
i=1

σi (M) σi (N) =

r∑
i=1

σi (N) = ∥N∥∗.

Based on Lemma 1, we have the following Theorem.
Theorem 1: For a given redundant transform D ∈ Rn3×ñ3 ,

semi-orthogonal matrices T 1 ∈ Rn1×r and T 2 ∈ Rn2×r , A ∈

Rn1×n2×ñ3 , B ∈ Rr×r×ñ3 and X ∈ Rn1×n2×n3 . They satisfy
X = A×3 D = B ×1 T 1 ×2 T 2 ×3 D, such that

∥X∥LS2T2NN ≤ ∥X∥DTNN, (11)

where ∥X∥LS2T2NN =
∑ñ3

k=1 ∥Bk∥∗, ∥X∥DTNN =
∑ñ3

k=1
∥Ak∥∗. Ak and Bk are the k-th frontal slices of A and B,
respectively.

Proof: Since the redundancy dictionary D is the same in
DTNN and LS2T2NN, we have A = B×1 T 1 ×2 T 2. To prove
inequality (11), we need the following inequality

∥T⊤ A∥∗ ≤ ∥A∥∗, (12)

where A ∈ Rn×n is any matrix and T ∈ Rn×r is a
semi-orthogonal matrix which satisfies T⊤T = Ir×r . Let
B = T⊤ A, where B ∈ Rr×n . Based on SVD, A and B can
be rewritten as follows:

A = L AΣA R⊤

A, B = L BΣB R⊤

B,

where L A, R A, L B , and RB are orthogonal matrices, ΣA, and
ΣB are diagonal matrices. Thus, we can get ΣB = L⊤

B B RB .
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Due to ∥B∥∗ = Tr(ΣB) = Tr(L⊤

B B RB) = Tr(L⊤

B T⊤ ARB),
we can perceive that L⊤

B T⊤ is a semi-orthogonal matrix,
which satisfies (L⊤

B T⊤)(L⊤

B T⊤)⊤ = L⊤

B T⊤T L B = Ir×r .
Base on Lemma 1, we have

∥B∥∗ = Tr(L⊤

B T⊤ ARB) ≤ ∥ARB∥∗.

Since R⊤

A and RB are orthogonal, R⊤

A RB is orthogonal. The
SVD of ARB is ARB = L AΣA R⊤

A RB . We have ∥ARB∥∗ =

Tr(ΣA) = ∥A∥∗. Therefore, we have

∥T⊤ A∥∗ = ∥B∥∗ ≤ ∥ARB∥∗ = ∥A∥∗.

For A = B ×1 T 1 ×2 T 2, we have

A(1) = T 1 B(1)T⊤

2 ⇒ T⊤

1 A(1)T 2 = B(1),

where A(1) and B(1) are the mode-1 unfolding matrix of A
and B, respectively. Due to the definition of unfolding operator,
we can obtain

T⊤

1
[

A1, · · · , Añ3

]
T 2 =

[
B1, · · · , Bñ3

]
,[

T⊤

1 A1T 2, · · · , T⊤

1 Añ3 T 2

]
=
[
B1, · · · , Bñ3

]
,

where Ak and Bk are the k-th slices of A and B, respectively.
Based on inequation (12), we can obtain

∥Bk∥∗ = ∥T⊤

1 Ak T 2∥∗ ≤ ∥Ak T 2∥∗

= ∥T⊤

2 A⊤

k ∥∗ ≤ ∥A⊤

k ∥∗ = ∥Ak∥∗,

where k ∈ {1, · · · , ñ3}. Based on the definitions of DTNN and
LS2T2NN, we have

∥X∥LS2T2NN =

ñ3∑
k=1

∥Bk∥∗ ≤

ñ3∑
k=1

∥Ak∥∗ = ∥X∥DTNN.

