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Unsupervised Feature Dimensionality Reduction via
Latent Low-Rank Embedding Projection for
Classification of Hyperspectral Images

Heng-Chao Li, Jun-Qiu Wang, Si-Jia Xiang, Jing-Hua Yang, and Qian Du

Abstract—To deal with the curse of dimensionality in hy-
perspectral images, numerous feature dimensionality reduction
(FDR) methods have been proposed to map high-dimensional
data into a low-dimensional subspace. However, most of existing
FDR methods lack robustness against noise corruption. To this
end, the representation-based subspace learning has been devel-
oped to find a robust projection matrix for FDR. Nevertheless,
most of them only consider a single direction of the matrix, which
ignore the information from other directions. Moreover, the
majority of existing methods fail to account for both global struc-
ture and feature correlations effectively. To address the above
problems, we propose a novel robust projection learning method
called latent low-rank embedding (LatL.RE), which integrates the
latent low-rank representation (LatLRR) with projection learn-
ing. In particular, the proposed model can maintain the strong
robustness of LatLRR and simultaneously learn a projection for
FDR. Moreover, the nuclear norm and logarithmic norm are
employed to approximate the two underlying rank functions and
provide a more accurate measure of correlation. In addition,
LatLRE is optimized using the alternating direction method of
multipliers (ADMM) algorithm with the theoretical convergence
guarantee. To verify the FDR performance of LatLRE, extensive
experiments are conducted on three benchmark hyperspectral
datasets. The experimental results demonstrate that LatL.RE
outperforms other FDR methods considered in this paper.

Index Terms—Hyperspectral images (HSIs), feature dimen-
sionality reduction, pattern recognition, robust projection learn-
ing (RPL), latent low-rank representation.

I. INTRODUCTION
HE advent of hyperspectral sensors has enabled the

acquisition of hyperspectral images (HSIs) that capture
comprehensive spectral and spatial information simultaneously
[1], [2], [3], [4], [5], [6], [7], [8]. This detailed spectral
information is captured across hundreds of bands, which has
found extensive use in diverse fields, including forestry studies,
precision agriculture, and environmental monitoring [9], [10].
Despite the richness of high-dimensional hyperspectral infor-
mation, it also engenders the curse of dimensionality, which
presents a formidable challenge to the generalization capability
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of model. Additionally, the high dimensionality of HSIs di-
rectly leads to a dramatic increase in computational complexity
and memory consumption. Besides, the redundancy contained
in high-dimensional features usually degrades the performance
of postprocessing algorithms [11].

Over the past decades, significant progress has been made
in the development of feature dimensionality reduction (FDR)
technology [12], [13], [14], [15], [16], [17], [18]. The typical
FDR methods can be grouped into three categories: super-
vised, semi-supervised, and unsupervised strategies. Although
the supervised and semi-supervised FDR algorithms have
demonstrated outstanding performance in the literatures [14],
[15], [16], they depend on the data labeling process and
are often required to solve difficult non-convex and non-
smooth optimization problems. Therefore, unsupervised FDR
methods have received considerable attention due to their
ease of implementation. The most typical unsupervised FDR
method is principal component analysis (PCA) [17], which
attempts to find an optimal projection matrix such that the
projected data have the maximum variance. To improve the
FDR performance, some robust distances were introduced
into PCA for model development [18], [19], [20], [21], [22].
Recently, several enhanced PCA variants have been proposed
and have shown good performance in HSIs. One such variant is
SuperPCA [23], which partitions the HSIs into homogeneous
regions and applies PCA in each superpixel block to extract
local features. Nevertheless, this approach ignores the global
information. To address this limitation, S® PCA [24] has been
developed, which incorporates a complement to the global
features. However, above PCA and its extensions ignore the
nonlinear structure information in data.

Since nonlinear techniques have the merit of preserving
geometrical structure of data manifold, the corresponding algo-
rithms, such as locality preserving projections (LPP) [25], [26],
[27] and preserving neighborhood discriminant embedding
(PNDE) [28], have been widely used for feature extraction
(FE) in HSIs. Nonetheless, the selection of neighborhood
size of LPP is a challenge. Zhang et al. [29] integrated
nuclear norm and Ly 1-norm constraints into 2D neighborhood
preserving projections (2DNPP) [30], and developed Nuclear
norm-based 2DNPP. In [31], Yan et al. claimed that the
previous methods, such as PCA and LPP can be unified
into a general dimensionality reduction framework termed
graph embedding (GE). The GE-based models [32], [33] have
been widely employed for the efficient representation of local
manifold structures. Although the GE-based methods show
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promising performance, the intrinsic graph is sensitive to
various kinds of noise, such as corruptions and occlusions.

Recently, the sparse representation (SR) technique has
drawn great attention in image processing. SR focuses on
representing a signal or data point using a minimal number
of basis elements or features from a dictionary. In detail, only
a few components of the coefficients are non-zero, and the rest
are zeros. From the view of classification, Refs. [34] and [35]
have demonstrated that SR is advantageous to achieve high
accuracy in signal classification and face recognition, even
under high-level noise corruptions and occlusions. Therefore, a
series of FDR methods have been proposed based on SR [36],
[37]. Undoubtedly, these methods have further promoted the
development of the FDR techniques. However, SR-based FDR
cannot reveal the global structure of data and may degrade the
performance when the training data are corrupted by complex
and correlated noise.

To overcome the shortcoming of the sparse-based FDR and
exploit the global structure of the data, Liu et al. [38], [39] pro-
posed a robust method named low-rank representation (LRR).
LRR aims at uncovering the lowest-rank subspace of data and
removing the adverse impacts of the noise and outliers in
samples. Under the assumption that samples from the same
category lie on an inherent low-dimensional subspace, LRR
and its variants [40], [41] can maintain the underlying global
structure, i.e., low-dimensional multi-subspace structure. In
order to address challenges posed by high-dimensional prob-
lems, the methods of LPP have been combined with projection
learning to enhance robustness, such as LRE [42] and LSPP
[43]. Subsequently, to address the case of insufficient sampling
or grossly corrupted data, Liu et al. [44] proposed latent
low-rank representation (LatLRR), which is developed on the
presupposition that unobserved samples can be used to rep-
resent the observed samples. Furthermore, numerous methods
based on LatLRR [45], [46], [47] have been developed and
implemented with promising performance. Nevertheless, the
aforementioned methods overlook the issues of robust feature
extraction problem, and may not fully explore the correlations
between features.

To address high dimensionality problem and improve noise
robustness, we propose a novel latent low-rank embedding
(LatLRE) for robust FDR by combining LRR with projection
learning, see Fig. 1. As discussed before, LatLRR is robust to
the corrupted and hidden data. Correspondingly, the proposed
LatLRE integrates LatLRR with projection learning together
into one model, which retains the robustness of LatLRR to
learn a low-dimensional projection matrix for enhancing HSIs
classification. In summary, the main contributions of this paper
are summarized as follows:

e We propose a novel Latent Low-Rank Embedding
(LatLRE) method for unsupervised robust feature di-
mensionality reduction (FDR) in HSI classification. Our
LatLRE leverages the latent low-rank constraint to reveal
the potential data structure and employs the robust {3 ;-
norm to measure the reconstruction error. Furthermore,
by integrating projection learning with LatLRR, the pro-
posed LatLRE can explore both row and column infor-

mation simultaneously, ensuring robustness in the low-
dimensional feature space.

