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Abstract—Remote sensing image (RSI) denoising is an impor-
tant and fundamental task in RSI processing. Existing denoising
methods usually assume that RSI lies in a single matrix or tensor
subspace. However, due to the wavelength difference or/and
temporal variability, the assumption of a single subspace may
not be suitable for RSI. To address this, we propose a tensor
multi-subspace representation (TenMSR) for RSI mixed noise
removal. To be specific, in this work, we introduce TenMSR to
finely characterize the intrinsic tensor multi-subspace structure
of RSI. Compared with the single matrix/tensor subspace-based
methods, the proposed method can not only precisely describe
the wavelength difference or/and temporal variability of RSI but
also produce a more compact image distribution in tensor multi-
subspace. To mine and preserve the multi-subspace structure,
we introduce a nonlinear transform-based 3-D tensor nuclear
norm to characterize the tensor low rankness of the multi-
subspace representation coefficient. An effective algorithm based
on the proximal alternating minimization (PAM) framework is
developed to solve the proposed model with theoretical conver-
gence analysis. Extensive experiments show the effectiveness and
superiority of the proposed method over existing state-of-the-art
single matrix/tensor subspace RSI denoising methods.

Index Terms—Nonlinear transform-based 3-D tensor nuclear
norm, proximal alternating minimization (PAM), remote sensing
image (RSI) denoising, tensor multi-subspace representation
(TenMSR).

I. INTRODUCTION

W ITH the development of remote sensing technology, the
remote sensing image (RSI) has received widespread

attention and has been widely used in land surface change
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monitoring, disaster monitoring and assessment, urban plan-
ning and management, and agriculture and forestry monitoring
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14]. However, due to the acquisition equipment and trans-
mission environment, the acquired RSI is generally corrupted
by various kinds of noises, such as Gaussian noise, impulse
noise, and strip noise. The existence of mixed noises seriously
reduces the quality of the acquired RSI. Therefore, the RSI
denoising is an important preprocessing step and will benefit
the subsequent applications, e.g., image classification, image
segmentation, and super-resolution. RSI denoising is an ill-
posed inverse problem; the heuristic strategy is to study the
prior information of RSI.

One of the most widely studied priors is the global low
rankness due to the intrinsic correlation and redundancy of RSI
along the spectral dimension. Many early denoising techniques
view the RSI as a low-rank matrix, e.g., nuclear norm-based
denoising methods [15], [16], [17], [18], [19] and low-rank
matrix factorization methods [20], [21], [22], [23]. However,
these methods [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24] are designed for the matrix data. When handling the
multidimensional RSI, the matrix denoising methods have to
reshape the RSI into a big matrix, which usually destroys the
multidimensional structure and leads to performance degra-
dation. To keep the multidimensional structure, one natural
approach is to directly manipulate the original RSI.

Recently, many tensor denoising methods based on different
tensor decompositions and corresponding tensor ranks are
proposed to explore the low-rank tensor prior information of
RSI [3], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34].
For instance, based on Tucker decomposition, Renard et al.
[31] proposed a Tucker rank minimization method for RSI
denoising. Zhang et al. [35] integrated spatial and spectral
difference constraints in a low-rank tensor decomposition
framework for complex noise removal. A new low Tucker
rank nonnegative approximation method was proposed in
[36] and demonstrated promising results. Liu et al. [25]
used the PARAFAC decomposition to recover the RSI and
gave the statistical performance analysis. Due to the promis-
ing performance of tensor singular value decomposition, the
works [37], [38], [39], [40] utilized the tensor tubal rank
to explore the low rankness of the underlying clean spectral
image in the transformed Fourier domain for RSI recovery.
The aforementioned low-rank tensor methods can achieve
the promising denoising performance improvement, while
they treat the whole observed noisy data as the input of
the algorithm—that brings the high computational burden,
especially when the spatial size and spectral number of RSI
increase.

To reduce the computational burden, many subspace
representation-based methods have been proposed to remove
the mixed noise from RSI [41], [42], [43], [44], [45]. The
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basic idea is that the RSI across the spectral dimension is
strongly correlated, which implies that the clean RSI lies
in a low-rank subspace. By decomposing the RSI into two
smaller matrices, Sun and Jeon [46] proposed a subspace
spatial-spectral low-rank method to improve the denoising
performance. Zhuang and Bioucas-Dias [41] proposed a fast
hyperspectral denoising (FastHyDe) algorithm by learning the
matrix subspace from the Casorati matrix with lower time cost.
He et al. [47] developed a unified paradigm to combine the
spatial and spectral correlation by learning a global spectral
low-rank orthogonal subspace. By exploring the nonlocal
self-similarity of representation coefficient matrix, a spectral
low-rank subspace method is studied in [42] for RSI denoising.
Since the 2-D matricization destroys the spatial information,
matrix subspace representation methods can still be further
improved. To enhance the ability of subspace representation,
Lin et al. [43] learned a basis tensor from the input tensor
and proposed a tensor subspace representation method for
delivering the multidimensional structure of the RSI. Further-
more, He et al. [48] combined the low-dimensional tensor
subspace representation and a nonlocal plug-and-play prior for
RSI denoising. By exploiting the global spectral correlation
of image, Chen et al. [49] ingeniously incorporated low-rank
subspace representation and data-driven coefficient prior for
image reconstruction.