B. Proposed Algorithm

To solve the proposed model, we introduce the auxiliary
variable E = Z ×3 D. So, the optimization problem (9) can
be equivalently rewritten as follows:

min
X ,E,Z,
D,T1,T2

ñ3∑
k=1

∥Zk∥∗, s.t. X = E ×1 T 1 ×2 T 2,

E = Z ×3 D, T⊤

1 T 1 = Ir×r , T⊤

2 T 2 = Ir×r ,

∥D (:, k)∥2 = 1, k = 1, · · · , ñ3,XΩ = OΩ ,

(13)

where Ω is the index set of observed entries in O. Moreover,
we introduce three indicator functions Φ (X ), Ψ (T ), and
Υ (D), i.e.,

Φ (X ) =

{
0, XΩ = OΩ ,

+∞, otherwise,
(14)

Ψ (T ) =

{
0, T⊤T = Ir×r ,

+∞, otherwise,
(15)

Υ (D) =

{
0, ∥D (:, k)∥2 = 1,

+∞, otherwise.
(16)

As directly solving the optimization problem in (13) is dif-
ficult, we reformulate problem (13) as the unconstrained
problem via the half quadratic splitting (HQS) [53], [54]
technique, that is

min
X ,E,Z,
D,T1,T2

ñ3∑
k=1

∥Zk∥∗ +
α

2
∥X − E ×1 T 1 ×2 T 2∥

2
F

+
β

2
∥E − Z ×3 D∥

2
F + Φ (X ) + Ψ (T 1)

+ Ψ (T 2) + Υ (D) , (17)

where α and β are penalty parameters. Since the optimization
problem (17) is nonconvex and has six variables, we apply
the PAM [55] to design an efficient algorithm with the
convergence guarantee. In each iteration, X , E, {Z, D}, and
T i (i ∈ {1, 2}) are alternately updated as

X t+1
= arg min

X
{L
(
X , E t ,Z t , Dt , T t

i
)

+
ρ1

2
∥X − X t

∥
2
F },

E t+1
= arg min

E
{L
(
X t+1, E,Z t , Dt , T t

i

)
+

ρ2

2
∥E − E t

∥
2
F },

{Z t+1, Dt+1
} =arg min

Z,D
{L
(
X t+1, E t+1,Z, Dt , T t

i

)
+

ρ3

2
∥Z − Z t

∥
2
F +

ρ4

2
∥D − Dt

∥
2
F },

T t+1
i

= arg min
T i

{L
(
X t+1, E t+1,Z t+1, Dt+1, T i

)
+

ρ5

2
∥T i − T t

i∥
2
F }, (18)

where L (X , E, Z, D, T i ) is the objective function in (17).
Next, we present each subproblem in detail.

• The X subproblem is as follows:

X t+1
= arg min

X

α

2
∥X − E t

×1 T t
1 ×2 T t

2∥
2
F

+
ρ1

2
∥X − X t

∥
2
F + Φ (X ) . (19)

The closed-form solution of (19) is

X t+1
=

(
α
(
E t

×1 T t
1 ×2 T t

2
)
+ ρ1X t

α + ρ1

)
ΩC

+OΩ ,

(20)

where ΩC is the complementary set of Ω .
• The E subproblem is as follows:

E t+1
= arg min

E

α

2
∥X t+1

− E ×1 T t
1 ×2 T t

1∥
2
F

+
β

2
∥E − Z t

×3 Dt
∥

2
F +

ρ2

2
∥E − E t

∥
2
F .

(21)
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The closed-form solution of (21) is

E t+1
=

(
αHt+1

+ β
(
Z t

×3 Dt)
+ ρ1E t

α + β + ρ1

)
, (22)

where Ht+1
= X t+1

×1 T⊤

1
t
×2 T⊤

2
t .