« Considering that rank minimization is a nonconvex opti-
mization problem, we employ nuclear norm and logarith-
mic norm in LatLRE to approximate the two underlying
rank functions. The adoption of dual-norm approximation
not only reveals the global data structure more clearly
during reconstruction but also reduces redundant infor-
mation and better exploits feature correlations.

o An iterative algorithm based on the alternating direction
method of multipliers (ADMM) framework is designed to
solve the LatLRE model. Moreover, for the proposed non-
convex model, we prove the boundedness of the generated
sequence and the convergence of the iterative algorithm.
In addition, we provide a computational complexity anal-
ysis. Extensive experiments on several benchmark HSIs
datasets are conducted to validate the effectiveness and
robustness of the proposed method in classification tasks.

The remainder of this paper is organized as follows. Section
II introduces the related works. Then, Section III elaborates
the proposed model and its optimization. The experiments and
analysis are presented in Section IV. Finally, Section V gives
the conclusion of this paper.

II. RELATED WORKS
A. Low-Rank Embedding

The LRR [38] can reveal the potential low-rank repre-
sentation of data, but the dimensionality of the obtained
representation vectors is highly related to the size of the
dictionary. To this end, LRE [42] was proposed by integrating
LRR and projection learning together to address the robust
feature dimensionality reduction problem. LRE can overcome
the “curse of dimensionality” problem through the learned
low-dimensional projection. The objective function of LRE
is formulated as

min rank(Z) + X |[P*X - PTXZ|, |,
z.p ’ (1)
st. PTP =1,

where rank(Z) denotes the rank of matrix Z, P is the low-
dimensional projection matrix, I is an identity matrix, and
[[[l,, represents (2 1-norm. For avoiding the NP-hard prob-
lem, the rank(-) in Eq. (1) is substituted with nuclear norm.
To enhance the robustness on the noise and outliers, ¢ ;-norm
is employed to measure the reconstruction error rather than
¢y-norm, which is defined as [|X]|,, = PO YL X
Therefore, the following formulation can be obtained:

min [|Z[|, + X |[P"X - P'XZ||,
or ’ 2
st. PTP =1

For ease of mathematical derivation, a variable E = PTX —
PTXZ is introduced, which is utilized to measure the recon-
structive property and other noise. Thus, the objective function
(2) can be rewritten as

win 2], + A Bl

3
st. PTX=P'XZ-E, PPP=1
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The framework of LatLRE. First, LatLRE decomposes the hyperspectral image data into principal feature representation XZ, salient feature

representation LX, as well as noise matrix E. Then, we introduce a projection matrix P to achieve feature dimensionality reduction. To depict the low-rankness
of the sample relationships Z and feature correlations L, we impose a nuclear norm on Z, and a logarithmic norm on L. Moreover, l2,1 norm is introduced
on noise matrix E to improve the robustness. Finally, the classification results can be obtained by support vector machine (SVM) classifier.

Then, the above model can be solved by an alternative iteration
algorithm [44].

B. Latent Low-Rank Representation

The goal of LRR [38] is to learn a low-rank coefficient
matrix for capturing the underlying structure of the given data.
In particular, the objective function of LRR is formulated as

win |Z], + A [E], . st X =XZ+E, @

where X € R™*¥ denotes input data matrix, Z € RV*¥ ig
the reconstruction matrix, A\ is the regularization parameter,
m is the dimensionality of each data point, and N is the
number of data points. ||Z||, is the nuclear norm of Z, which is
computed by ||Z||, = . 05, where o; is the ith singular value
of Z. E represents the noisy data matrix. ||[E||; denotes the ¢;-

norm of E, whose definition is ||E[|; = 11<1§_a<XN Zfil |E;;|.

Generally, the explicit data itself is selected as the dictionary
for LRR. Refs. [38] and [39] have shown that LRR is an
effective method for both subspace clustering and data re-
construction. However, the performance of LRR is severely
affected when the data is corrupted by the high level of noise,
such as block occlusions. To alleviate the impact of noise, Liu
et al. [44] proposed LatLRR by constructing the dictionary
with both explicit and implicit data, which can improve the
robustness on the noise effectively. Mathematically, LatLRR
is to minimize the following constrained objective function

min rank(Zojx) + rank(Lojg),
Z,L.E (5)
s.t. XO = X()Z + LXO,

where X denotes the explicit data, and L. € R"™*™ is used
to extract “salient feature”. For an arbitrary testing data vector
x € R™*1 the transformed feature vector y € R™*! can be
obtained by y = Lx. Since rank function is non-convex and its
optimization is an NP-hard issue, nuclear norm is a widely-
used alternative to approximate the rank function. Besides,

by taking noise into consideration, the LatLRR model can be
reformulated as

min || Z[], + [[L[l, + A [E];,
L, (©)
st. X=XZ+LX+E.

The LatLRR model is an extension of LRR, which can extract
the implicit structure of data for subspace representation.
LatLRR is also widely applied in realistic scenarios since it
can not only reconstruct data correctly but also extract “salient
features”. Based on LatLRR, a series of methods have been
extended, including the Frobenius norm-based method [45],
iterative reweighted Frobenius norm-based method [46], and
weighted Schatten p norm-based method [47]. However, there
are two main disadvantages for the application of LatLRR: 1)
The features extracted by LatLRR have the same dimension
with the original data. 2) The model optimization involves the
minimization of two nuclear norm functions, which is time
consuming. So, by considering the computational complexity
and memory consumption, it may be unreasonable for dealing
with high-dimensional data directly using LatLRR.

Table I illustrates the models involved in the related works.
To effectively explore the relationships between samples, LRR
[38] has been proposed to mine the structure of data. Further-
more, some studies [42], [43], [48] have combined LRR and
projection learning for better handling high-dimensional data.
Although reducing computational complexity, these methods
still ignore the significance of exploring feature correlations.
To address this problem, the latent low-rank representation
[44], [45] has been introduced to explore salient features in
the data, which can effectively uncover the feature correlation
of the data, but the scalability to handle high-dimensional
data remains limited. To simultaneously explore the sample
relationships and feature correlations among high-dimensional
data, we propose the LatLRE for hyperspectral classification
in Section III, which can fully consider the information from
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TABLE I
COMPARISON OF VARIOUS MODELS IN RELATED WORKS.

Low-rank  Projecti Latent low-rank
Method Objective function Constraint ow ran' I‘OJCC. ton Latent low r.an
representation learning  representation
LRR [38] min ||Z]], +A[E], X=XZ+E v
LRE [42] min I1ZIl, + X Elly PTX =PTXZ - E, PTP =1 v v
LRSPP [43]  min |Z||, + o [|Z]l; + B|E],,, + Ar(PTXMXTP) PTX =PTXZ +E v
LRR_NP [48]  min I1ZIl, + XElly,, + Str(z@—-w)Ta—w)zT) PTX = PTXZ + E v
LatLRR [44] min 2], + L], + A [E], X=XZ+LX+E v
FLLRR [45] min |25 + L] p + A Bl X=XZ+LX+E v
Proposed LatLRE min |1Z]|« + |ILI|I} + A||E||2,1 PTX = PT(XZ + LX) + E,PTP =1 v v
15 12
. . . . . @ @
multiple directions to achieve robust and efficient feature 2 ; 2
dimensionality reduction and image classification. E % .
3 3
[II. PROPOSED METHOD 205 { 2,
7 0
A. The Motivation and Objective Function 0 30 s0 o0 120 1m0 0 1 s %0 1
To mitigate the curse of dimensionality and more com- 'r(‘d)ex 'r(‘g)ex
a

prehensively exploit the implicit information, we propose
latent low-rank embedding (LatLRE) by combining latent sub-
space representation with low-dimensional projection learning,
which can maintain the robustness of the latent low-rank
representation and simultaneously achieve dimensionality re-
duction. Given a HSIs dataset X = [x1, X, - - ,xn] € R™*V,
to reduce the dimensionality of samples from m to d (d < m)
without affecting the recognition performance, we formulate
the following model