• The {Z, D} subproblem is as follows:

{Z t+1, Dt+1
} = arg min

Z,D

ñ3∑
k=1

∥Zk∥∗ +
ρ3

2
∥Z − Z t

∥
2
F

+
β

2
∥E t+1

− Z ×3 D∥
2
F , +

ρ4

2
∥D

− Dt
∥

2
F + Υ (D) . (23)

Since Z and D are coupled with each other in the
optimization problem, we adopt an alternating update
strategy [39], [56] to solve them. Then, problem (23) can
be decomposed into solving ñ3 subproblems of Z and D,
which are equivalent to

arg min
Zk

ñ3∑
k=1

∥Zk∥∗ +
ρ3

2

ñ3∑
k=1

∥∥Zk − Zt
k

∥∥2
F

+
β

2

∥∥∥∥∥∥Et+1
(3) −

ñ3∑
k=1

dk z⊤

k

∥∥∥∥∥∥
2

F

,

arg min
dk

β

2

∥∥∥∥∥∥Et+1
(3) −

ñ3∑
k=1

dk z⊤

k

∥∥∥∥∥∥
2

F

+ Υ (D)

+
ρ4

2

ñ3∑
k=1

∥∥dk − d t
k

∥∥2
F ,

(24)

where Z(3) and E(3) are the mode-3 unfolding of Z and
E , respectively. Zk = Z(:, :, k) is the k-th frontal slice of
Z , dk = D(:, k) is the k-th atom of D, and

Z(3) =
[
z1, · · · , zk, · · · , zñ3

]⊤
=
[
vec (Z1) , · · · , vec (Zk) , · · · , vec

(
Zñ3

)]⊤
,

(25)

D =
[
d1, · · · , dk, · · · , d ñ3

]
. (26)

For the sake of simplicity, we define
Ẑt

k =

[
zt+1

1 , · · · , zt+1
k−1, zt

k+1, · · · , zt
ñ3

]⊤
,

D̂t
k =

[
d t+1

1 , · · · , d t+1
k−1, d t

k+1, . . . , d t
ñ3

]
,

Rt
k = Et

(3) − D̂t
k Ẑt

k .

(27)

Based on (27), the Zk-subproblem in (24) is equivalent
to

min
Zk

∥Zk∥∗ +
β

2

∥∥∥Rt
k − d t

k z⊤

k

∥∥∥2

F
+

ρ3

2

∥∥Zk − Zt
k

∥∥2
F .

(28)

The closed-form solution of (28) is

Zt+1
k = SVT 1

β+ρ3

β vec−1
(

Rt⊤
k d t

k

)
+ ρ3 Zt

k

β + ρ3

 , (29)

where SVTτ (·) is singular value thresholding (SVT)
operator [57]. Similarly, the dk-subproblem in (24) is
equivalent to

min
dk

β

2

∥∥∥Rt
k − dk zt+1⊤

k

∥∥∥2

F
+

ρ4

2

∥∥dk − d t
k

∥∥2
F + Υ (D).

(30)

The closed-form solution of (30) is

d t+1
k =

β Rt
k vec

(
Zt+1

k

)
+ ρ4d t

k∥∥∥β Rt
k vec

(
Zt+1

k

)
+ ρ4d t

k

∥∥∥
2

. (31)

• The T i (i ∈ {1, 2}) subproblems are as follows:

T t+1
i = arg min

T i

α

2
∥X − E ×1 T 1 ×2 T 2∥

2
F

+
ρ5

2
∥T i − T t

i∥
2
F + Ψ (T i ) . (32)

1) Update T 1 subproblem:

T t+1
1 = arg max

T 1

Tr
(

Qt
1T 1

)
− Ψ (T 1) , (33)

where Qt
1 =

(
αX t+1

(1)

(
E ×2 T t+1

2

)⊤

(1)
+ ρ5

(
T t

1
)⊤),

Tr(X) denotes the trace of matrix X . This is an orthogo-
nal procrustes problem [58], and the closed-form solution
of (33) is

T 1 = V t+1
1 (U t+1

1 )⊤, (34)

where U t+1
1 , St+1

1 , and V t+1
1 are results of SVD on Qt

1.
2) Update T 2 subproblem:

T t+1
2 = arg max

T 2

Tr
(

Qt
2T 2

)
− Ψ (T 2) , (35)

where Qt
2 =

(
αX t+1

(2)

(
E ×1 T t+1

1

)⊤

(2)
+ ρ5

(
T t

2
)⊤). the

closed-form solution of (35) is

T 2 = V t+1
2 (U t+1

2 )⊤, (36)

where U t+1
2 , St+1

2 , and V t+1
2 are results of SVD on Qt

2.