min rank(Z) + rank(L) + X |E||, ,
Z,L.E (7)
st. PPX =PT(XZ 4+ LX) + E,PTP =1,

where Z, L, E, and )\ represent reconstruction matrix, salient
feature extraction matrix, noise matrix, and regularization
parameter, respectively. In the latent subspace representation
model (7), the original data matrix X € R™*¥ is reconstructed
from column (XZ) and row (LX) according to the PTX =
P”(XZ + LX) + E. Specifically, Z€ RV*" reconstructs the
data from the sample dimension, while L. € R”™*™ is utilized
to extract “salient features” and reconstruct the data X from the
feature dimension. Taking Indian Pines dataset as a sample,
we show the singular value curves of sample relationships
Z and feature correlations L in Fig. 2, both of which drop
rapidly and approach 0. Therefore, rank(-) is introduced to
characterize their low-rankness. Compared with the existing
low-rank feature dimensionality reduction methods, such as
LRE [42] and latent low-rank and sparse embedding (LLRSE)
[35], the LatLRE considers the information from both row
and column directions rather than single direction. In this
way, more global structure information can be captured for
projection learning. Therefore, the robustness to complex noise
and recognition accuracy can be improved.

As discussed before, due to #1-norm cannot characterize the
geometric structure of data well, the noise matrix E measured
by ¢1-norm usually fails to gain the expected performance

Fig. 2. The low-rankness of (a) sample relationships Z, and (b) feature
correlations L on Indian Pines dataset.
[21], [42]. Moreover, although ¢;-norm can reduce the nega-

tive impact of outliers with high probability, it is still unclear
whether ¢;-norm works on enhancing the role of small distance
between data points from different classes. To this end, ¢ ;-
norm is considered to replace /1-norm for measuring the noise
matrix E. On the one hand, /5 ;-norm is robust to noise and
does not destory the data structures. On the other hand, /5 ;-
norm based methods are rotationally invariant. Thus, the model
(7) can be reformulated as the following optimization problem:

Apin rank(Z) + rank(L) + A [[E[, ; , )

st. PPTX=P"(XZ+ LX) +E, P’P=1

In Eq. (8), each element z;; in the coefficient matrix Z can be
viewed as a representation of the relationships between each
data pair x; and x;. In other words, each column z; in matrix
Z represents the relationship between the ¢th sample and all N
samples in the original data X. Furthermore, the relationship
between samples can reflect the structure of the data. Thus,
we can infer that an ideal Z should possess the following two
characteristics: 1) sparsity, ensuring the presence of as few
redundant values as possible in Z; 2) low rankness, allowing
the relationships between samples to be characterized by fewer
dominant components. For the reasons mentioned above, we
impose a nuclear norm on Z, resulting in the transformation
of Eq. (8) to:

Apin [Z]|. + rank(L) + A E]5, , o)

st. PPX=P'(XZ+ LX) +E, PP =1

Eq. (9) relaxes the rank constraint imposed on Z in Eq. (8)
by using the nuclear norm. The nuclear norm is denoted by
a sum of non-zero singular values. Typically, larger singular
values carry more significant information compared to smaller
singular values. This implies that larger singular values can
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better characterize the primary relationships within the data.
Note that nuclear norm minimization achieves singular value
shrinkage through soft thresholding, where all singular values
are equally subtracted from a common threshold [, as shown
in Eq. (21) and Eq. (22). In this way, larger singular values are
retained while small singular values are discarded to ensure
low rank. Consequently, the major parts with richer character-
ization of the global relationships are preserved, allowing the
global structure to be revealed more clearly.

Furthermore, differently from Z which depicts the sample
relationships, L is used to depict the relationships between
features. Specifically, each column 1; of L = [I1,1p, - ,1,,]
represents the relationships between the ith feature and all m
features of the original data, which can reflect the correlation
between features. And the special nature of HSIs, i.e., the
continuity of the bands, thus reflecting the high similarity of
neighbouring features, leads to more redundancy. Therefore,
the challenge of efficiently handling highly redundant features
while retaining reliable correlation between them cannot be
ignored. In other words, a feasible solution to the above
challenge is to use a suitable constraint on L to make the
salient features of the original image more prominent by
maintaining the sparsity while dealing with the relationships
between the features in a more effective manner. Some recent
works [49], [50] utilized logarithmic function to enforce a
more precise rank surrogate, as the logarithmic norm has been
demonstrated to provide a superior sparsity-driven surrogate
for the rank function. Based on this, we introduce Definition
1 and use the matrix logarithmic norm as a rank surrogate.

Function value

0 1 2 3 4 5

a(X)
Fig. 3. Visualization of the rank function, the nuclear function, as well as
the logarithmic function.

Definition 1 (Matrix Logarithmic Norm): [49] For any ma-
trix X € R™*V its matrix logarithmic norm with 0 < p < 1
and € > 0 is defined as

min{m,N}

>

i=1

X7 = log(a7 (X) +€), (10)
where ¢ (X) denotes the ith singular value of X.

From Eq. (10), it can be observed that unlike the nuclear norm,
which simply sums all singular values, the matrix logarithmic
norm sums the logarithms of all singular values. For a more
intuitive presentation, Fig. 3 presents a graphical representa-
tion that offers a visual comparison of the rank function, the
nuclear function, as well as the logarithmic function. From
the Fig. 3, two observations can be made: 1) The nuclear
norm more closely approximates the rank function when the

singular value is small, while the logarithmic norm more
closely approximates the rank function in the large singular
value case. 2) The logarithmization of singular values will
reduce the impact of large singular values, making the impact
of larger singular values more equal, while exacerbating the
impact of small singular values. Taking into account the
points mentioned above, we introduce a logarithmic norm
for the matrix L that more accurately approximates the rank
constraint and thereby enabling a more accurate measurement
of correlation. Moreover, building upon Definition 1, and we
set p = 1 for convenience, the LatLRE model is

: 1
in 121+ al|L] L + AE|
st. PIX =PT(XZ+LX)+E,PTP =1,

where « and )\ represent the balance parameters. The LatLRE
achieves sparsity in L by applying the logarithmic norm, effec-
tively penalizing singular values approaching zero. Moreover,
applying smaller and equalising penalties to larger singular
values preserves important feature relationships and provides
a more accurate measure of correlation while removing redun-
dancy values.

Overall, the LatLRE allows a more comprehensive depiction
of feature relationships from multiple directions and enables
robust feature dimensionality reduction, as shown in Fig. 1.
Specifically, LatLRE consists of the following components:

2,15

(11)

o The first term ||Z||. is introduced to characterize the
low-rankness of sample relationships Z. In this way, the
relationships of the samples are preserved, so that the
global structure is more clearly revealed.

o The second term ||L||} is used to describe the low-
rankness of feature correlations L. This way reduces
redundant feature information and allows feature correla-
tions to be exploited more effectively.

o The third term ||E||21 is applied to constrain the sparsity
of the noise E for ensuring the robustness of LatLRE.

o The constraint term P7X = PT(XZ+ LX)+ E decom-
poses the original data into principal feature representa-
tion XZ, salient feature representation LX as well as
noise matrix E. And a projection matrix P is introduced
to achieve feature dimensionality reduction.

o The constraint term PTP = I denotes an orthogonal
constraint imposed on the projection matrix P, which
enables the projection matrix to be less correlated and
reduces redundant information.