Finally, we summarize the PAM-based solving algorithm for
the LS2T2NN model in Algorithm 1.

C. Convergence Analysis

In this section, we provide the theoretical convergence
of our algorithm. For convenience, we denote the objective
function of problem (17) as L

(
X t , E t ,Z t , Dt , T t

i
)
. Then,

we have the following theoretical guarantee:
Theorem 2: The sequence

(
X t , E t ,Z t , Dt , T t

i
)

t∈N gener-
ated by Algorithm 1 converges to a critical point of L .

The proof of Theorem 2 is presented in the supplementary
material.
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Algorithm 1 PAM-Based Algorithm for LS2T2NN.
Input: The observed tensor O ∈ Rn1×n2×n3 , the index Ω , the

estimated rank along spatial modes r = r1 = r2, parameter
α and β, proximal parameters ρ = ρ1 = ρ2 = ρ3 = ρ4 =

ρ5, and the maximum iteration tmax = 1000.
Output: The reconstructed tensor X ∈ Rn1×n2×n3 .

1: Initialization: The iteration t = 0, X 0, E0, Z0, D0, T 0
1,

and T 0
2.

2: while not converged and t < tmax do
3: Update X t+1 via Eq. (20);
4: Update E t+1 via Eq. (22);
5: Update Z t+1 via Eq. (29);
6: Update Dt+1 via Eq. (31);
7: Update T t+1

1 via Eq. (34);
8: Update T t+1

2 via Eq. (36);
9: Check the convergence conditions∥∥∥X t+1

− X t
∥∥∥

F
/
∥∥X t∥∥

F ≤ 10−4
;

10: end while

TABLE II
THE COMPUTATIONAL COMPLEXITY FOR DIFFERENT METHODS

D. Computational Complexity Analysis

In this section, we analyze the computational complexity
of PAM for LS2T2NN in Algorithm 1. For X ∈ Rn×n×n3 ,
we assume that the estimated rank along spatial mode is r and
the size of the redundant transform is n3×ñ3 in our algorithm.
The computational complexity at each iteration of PAM for
LS2T2NN can be concluded by updating X , updating {Z, D},
updating E , and updating T i , which cost O(rn2n3 + r2nn3),
O(r2ñ3(n3ñ3 + n3 + r)), O(rn2n3 + r2nn3 + r2n3ñ3), and
O(r2nn3 + rn2n3 + r2n), respectively. Therefore, the compu-
tational complexity of PAM for LS2T2NN is O((r +n)rnn3 +

(n3ñ3 + n3 + r)r2ñ3 + r2n). Table II lists the computational
complexity of PAM for LS2T2NN and the baselines, such as
TNN, UTNN, and DTNN, for reference. From Table II, the
complexity of PAM for LS2T2NN is less than that of PAM
for DTNN when r ≪ n.

IV. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments on
videos, MSIs, and color images to examine the effectiveness
of LS2T2NN for LRTC. Especially, we compare with other
state-of-the-art methods, including a t-SVD baseline method
TNN [32], a fast random t-SVD-based method RTSVD [43],
a fast tensor QR method TQRTNN [28], a unitary transform-
based method UTNN [38] and a dictionary encoding-based
method DTNN [39]. All test data is linearly mapped to
[0,1] range. For all methods, we use a stopping criterion
where the relative change is

∥∥X t+1
− X t

∥∥
F /

∥∥X t
∥∥

F ≤ 10−4.

Since the proposed method is nonconvex, we utilize a linear
interpolation strategy [59] to initialize X 0, and the DCT matrix
to initialize T 0

i . For the compared methods, we manually
adjust parameters to ensure optimal performance according
to author’s suggestions. For numerical comparison, we use
the peak signal-to-noise rate (PSNR) [60] and the structural
similarity (SSIM) [61] to evaluate the performance of different
methods. All numerical experiments are implemented in Win-
dows 10 64-bit and MATLAB R2022a on a desktop computer
with an Intel(R) Core(TM) i9-12900 CPU at 2.40 GHz with
64GB memory of RAM.