B. The Optimization Solution

In this section, a detailed description of the optimization
process for the proposed LatLRE is provided. Specifically, we
solve model (11) by alternating direction method of multipliers
algorithm (ADMM) [51], [52], [53]. And an auxiliary variable
J is first introduced by setting Z = J. Thus, the LatL.RE model
can be rewritten as

min - [J, +a L] +A[E]s,,
(12)

J,Z,LEP
st. PIX=P'(XZ+LX)+E,Z=J,P'P=1

Then, Eq. (12) can be solved by the ADMM, in which the un-
derlying variables are updated alternately. The corresponding

augmented Lagrangian function is
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6
Terr = argminalJ|. + 39— (Z+ 323,
Ziyw = argmm L(PTX - PT(XZ+LX - E) + Vzl 1%+ 1Z —-J+ %H%L
Ly = argmm a|L|; + 5IP"X - PT(XZ + LX) - E + Y2 %,
Ei = arg%mgnEug,l + 3B - (PTX — PT(XZ + LX) + W) |2 (15
Py = arg];:nin LIIPT(X — (XZ + LX)) — E + X3,
Wi, = W}f+ p(PTX — PT(XZ + LX) — E),
Wiﬂ = W3 +u(Z - J).
L(P,Z,J,L,E,W! W?) 9L(Z) :H[Q(Z_J+ ﬁ)+2(xTPPT(X
= |31, + o [LI + A, oz 2 " (19)

+ (W1, P"X - P"(XZ + LX) —E) + (W2, Z - J) (13

+g(||PTX —P"(XZ+ LX) —E|% + |2 J|2),

where W', W? are the augmented Lagrangian multipliers,
o > 0 is a balance parameter, and p > 0 is the penalty
parameter. By simple algebraic operation, the problem (13)
can be rewritten as

L£(P,Z,J,L,E,W! W?)
=[]l + L]z + AE|2,1

w!
+g(|\PTX ~PT(XZ+LX)—E+ 7||2F (14)
w2
+HZ - J + 7||F)

Let Pyi1, Zit1, Jit1s Lit1, Egs1, Wiy, Wi, denote the
optimal variables and Lagrangian multipliers at the (k + 1)-
th iteration (k = 1,2,---). Then, the overall optimization
process is shown in Eq.(15). Moreover, the detailed updating
schemes are formulated as follows.

Step.1: [Update P] By fixing all other variables to solve
P, the objective function is converted to a classic orthogonal
procrustes problem expressed as

P :argmingHPT(X— (XZ +LX)) — E + 2
P

EJF*”F

= argmin HHPTA - B|%,
P 2

(16)

where A = X — XZ — LZ, B = E — Y;/u. The detail
of orthogonal Procrustes problem is a matrix approximation
problem in linear algebra and can be solved by the SVD. By
denoting the SVD of BAT as

BAT = (E-Y,/p)(X - XZ - LX)T

=uxzv?, a7

the optimal P can be updated by P, ; = VU™,

Step.2: [Update Z] Fix the variables other than Z, prob-
lem (13) can be rewritten as
Wl

Zk+1—a7"gmm (||PT(X XZ - LX) — E+—|\F

W2
+Z -3+ 7\\F)

(18)

By calculating the derivative of Z in (6) and setting it to zero,
we can obtain

1
—XZ - LX) -X"P(E- -W'))]=0
I
Then, solving the above linear equation, it can obtain the
optimal Zy, as

XTPPTX + 1)) ! x XT"P(PTX - PTLX

1 1
+-W; —-E)+J - —W?],
I 7

Ziy1=

(20)

where the (XTPPTX + I;)~! can be computed before

iterations, and Iy is an identity matrix of size N x N.
Step.3: [Update J| In this step, except J, other variables

are fixed. Thus, the problem (13) becomes

‘ 0 w32

Jpp1 = argmin | I+ ST = (Z+—)|IF. @D

J 2 I
which can be solved by the singular value thresholding (SVT)

operator. And the optimal solution Jj1 is

2

W
Jt1 :D%(Z—&—T), (22)

where Ds(Y)

= Upxrdiag{maz(0,0; — B)} Vi, r obeys

Ds(Y) = argmin(|X|l. + SIX = Y|}), @3
and o; is the ¢-th positive singular value of Y, 1 <17 < R.
Step.4: [Update L] By regarding other variables as known to

optimal L, L, denote the optimal variable and Lagrangian

multiplier at the (k + 1)-th iteration (kK = 0,1,2,...). The
problem becomes:
Lyt = argmm a||L|;
w1 (24)
+5||PTX ~-PT(XZ+LX)-E+ —||F

We set M = PTX — PTXZ — E + WT for simplicity, and
the updating of Ly can be wr}ctten as

Lyt = argmma||L||L + *”L Ly, + —pd(Ly) |1,

(25
where d(Ly) = pP(M —PTL; X)X represents the gradient

of quadratic term. We use an acceleration scheme to enhance
the convergence of algorithm, which can be expressed as:

Ly =L + wi(Ly — Lg_1),
UL — A2
= | |17

5

Li+1 = argmina| L]} + (26)
L
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where Lj stands for the extrapolated point, wy represents
an extrapolation weight constant, wi+1 = (tx — 1)/tr+1,
teyr = 2(1++/1+4t,%) and A = Ly, — B%d(Lk) is used for
simplicity. The above problem can be resolved by obtaining
an approximate expression in accordance with the following
theorem:

Theorem 1 (Logarithmic Singular Value Thresholding
[49]): For any A € RM*N and a > 0, the SVD of A is
A =TUpX A Va4, the closed solution of the problem is

) 1
Ly = argminal X|; + 51X - Az, @7)

where X = UaI', (34 VA and the soft thresholding operator
I'ye(+) is defined as:

argmin h(a), A >0,
a€{0,1(z—e+VA)} (28)
0, A <0,

where A = (z — €)> — 4(a — we) and function h(a) = 1(a —
7)? + alog(a + ¢),RT — R+,

According to Theorem 1, we can obtain the optimal solution
Lk—i—l:

Ly = UAFﬁ%,eEAvA- (29)

Step.5: [Update E] Let M = PTX — PT(XZ + LX) +
W1 /u, E can be computed and updated by

A
Eiy1 =argmin —[|El|2;1
E M
1 T T Wt
+§||E —(P'X-P' ' (XZ+LX)+ T)HF (30)
A 1 9
=argmin —|[El21 + S [|E — M|%.
E M 2
From the view of vectors, Eq. (30) can be decomposed as
(€2

argmin —||e; —+ —=lle; —my; s
1 7112 2 7 i F

where e; and m,; are the i-th column of matrix E and M,
respectively. The solution to problem Eq. (30) is given by

My ,
e = {(1 [l 2 Jmi, - [mill2 > A/p, 32)
0, lmill2 < A/p.

Step.6: [Update parameters] The augmented La-
grangian multipliers W; and W5 are updated by

Wi, W4 (P (X - XZ - LX) — E),

33

Wi« W2+ u(Z-J), &)
respectively, and penalty parameter y is adjusted by

w = min(pp, fmaz ), (34

where p > 1 is a constant and fi,,,4, 1S the upper bound of p.
Finally, the complete ADMM algorithm for the proposed
LatLRE model is summarized in Algorithm 1.

Algorithm 1 The LatLRE algorithm.
Input: Data X, parameters \, &, fbmin-
1: Initialize: J,Z, L, E, W' W2 k.t w1, W, thmazs P> €
and p* = fipin.
2: while no converge do
3: Update tx41,Wkt1-
4. Update P,Z,J,L,E.

5.  Update the augmented Lagrangian multipliers
Wl W2

6:  Update the penalty parameter p.
Check the convergence conditions [|[PTX —

PT(XZ+LZ) —E|w <&, and |Z - J|x < &.
8: end while
Output: Projection matrix P7.

C. Complexity Analysis

Given a HSIs dataset X € R™*¥ the major computational
costs for LatLRE are the computation of P & Rmxd 7 ¢
RVXN J ¢ RNXN 1, ¢ R™*m and E € R¥>N, where m
is the dimensionality of each data point, N is the number of
data points, and d is the reduced dimension. Specifically, for
solving projection matrix P, the main complexity comes from
the SVD of matrix BA”. Since the size of BAT is m x d,
the complexity of updating P is O(d®). Similarly, the major
computational cost of L involves the computation of the SVD,
which has a complexity of O(m?). The computational costs
for solving Z is mainly spent on calculating the inverse of
(XTX + 1), and the associated computational complexity is
O(N?3). For solving J, the computational complexity is mainly
contributed by singular value thresholding operator, the size of
the input matrix (Z+W?2/yu) is N x N. Thus, solving J costs
about O(N?). And the computational complexity is O(dN?)
for solving E. In summary, assuming the LatLRE algorithm
converges in k iterations. In practice, d (d < m and d < N)
is negligible after enlarging to the third power. Hence, the total
computational complexity of LatLRE is about O(kN?).

D. Convergence Analysis

Due to the non-convexity of LatLRE and the difficulty
of ensuring the strong convergence of the ADMM-based
Algorithm 1, we aim to establish the weak convergence of
our LatLRE algorithm by proving that the iterative sequence
of Algorithm 1 converges to a stationary Karush-Kuhn-Tucker
(KKT) point. Before proceeding with the proof, we first
introduce the following theorem.

Theorem 2: For ADMM  algorithm, let {6, =
(Pk,Zk,Jk,Lk,Ek,W}C,Wi)},;“;l be the sequence gener-
ated by Algorithm 1, and the sequence {6}7°, is bounded.
Before proving the above theorem, we first introduce the
following lemma.

Lemma 1: [54] Let H be a real Hilbert space endowed with
an inner product (-,-), a norm || - ||, a dual norm || - ||*, and
y € Ol|lz||, where Of(x) is the subgradient of f(z). Then
lyl* =1if x #0, and |ly||* < 1if z =0.

According to Lemma 1, the proof of Theorem 2 is as follows:

Proof of Theorem 2: Let Pii1, Zg+1, Ji+1, Lgta,
Ejt1, Wi, and W}, denote the optimal variables at the
(k 4+ 1) — th iteration. Next, we prove the boundedness of
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the sequence {#}7°, in two parts: 1) prove that W}, and
W7 | are bounded; 2) prove that Py, Zji1, g1, Ly,
and Ej; are bounded.

1) The boundedness of W, and W7 . According to
the updating rule of Ej, we have:

0 € A||Egt1]l2.1 + p(Epqa

(35)
— (PL X — Pl (XZgyy + L X) + W /),

according to Eq.(33), ie, Wi, = W, + pu(P], X —
P/ | (XZy414+Li41X)—Epy1), Eq.(35) can be transformed
into

0 € A||Egi1ll2,0 — Wiy (36)
Thus, we can obtain
1

Xwillc-&-l € 9lleigt1ll2, 37

where w; and e; are the ith column of Wi 11 and Ey 1,
respectively. Introducing the Lemma 1 and based on the fact
that the /5 norm is self-dual [55], from Eq.(37), we can deduce
that ||w;} [|2 < A. Thus, the {W}_ ,} is bounded. Next, we
discuss the boundedness of the sequence {W? 417 Since

Wi/w), (38)

Ji+1). Then, Eq.(38) can be

0 € | Ippalls + n(Tpi1 — (Zisy +

and W3, = W2+ (Zis1 -
transformed into

0 € 0| Jpsll« — Wiy (39)

We can get

Wi,y € 0l Tkqalls (40)
According to Lemma 1 and the fact that the dual norm of
the nuclear norm || - ||. is the ls norm || - || , and we have
[WZ, |2 < 1. Through the above derivation, it can be proven
that {W7,,} is bounded.

2) The boundedness of Py 1,7 1,J5+1,Lrr1, and
Ex41. According to the updating rule of Ly in Algorithm
1, it can be naturally concluded that F({Ly}) = o Lg|/} +
LIPTX — PH(XZx + LkX) — Ex + Wi/ul|% is non-
increasing. And we can obtain that F({L,}) > F({Lg}) >
a||Lg||% . Therefore, the boundedness of the sequence {Ly1}
can be held. Since Py ; is imposed an orthogonal constraint,
the boundedness of {Pj1} can be held. Under the iterative
rules of Algorithm 1, we can derive

LPri1sZis1, Iit1, Lt 1, B, Wi, W2 11y,

S‘C(th Zk,Jk,Lk, Ekuwi7wz7uk)
:E(ka Zkv‘]kaLka Ekawllc—lvwi—lvﬂlk—l)

+{(Wi — W, _,,P{X - P{(XZ; + LX) — Ey) @1)
+ (Wi = W3i_y,Zy, — Jp)

Mk — Bk—1 2
e |PEX — PL(XZ), + LX) — Ei| .

MEe — Hk—1 2
+#IIZ = Jill %

And Eq.(41) can be transformed into

L(Pri1, Zis1, g1, Ligr, Brgr, W Wi )
SE(Pk, Zka Jka Lk7 Ekv Wllg—lv W]2c—17 /‘kal)

+ _
+7’””“2 S ([WE = W[+ [WE - W[5
M1
<L(Py,Z1,31,L1,E1, W, W3, 110)
n
g —
+ i’“} LW = W[5+ [WE = Wi ),
% H—1

(42)

where n denotes the number of iterations.
Eq.(34), i.e., ux = p* o, it is easy to get

According to

SNk k-1 N Plk—1 + [
2 = 2
k 2/'1'1671 k 2'“]671 (43)
SM < 400,
2p0(p — 1)
SO, a2 is bounded. Since
koo2py
£(P1,Zl,Jl,Ll,El,Wé,W%,/Lo) is ﬁnite, and
5 "g:ﬁ‘k’l, Wi, W32 are bounded, all terms
k—1
on the right side of Eq. (42) is bounded, hence

E(Pk-&-la Zk+1a Jk+17 Lk+1; Ek}-‘r17 Wllc, Wz, /.tk) is bounded.
Additionally, based on Algorithm 1, we can also obtain

E(Pk+1, Zii1, I, Lioy1, B, Wi, Wi )

2 (Wil + HW2HF

—IIJk+1||*

Wl
HP X =P (XZpg1 + Lgn X — Epp) + T:”QF

W2
H|Zgog1 — T + —E|%).
HE

(44)

It can be observed that in Eq. (44), the terms on the left side
are bounded, and the boundedness of the terms on the right
side is guaranteed. Therefore {Jk+1}, {Ex11}, and the last

Jit1 + i

above proof, i.e., {Jx41}, {W2}, and ||Zy 41 —Jk+14——||2
are bounded, it is easy to verify the boundedness of {Zk+1}
|

In summary, we can conclude that {6 =
(leZkaJmLkaEkaW}lgaW%)}]?;l is bounded.
Subsequently, the convergence of LatLRE algorithm will be
proved by the following theorem.

Theorem 3: The sequence {6;}7°, is bounded, and as-
suming limg_ oo{0x+1 — Ok} = 0, then the accumulation
point in the sequence {6 }7° ;| satisfies the KKT conditions.
Specifically, when {6 }7° , converges, it converges to a KKT
point.