A. Experiments on Videos

We evaluate the performance of LS2T2NN on five videos
from the NTT database,1 including Rhino, Bird, Horse, Wild-
cat, and Flight. The spatial size of each video is 288 × 352 .
We select the first 30 frames of each video in our experiments.
The size of resulting data is 288 × 352 × 30. For each data,
sampling rates (SRs) are set to be 0.10, 0.15, 0.20, and 0.30,
respectively.

Table III presents the PSNR, SSIM, and running time
obtained by different methods for different SRs. Although
TNN, RTSVD, and TQRTNN are competitive in terms of
running time, their performance is unsatisfactory in terms of
PSNR and SSIM. The UTNN and DTNN perform better than
the above three methods in terms of PSNR and SSIM but at the
cost of longer running time. Our method, LS2T2NN, achieves
superior performance in both PSNR and SSIM compared to
other methods. Moreover, the proposed method outperforms
DTNN in terms of running time, thanks to its spatial pro-
jections. These observations indicate that our algorithm is
computationally efficient at each step. Fig. 4 illustrates the
comparison of recovery results by TNN, RTSVD, TQRTNN,
UTNN, DTNN, and LS2T2NN on videos with SR = 0.2.
As shown in this figure, we observe that most of the competing
methods only recover the main body of the latent data and
produce blurred edges (see the zoom-in regions of Bird and
Horse) or non-existent noise (see the zoom-in regions of
Wildcat and Flight). The recovery results produced by the
proposed method have better visual quality, especially in
image edge and local image detail.

B. Experiments on MSIs

We test the effectiveness of the proposed method on five
MSIs from the CAVE database2: Balloon, Beer, Feather,
Pompom, and Toy. In our experiments, each MSI is resized
to 256 × 256 × 31. For each MSI, SRs are set to 0.05, 0.10,
0.15, and 0.20, respectively.

Table IV presents the evaluation indices of recovered results
by different methods under different SRs, including PSNR,
SSIM, and running time. Similar to the results of videos, TNN
maintains an advantage in terms of running time. In terms of
PSNR and SSIM, LS2T2NN achieves the best performance
among all competing methods. Compared with DTNN,

1The data is available at http://www.brl.ntt.co.jp/people/akisato/saliency3.
html.

2The data is available at https://www.cs.columbia.edu/CAVE/databases/
multispectral/
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TABLE III
EVALUATION INDICES OF RECOVERY RESULTS BY DIFFERENT METHODS ON VIDEOS UNDER DIFFERENT SRS

Fig. 4. The selected band of recovery results by different methods on videos under SR=0.2. From top to bottom: Rhino, Bird, Horse, Wildcat, and Flight,
respectively.

LS2T2NN has a significant advantage in terms of running
time, which is consistent with the complexity analysis. These

results further validate the superiority of the proposed method
in terms of computational cost and recovery performance.
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TABLE IV
EVALUATION INDICES OF RESTORATION RESULTS BY DIFFERENT METHODS ON MSIS UNDER DIFFERENT SRS

Furthermore, we show the recovery results obtained by differ-
ent methods under SR = 0.05 in Fig. 5. To better observe the
restoration details of each method, we magnify a local region
for each one. From Fig. 5, the proposed method recovers local
image details and color fidelity better than other competing
methods, which indicates that LS2T2NN has superior
performance in exploring the low-rank structure of MSIs.

C. Experiments on Color Images

In the part, we choose five color images3 of size 768 ×

512 × 3 to evaluate the effectiveness of the proposed method.
For each image, SRs are set to be 0.10, 0.15, 0.20, and 0.30,
respectively.

Table V lists the evaluation indices of recovery results by
different methods on color images under different SRs. From
this table, we observe that LS2T2NN has obvious advantages
compared with DTNN in terms of running time. In addition,
LS2T2NN significantly outperforms competing methods and
yields competitive performance in terms of PSNR and SSIM.
Fig. 6 shows the recovery results by TNN, RTSVD, TQRTNN,
UTNN, DTNN, and LS2T2NN on color images. As observed,
compared with the other methods, the images restored by
LS2T2NN are the closest to the ground truth, which indicates

3The data is available at http://r0k.us/graphics/kodak/

that LS2T2NN is superior in preserving image structure and
recovering local details.