Proof of Theorem 3: Without loss of generality, we
denote that the sequence {0;}%2, is represented by it-
self, and it converges to an accumulation point 6,, which
can be given by limk_}oo(Pk,Zk,Jk,Lk,Ek,W}C,Wi) =

term ||Zg+1 — H # are bounded. According to the
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(P, Z,,J., Ly, E,, WL, W2), Considering the boundedness
and the update rules of W}, and W3, we have

P'X - PT(XZ, +L,X)-E, =0, (45)

and

Z,—J,=0. (46)

Taking the updating rules of Zj, we can obtain

0zL(Py11,2, Ji, L, By, Wi, W}) |z,
W2
=pk(Zrr — I + T:) — (X Pyy1 (P

w!
X(X = XZpy1 — LX) - Ep + Tk)
k
W3
=tk (Zr+1 — Jp41 + T:) + i (Jg+1 — Ji)

1

W
— k(X TPy (P (X — XZgyy — L1 X) — By + T:)

At (X Prgy (Lpg1 — L) X + X Ppoyy (Biyr — Ep))
=W} - X"Pp 1 Wi + X Py
X((Lgg1 — L) X + (B — Eg)) = 0.

47

Assuming hmkﬂoo(']k+1_']k) = 0, hmkqoc(Lk—i-l_Lk’) = O,
and limy,_, oo (Eg+1 — E) = 0, then Wi — XTP;CHWi =0
can hold. In this case, through Eq. (47), we can get

0c 8Z£(P*; Z*,J*,L*,E*,Wi,WE)

=WwW?2_X"p, W2 “%)
From Eq. (39), we have
0 € 05L(Prs1, Ziy1,3, L, B, Wi, Wi, ., 49)
= 0| Jksalls — Wiﬂ-
When k — oo, we can get
0<€0;L(P,,Z,,J,, L, E,, W, W?3). (50)
Furthermore, we can deduce the following equation:
0€L(Pri1,Zs1,Tey1, L Ey, Wi, W)L, .,
= ad||LgsallL — prPria (P (X — XZgy
+ Ly 1X) — Ep + ‘Z/})XT (51)
= || L1l — Py Wi X7
+ ukPri1(Bgy1 — Ep)XT.
Similarly, if limy,_, o (Ex4+1 — Ei) = 0, we can get
0€oLP,, 2., L, E W, W2). (52)
From Eq. (36), the following equation holds:
0 € 0gL(Py,Z,,J,, L, E,, WL W2), (53)

In summary, according to Eq. (45), Eq. (46), Eq. (48), Eq. (50),
Eq. (52), and Eq. (53), we can prove that the accumulation
point 8, of the sequence {6 }7° ; satisfies the KKT conditions.

|
In summary, the convergence of the proposed algorithm is
proved by Theorem 3.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, experiments are conducted for verifying the
effectiveness of LatLRE.

A. Hyperspectral Datasets

1) Indian Pines (IP) dataset: The IP dataset was obtained
by the AVIRIS sensor in 1992. The IP dataset contains images
with a spatial dimension of 145 x 145 and a resolution of 20
m/pixel, with 224 spectral bands covering a wavelength range
of 400 to 2500 nm. In the experiments, 200 spectral bands
are used. And only 50% (10,249) of the total 21,025 pixels
include ground truth information from the 16 different land-
cover classes. In addition, we randomly select 10% of the
hyperspectral data as the training set and the rest for testing.

TABLE 11
CLASSIFICATION PERFORMANCE OF DIFFERENT FDR METHODS ON
INDIAN PINE DATASET.

Class Method
NPE LPP LRE RPL S°PCA GRSC LatLRE

1 31.71 17.07 53.66 53.66 6341 4390 53.66
2 7549 6241 9642 9634 96.81 93.23 98.37
3 6439 49.80 9143 9143 9505 9692 9371
4 96.24 81.22 98.12 98.12 98.12 91.08  99.06
5 76.09 7770 96.78 96.78 9428 94.71 93.56
6 95.28 8528 96.65 96.80 95.59 97.56 96.50
7 0 0 0 0 0 52.00 84.00
8 99.07 99.30 99.30 99.07 9535 99.07 99.07
9 0 0 7222 7222 7222 0 22.22
10 | 7143 63.66 86.63 86.63 8434 8594 93.83
11 90.95 91.94 97.69 97.65 96.15 9728 98.14
12 | 66.10 67.23 91.20 91.57 83.52 89.51 94.38
13 | 89.67 90.22 96.20 96.20 9891 9620 97.28
14 194.02 92.62 98.42 98.42 99.03 9649 98.42
15 | 8991 64.84 9539 9395 96.54 89.05 95.10
16 |69.05 69.05 8690 8690 66.67 89.29 85.71
OA | 82.89 78.02 9491 9486 93.88 93.95 96.48
AA 6934 6390 84.81 84.73 83.50 82.01 87.89
K 80.35 74.73 94.19 94.13 93.01 93.09 95.98

2) Heihe dataset: The dataset was acquired through the
CASI/SASI sensor located in the Zhangye Basin in the middle
reaches of the Heihe River Basin, Gansu Province, China.
The image contains 684 x 453 pixels with 135 bands after
removing 14 bands heavily affected by noise. It comprises 8
classes, whereby 20 samples of each class are selected for
training, and the remaining samples are reserved for testing.

3) WHU-Hi-HongHu dataset: This dataset was collected
by Headwall Nano-Hyperspec sensors from Honghu, Hubei
Province, China. And it comprises 270 bands with a wave-
length range of 0.4-1 pum and a spatial resolution of 0.043m per
pixel. For the experiment, a scene consists 940 x 475 pixels
and contains 22 classes. Additionally, a training set consisting
of 2% of the hyperspectral data is randomly selected, with the
remainder reserved for testing.

B. Experimental Setup

To further validate the performance of LatLRE, several
related unsupervised FDR methods, such as NPE [56], LPP
[25], LRE [42], RPL [57], S®PCA [24] and GRSC [58]
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are selected as comparative methods. Here, the class-specific
accuracy, overall accuracy (OA), average accuracy (AA), and
kappa coefficient (k) is utilized to evaluate the performances
of different FDR methods and the SVM is adopted as classi-
fier for recognition. The experimental platform is MATLAB
R2016a.

C. Parameter Sensitivity Analysis

For LatLRE, there are two regularization parameters (i.e.,
a and M) need to be determined. Fig. 4 shows the variation
of recognition accuracies with different values of « and A for
three datasets. Taking the Indian Pines dataset as an example,
through cross-validation experiments, « and A are tuned in
the range of {le-2, le-1, 1e0, lel, 1e2}. It can be observed
that {a=1e2, A=1e0} can be set for the Indian Pines dataset.
Similar to the above steps, the suitable parameters for Heihe
dataset and WHU-Hi-HongHu dataset are {a=1e0, A=le-2}
and {a=le-1, A=lel}, respectively.

D. Implementation Details

Variable initialization: In the experiment, the proposed
LatLRE method requires initialization for the variables
P,Z,J,L,E,W! W2, Specifically, we perform a random
initialization for P,Z,J, and L, and initialize E, W! and
W?2 with a zero matrix, respectively.

Parameter setting: Further, we need to define the param-
eters [, mazs P> € t, w, and € with the settings p = 1075,
Pmaz =107, p=1.2,e =10"%t=1.6,e =0.1,and w = 1.

Convergence conditions: During the experiments, we have
set the maximum number of iterations to 200. Moreover, the
convergence conditions for the LatLRE model have been set
as follows:

Wl

2

|IPT(X — (XZ +LX)) —E + I

2
1Z =3+ 3=1I%

<e,

<E.

(54)
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Fig. 8. Visualization of classification results by different methods on Indian Pines dataset. (a) Groundtruth of Indian Pines dataset. (b) NPE. (c) LPP. (d)

LRE. (e) RPL. (f) S3PCA. (g) GRSC. (h) LatLRE.