D. Discussions

1) Contribution of Spatial Projections: In this part,
we show the effectiveness and superiority of learnable
semi-orthogonal transforms in the proposed method.
Specifically, we conduct four setting, i.e., T 1 is a random
semi-orthogonal matrix and T 2 is an identity matrix (termed
as LS2T2NN (uni-random)), both T 1 and T 2 are random
semi-orthogonal matrices (termed as LS2T2NN (bi-random)),
T 1 is a learnable semi-orthogonal matrix and T 2 is an
identity matrix (termed as LS2T2NN(uni-learned)), both
T 1 and T 2 are learnable semi-orthogonal matrices (termed
as LS2T2NN (bi-learned)). Fig. 7 shows the AccEgy
with the corresponding percentage of singular values of
recovery results by different methods on MSIs and videos,
which indicates that learned-based methods yield more
concentrated singular value energies than random-based
methods. Additionally, Table VI presents the evaluation
metrics of restored results by different settings on MSIs under
SR = 0.05 and videos under SR = 0.1. From this table, it can
be observed that LS2T2NN (bi-learned) outperforms the other
three methods. The above results demonstrate the following
two conclusions: First, the learned-based method can obtain
a lower-rank representation than the random-based method.
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Fig. 5. The selected pseudo-color images of recovery results by different methods on MSIs under SR=0.05. From top to bottom: Balloon, Beer, Feather,
Pompom, and Toy, respectively.

Fig. 6. The recovered color images by different methods. From left to right: the ground truth, the observed image, and the recovered images of TNN,
RTSVD, TQRTNN, UTNN, DTNN, and LS2T2NN, respectively.

Second, the projection in two directions, as employed in
LS2T2NN (bi-learned), is more effective than the projection
in one direction used by the other methods.

2) Influence of Initializations: In this part, we investigate
the influence of the initialization of X0 and T i for the

performance of LS2T2NN. To this end, we conduct exper-
iments on MSI balloon as an example. a) We initialize
X0 with the following three strategies: the observed tensor
(termed as Observed), the recovered result of TNN (termed
as TNN), and the linear interpolation of the observed tensor
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TABLE V
EVALUATION INDICES OF RECOVERY RESULTS BY DIFFERENT METHODS ON COLOR IMAGES UNDER DIFFERENT SRS

TABLE VI
EVALUATION METRICS OF RECOVERY RESULTS BY DIFFERENT
SPATIAL TRANSFORMED STRATEGIES ON MSIS AND VIDEOS

(termed as Interpolation) [59]. The evaluation metrics for
different initialization strategies of X0 on MSI balloon under
various SRs are reported in Table VII. From this table,
we observe that the interpolation-based LS2T2NN method
achieves superior results in terms of PSNR and SSIM, whereas
the TNN-based LS2T2NN method takes less time under high
SRs. These results imply that LS2T2NN is sensitive to the
initialization of X0 due to the non-convex property of the
proposed method. b) For the initialization of T i , we employed
three strategies: the semi-orthogonal matrix based on the
random matrix (termed as random), the unitary matrix obtained
by SVD (termed as SVD), and the DCT matrix (termed as
DCT). Table VIII reports that evaluation metrics of recovered
results by different initializations of T i on MSI balloon under
different SRs. The results indicate that the performance of
LS2T2NN is robust for different initializations of T i .

Fig. 7. The AccEgy with the corresponding percentage of singular values
of recovery results by different spatial projections.

3) Numerical Convergence Analysis: In this part, we con-
duct experiments on videos, MSIs, and color images to
demonstrate the numerical convergence of Algorithm 1. Fig. 8
draws the relative error curves versus the number of iterations
by different datasets under various SRs. As the iterations
increase, the relative changes decrease towards 10−4 that the
proposed algorithm is numerically convergent.