E. Analysis of Feature Dimensions

To explore the effectiveness of proposed feature dimension-
ality reduction (FDR) method LatLRE, we conduct numerical
simulation experiments for sensitivity analysis of feature di-
mensions on the Indian Pines dataset, Heihe dataset as well
as the WHU-Hi-HongHu dataset. To explore the impact of
dimensionality on the performance of FDR models, we set
the dimensions within the range of {10, 20, --- ,70} on Indian
Pines and Heihe datasets, which can be shown in Figs. 5-7
(a) and (b). Due to the large number of bands in the WHU-
Hi-HongHu dataset, we chose the set of reduced dimension-
ality as {10,20,---,95}, as shown in Figs. 5-7 (c). It can
be found from the above experiments that our method has
good results in reducing the feature dimensions on the three
datasets. Furthermore, LatLRE achieves the best performance
on the Indian Pines and Heihe dataset when the number of
dimensionality reduction is 40 and 25, respectively. When
conducting experiments on the WHU-Hi-HongHu dataset, we
can find that the proposed method works best when the number
of dimensionality reduction is 85.

FE. Analysis and Discussions of Performance

We perform a comparative analysis of the proposed LatLRE
with several traditional FDR methods, i.e., NPE [56], LPP
[25], and LRE [42]. Additionally, we also evaluated the
state-of-the-art methods such as RPL [57], S®PCA [24] and
GRSC [58]. The classification performances are presented
in Tables II-IV. To facilitate comparison, the best result for
each evaluation metric is highlighted in bold. And we further
display the classification maps across the three datasets, as
shown in Figs. 8-10. Through the experimental results, it is
noted that the LatLRE is superior to the other comparative
methods as it achieves the best results in terms of OA, AA,
and ~ on the three datasets. In particular, on the Indian
Pines dataset, the LatLRE outperforms the other FDR methods

TABLE III
CLASSIFICATION PERFORMANCE OF DIFFERENT FDR METHODS ON
HEIHE DATASET.

Class Method
NPE LPP LRE RPL S°PCA GRSC LatLRE
1 0 0 87.48 87.48 7373 86.17 92.83
2 90.06 80.25 97.34 9731 99.25 80.64 95.60
3 72.19 7647 7174 71776 82.14 80.10  83.19
4 0 0 8195 81.85 89.11 7885 86.90
5 92.09 299 89.60 89.68 69.96 94.12 95.43
6 9396 94.68 9142 91.24 8230 92.08 90.76
7 2777 021 83.52 8342 8725 90.67 9295
8 0 0.58 89.82 89.82 93.80 89.71 99.06
OA 43.60 3834 86.83 86.82 83.72 8340 9140
AA 4701 3190 86.61 86.57 84.69 86.54 92.09
K 36.09 30.17 82.23 8221 78.06 78.05 88.40

on the OA, AA, and x metrics by 1.57%-18.46%, 3.08%-
23.19%, and 1.79%-21.25%, respectively. Several methods
have demonstrated promising performance, such as LRE and
RPL, which achieved satisfactory overall accuracy (OA) met-
rics across three datasets. However, these two methods exhibit
a recognition accuracy of 0 for the class 7 in the Indian
Pines dataset, which can also be clearly seen on Fig. 8.
Similarly, we observe that S?PCA and GRSC perform well
on the Indian Pines dataset and WHU-Hi-HongHu dataset but
fail to adapt effectively to the Heihe dataset. In contrast, the
LatLRE not only demonstrates excellent performance on each
individual class but also exhibits adaptability across all three
aforementioned datasets. Based on the above observations we
can conclude the following:

1) The superiority of LatLRE over S3PCA is attributed to
the introduction of projection learning. In contrast to PCA-
based approaches, projection learning effectively preserves
crucial structures within the data, mitigating the risk of over-
looking vital information during the dimensionality reduction
process inherent to PCA-based methods.

2) Methods such as LPP and RPL, which also employ
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TABLE IV
CLASSIFICATION PERFORMANCE OF DIFFERENT FDR METHODS ON
WHU-HI-HONGHU DATASET.

Class Method
NPE LPP LRE RPL S°PCA GRSC LatLRE

1 96.45 96.37 9432 95.09 67.81 9560 96.19
2 75.60 74.14 7641 79.75 51.05 7551  80.59
3 94.76 94.37 9246 93.14 80.95 9257 94.37
4 99.21 99.20 98.68 98.83 99.84 9853 99.01
5 7294 7050 69.76 70.86 45.86 61.03 73.61
6 9298 9299 91.63 92.01 88.25 9207 93.15
7 82.29 80.58 81.98 8290 82.09 8044 84.18
8 28.79 29.60 2794 2993 2998 20.06 33.38
9 96.53 96.50 9498 95.11 88.81 94.62 9598
10 [70.04 69.41 7174 71.89 7535 6857 75.50
11 | 5870 56.70 66.24 67.08 68.21 60.05  70.79
12 | 58.09 56.59 67.11 6650 7636 6030 67.26
13 | 7444 70.44 7483 76.57 6772 7456 78.13
14 | 71.05 68.80 71.74 74.63 63.06 7170 76.31
15 |166.70 7098 49.49 56.01 2627 6599 64.05
16 |[93.78 93.26 88.46 89.05 7150 8827 92.82
17 7129 6641 7390 7434 6529 7624 76.27
18 | 6844 64.64 7190 72.12 71.61 6844 72.28
19 | 87.22 86.11 8457 8571 7728 85.10 86.33
20 | 80.77 79.51 77.772 7693 5155 73.54 80.44
21 332 046 37.82 4566 17.83 2022 40.05
22 | 5458 5542 5782 59.11 50.16 4622 62.31

OA | 88.73 88.05 8851 89.07 85.05 87.58 90.11

AA | 72.63 71.50 73.70 75.15 6440 71.35 76.96
K 85.68 84.80 85.34 86.08 79.82 84.18 87.44
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Fig. 9. Visualization of classification results by different methods on Heihe
dataset. (a) Groundtruth of Heihe dataset. (b) NPE. (¢) LPP. (d) LRE. (e)
RPL. (f) S3PCA. (g) GRSC. (h) LatLRE.

projection techniques, fall short of achieving optimal effec-
tiveness due to their singular focus on individual direction.
This limitation arises from the absence of joint consideration
for multiple directions. In contrast, the proposed LatLRE takes
into account both row and column information of the matrix,
which can ensure robustness of the low-rank feature space.
3) According to Eq.(3), it can be seen that although LRE
has achieved the exploration of sample relationships, it lacks

‘uber mustard

Brassica
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f  chinensis
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B8 Film covered
lettuce

Fig. 10. Visualization of classification results by different methods on WHU-
Hi-HongHu dataset. (a) Groundtruth of WHU-Hi-HongHu dataset. (b) NPE.
(c) LPP. (d) LRE. (e) RPL. (f) S®PCA. (g) GRSC. (h) LatLRE.

the excavation of salient features, i.e., LRE ignores the cap-
ture of feature correlations. Instead, our LatLRE additionally
introduces latent low-rank learning, which takes into account
information from both directions of the data. Moreover, from
Tables II-IV, one can see that LatLRE outperforms the com-
parative methods, which shows the effectiveness of mining
feature correlations to improve classification performance.

G. Discussions of Nuclear Norm and Logarithmic Norm

In the proposed method, we introduce the nuclear norm
to characterize the low-rankness of the sample relationships
matrix Z and apply the logarithmic norm to describe the low-
rankness of the feature correlations matrix L. The reasons
are as follows: According to Fig. 2, we observe that the
singular value curves of the sample relationships matrix Z and
the feature correlations matrix L drop rapidly and approach
0, which indicates that they are both low-rank matrices.
Moreover, the main singular values of the sample relation-
ship matrix Z are mainly around 1 and less than 1, while
the singular values of the feature correlations matrix L are
relatively large. Therefore, different low-rank functions need
to be introduced to accurately characterize the low-rankness
of Z and L, respectively.

Inspired by the rank approximation of different functions in
Fig. 3, one can be seen that when the singular values are small,
the nuclear function is closer to the rank, while the logarithmic
function is closer to the rank when the singular value is
relatively large. Therefore, based on the above observation, we
introduce the nuclear norm on Z and the logarithmic norm on
L to accurately characterize their low-rankness.

To test the impact of other potential approaches on the
classification results, we conduct comparative experiments on
three datasets, the experimental results are shown in Tables
V-VII. Specifically, the experimental settings are as follows:

o Apply the nuclear norm on both Z and L.

o Apply the logarithmic norm on both Z and L.

o Apply the logarithmic norm on Z and nuclear norm on L.
o Apply the nuclear norm on Z and logarithmic norm on L.
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Fig. 11. The t-SNE visualization of the feature matrix after different FDR methods on the Heihe dataset. (a) Original, (b) NPE, (c) LPP, (d) LRE, (e) RPL,

(f) S3PCA, (g) GRSC, (h) LatLRE.
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Fig. 12. Visualization of confusion matrix by using different FDR methods on the Heihe dataset. (a) NPE, (b) LPP, (c) LRE, (d) RPL, (e) S3PCA, (f) GRSC,

(¢) LatLRE.

Tables V-VII show that the design of ||Z||.+||L||. achieves
the best results in most cases. Meanwhile, the combination of

[|Z||z, + ||L||z have yielded competitive results.

TABLE V
CLASSIFICATION PERFORMANCE APPLYING DIFFERENT NORMS ON Z
AND L FOR INDIAN PINES DATASET.

z L OA AA *
1 | 1 S | | [ 32
v v 9558  86.04  94.95
v v 9536 8638  94.70
v v 9593  87.62  95.36
v v 9648 8789 9598
TABLE VI

CLASSIFICATION PERFORMANCE OF APPLYING DIFFERENT NORMS ON Z
AND L FOR HEIHE DATASET.

z L OA AA r
1 | 1 S | | [ 3 2
v v 8841  89.77  84.54
v v 87.50  87.62 8324
v v 88.90  89.61  85.22
v v 9140  92.09  88.40

TABLE VII
CLASSIFICATION PERFORMANCE OF APPLYING DIFFERENT NORMS ON Z
AND L FOR WHU-HI-HONGHU DATASET.

z L OA AA *
1 | S | [ 3
v v 90.09  76.63  87.41
v v 87.03 6873  83.46
v v 80.82 7626  87.05
v v 90.11 7669  87.44

H. Analysis of Visualization

To intuitively compare the effectiveness of the propoesd
LatLRE, t-SNE [59] has been introduced to visualize the
features projected by the comparative methods. As a typical
example, Fig. 11 illustrates the visualization results on the
Heihe dataset. Samples from the same category are represented
by the same color. It can be easily observed that most of
the comparative methods exhibit either excessive intra-class
variance or overlapping clusters. Specifically, while method
S3PCA ensures inter-class discriminability, it overlooks the
importance of intra-class compactness. This can be observed
in Fig. 11(f), where the visualization of features after di-
mensionality reduction using method S®PCA reveals instances
of samples from the same class being divided into different
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subclusters. Although LPP and LRE methods show some
improvement, they still exhibit similar shortcomings for the
fifth class. In contrast, NPE demonstrates overlapping clus-
ters. In contrast to the aforementioned methods, the LatLRE
ensures the compactness of intra-class samples. Moreover, we
visualize the confusion matrices of different dimensionality
reduction methods after classification by an SVM classifier, as
shown in Fig. 12. It is noticeable that, except for S3PCA, other
methods have misclassified the second class, while S3PCA
exhibits poor classification performance for the first and third
classes. In comparison to these methods, the proposed method
LatLRE demonstrates promising result, as shown in Fig.
12(g), where the diagonal structure of the confusion matrix
is notably clear. This is because the LatLRE can fully explore
the salient features and employ multi-directional projection
learning to effectively preserve the data structure. Additionally,
the introduction of logarithmic norm helps reduce noise and
redundant information.

1. Ablation Study

To explore the effectiveness of each component of the
proposed LatLRE, we conducted ablation study. The settings
are as follows:

o Case 1: To explore the influence of the projection matrix
P in the LatLRE, we set P'X = PT(XZ + LX) + E
to X =XZ+LX +E.

o Case 2: To explore the influence of the 5 ;-norm in the
LatLRE, we remove the sparsity constraint term ||E||2 1
and set PTX PT(XZ + LX) + E to PTX =
PT(XZ + LX).

o Case 3: To examine the effect of the logarithmic norm in
LatLRE, we remove the feature correlations description
item ||L||; and set PTX = PT(XZ + LX) + E to
PTX =PTXZ + E.

o Case 4: To explore the impact of the nuclear norm in
LatLRE, we remove the sample relationships characteri-
zation item || Z|. and set P"X = PT(XZ + LX) + E
to P'X = PTLZ + E.

o Case 5: The proposed LatLRE.

TABLE VIII
ABLATION STUDY OF LATLRE ON HEIHE DATASET.

Casc P E(|Ellz) L(LIL) Z(Z[) OA AA =

1 v v v 88.65 86.88 84.69
2 v v v 90.15 90.52 86.79
3 v v v 88.88 88.97 85.15
4 v v v 90.45 90.71 87.16
5 v v v v 91.40 92.09 88.40

Taking the Heihe dataset as an example, the results of the
ablation experiments are shown in Table VIII. The comparison
between Case 1 and Case 5 demonstrates the effect of the
projection matrix P, and it can be seen that the addition of pro-
jection learning has led to an improvement in the experimental
results, with OA, AA, and x improving by 2.75%, 5.21%,
and 3.71%, respectively. This improvement occurs because
projection learning effectively alleviates the dimensionality

catastrophe problem in hyperspectral images. Furthermore,
comparing Case 2 with Case 5 reveals the effectiveness of
||E||2,1 in suppressing noise interference and improving model
robustness. The negative impacts of removing the feature
correlations matrix L and sample relationships matrix Z are
shown in Case 3 and Case 4. It is obvious that capturing both
feature correlations and sample relations can enhance the clas-
sification performance, where the overall accuracy is decreased
by 2.16% and 0.59%, respectively. Overall, the experiments
above demonstrate that the projection matrix P, the sparsity
constraint term ||E||2,;, the feature correlations description
item ||L||z, and the sample relationships description item
||Z]|. are crucial for the effectiveness of LatLRE.

V. CONCLUSION

In this paper, a representation-based method named LatLRE
is proposed for robust FDR, which can exploit the intrinsic
subspace structure of data to enhance the robustness. In
particular, the proposed LatLRE model can learn an optimal
projection matrix to map the data into a low-dimensional
space with the noise filtered. By using the nuclear norm
and Logarithmic norm to substitute the two underlying rank
functions respectively, the optimization of the LatLRE model
becomes more reasonable and more flexible for singular val-
ues, which also improves the efficiency of both global structure
and feature correlations. Experimental results show that the
proposed method can obtain better classification accuracy than
the widely-used FDR methods considered in this paper.

In the future, we will extend LatLRE into the tensor space
to directly deal with the high-dimensional structure of HSIs
and exploit the unified framework of FDR and classification
tasks.
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