4) Parameters Analysis: In this part, we discuss the effects
of parameters in the proposed method, including regularization
parameters α and β, the proximal parameter ρ, the estimated
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TABLE VII
EVALUATION METRICS OF RECOVERED RESULTS BY DIFFERENT

INITIALIZATIONS OF X0 ON MSI balloon UNDER DIFFERENT SRS

TABLE VIII
EVALUATION METRICS OF RECOVERED RESULTS BY DIFFERENT
INITIALIZATIONS OF T i ON MSI balloon UNDER DIFFERENT SRS

Fig. 8. The relative error curves versus the number of iterations on videos,
MSIs, and color images.

rank r along spatial modes, and the parameter of learnable
redundant transform ñ3 along spectral mode. To evaluate
the impact of these parameters, we use the MSI toy with
SR = 0.05 as an example.

a) The regularization parameter α is used to balance
the weight between ∥X − E ×1 T 1 ×2 T 2∥

2
F and other

items. Fig. 9(a) illustrates the PSNR and SSIM values
with respect to the parameter α chosen from the set
{10−3, 10−2, 10−1, 100, 101, 102, 103

}. It can be observed that
the optimal value of α falls within the range of [10−1, 101

],
and the best PSNR value can be obtained when α is set to 1.
Therefore, for different test data and SRs, α can be selected
within the range [10−1, 101

].
b) The other regularization parameter β is utilized to

balance the weight between ∥E − Z ×3 D∥
2
F and other

items. Fig. 9(b) displays the PSNR and SSIM values with
respect to the parameter β chosen from the candidate set
{1, 10, 20, · · · , 70, 80}. It can be observed that the optimal

Fig. 9. The PSNR and SSIM values with respect to different parameter
settings on MSI toy under SR = 0.05.

parameter value falls within the range [10, 40], and the optimal
parameter β is set to 20.

c) For the proximal parameters ρi , it is a challenging
task to determine the optimal values of each ρi . Therefore,
we suggest setting all proximal parameters to be equal, i.e.,
ρ = ρ1 = ρ2 = ρ3 = ρ4 = ρ5. Fig. 9(c) shows the PSNR and
SSIM values with respect to the parameter ρ chosen from the
set {10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104

}. We can
see that a lower ρ can receive a stable result. Thus, in our
experiments, ρ is set to 0.1.

d) For the spatial rank r , we empirically set r = r1 = r2 to
reduce parameters. Fig. 9(d) shows the PSNR and SSIM values
with respect to the parameter r selected from the candidate set
{10, 20, · · · , 160, 170}. We can see that the proposed method
has the best performance when r is set to 50.

e) The parameter ñ3 affects the ability of redundant
transform D on capturing low-rank representation. Fig. 9(e)
displays the PSNR and SSIM values with respect to the param-
eter ñ3. We can observe from Fig. 9(e) that the best PSNR and
SSIM values are attained when ñ3 ≈ 5n3. Motivated by this
observation, ñ3 is set to 5n3 in our experiments.

V. CONCLUSION

This paper presents the LS2T2NN model for multi-
dimensional visual data recovery, which enjoys better
low-rankness characterization with the cheap computational
cost. Specifically, the proposed model employs the learnable
semi-orthogonal transforms to boost the spatial low-rankness
while projecting the large-scale original tensor to the
small-scale intrinsic tensor. On this basis, it further boosts the
low-rankness of transformed frontal slices by the learnable
redundant transform. In addition, we demonstrate that the
learnable semi-orthogonal transforms can bring lower-rank
representation from theoretical and numerical perspectives,
and then discuss the relationship between LS2T2NN and
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DTNN with theoretical analysis. We apply PAM to design a
solving algorithm to tackle the proposed model and establish
the convergence guarantee. Extensive experimental results on
videos, MSIs, and color images show that the proposed method
outperforms state-of-the-art competitors in terms of evaluation
metrics and running time. In this work, we investigate the
proposed model SL2T2NN with third-order visual data from
real world, but many real visual data is higher-order, e.g.,
4th-order color videos, 4th-order hyperspectral videos, and
5th-order light field images. In the future, we will consider
generalizing LS2T2NN for higher-order real-world visual data.
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