In summary, the matrix/tensor subspace-based methods per-
form well in balancing denoising performance and efficiency;
however, they assume that RSI is distributed in a single
subspace. This assumption may be too strict for the RSI pro-
cessing. In fact, the spectra of RSI have obvious differences,
especially for the images with hundreds of spectral bands.
Besides, due to the collecting variability, the spectral bands
of the multitemporal RSI may not be highly correlated. This
indicates that it is more reasonable to assume that the RSI lies
in multiple subspaces than in a single subspace. Therefore,
the multiple subspace representation can accurately describe
the internal structure of RSI data and further improve the
denoising performance.

Recently, deep learning-based RSI denoising methods pri-
marily use neural networks (e.g., convolutional neural network
(CNN), U-Net, and Transformer) to learn the mapping between
noisy and clean images and apply a large amount of data
to train the model to separate noise while retaining image
details [4], [8], [50], [51], [52], [53], [54], [55], [56], [57].
The deep learning-based denoising methods have achieved
promising performance, but they encounter several challenges:
1) they require a large amount of noise-free paired training
data to learn the denoising network, which is hard to collect
in practice; 2) the interpretability and generalization ability
of denoising networks may be limited for different data and
noise distributions; and 3) the deep learning-based denoising
methods often lack the rigorous theoretical analysis of the
corresponding algorithm.

A. Motivation
To finely describe the essential structure of the data, we

propose a tensor multi-subspace representation (TenMSR) to
improve the capability of subspace representation. We denote
the RSI as X ∈ Rn1×n2×n3 , where n1 and n2 are spatial
dimensions and n3 is the spectral dimension. The matrix
subspace methods in [41], [46], and [58] learned the subspace
representation from the unfolding matrix of X along the third
dimension. The tensor subspace method in [43] is learned from

Fig. 1. Comparison of AccEgy of singular values of the original RSI and
images belonging to each subspace.

Fig. 2. Illustration of the TenMSR.

the permuted tensor ~X = Permute(X , [1, 3, 2]) ∈ Rn1×n3×n2 .
However, the matrix/tensor subspace representation methods
assume that RSI lies in a single subspace—that ignores spec-
trum differences in RSI.

Due to the wavelength difference, the image ~X can be
divided into G groups ~Xg ∈ R

n1×mg×n2 with
PG

g=1 mg = n3.
The gth group RSI ~Xg is highly correlated, but not correlated
with RSI in other groups. Fig. 1 plots the accumulation energy
ratio (AccEgy) of singular values of the whole image ~X and
each group image ~Xg, g = 1, . . . ,G. The used image is the
RSI obtained by Landset8 with seven time nodes, see details in
Section V-A. The grouping subspaces are obtained by applying
the spectral clustering tool NCut [59] to the spectral dimension
of the remote sensing data. One can see that for most of the
subspaces, each subspace image needs less singular values
than the original image when it achieves the same AccEgy.
In other words, the images belonging to one subspace admit
a low-rank property more significantly than that of the whole
RSI. Therefore, each group image ~Xg lies in a certain single
low-dimensional subspace, and it is more suitable to assume
that the RSI is distributed in multiple tensor subspaces along
the spectral dimension.

Based on the above analysis, the spectral bands belonging to
~Xg are related to each other. Using t-product (see Definition 2),
~Xg can be represented by the basis tensor Ag, and the

corresponding representation tensor Zg describes the similarity
between different bands. Then, the whole image ~X can be
represented by the multibasis tensor and multicoefficient tensor
(see Fig. 2). To proceed, in Fig. 3, we present the tensor
multi-subspace structure of the hyperspectral image (HSI) PaC
and Landset8 datasets in the spectral dimension (the data
details are provided in Section V). According to Fig. 3(b)
and (d), we observe that the representation tensors of two
datasets have an obvious tensor block-diagonal structure,
which implies that the above RSIs are distributed in multiple
independent subspaces.

To fully mine and preserve the tensor multi-subspace struc-
ture, we explore the prior information of the representation
tensor. In Fig. 4, we show the singular value curves of
representation tensor along different modes. One can see
that the curves rapidly decrease and tend to zero. Then,
we develop a nonlinear-transform-based 3-D tensor nuclear
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Fig. 3. Illustration of tensor multi-subspace structures on RSIs. (a) PaC
dataset. (b) multi-subspace structure of representation tensor on PaC. (c)
Landsat8 dataset. (d) multi-subspace structure of representation tensor on
Landsat8.

Fig. 4. Singular value curves of representation tensor along different modes.

norm (see Definition 7) to characterize the low rankness of
the representation tensor. Therefore, we propose a TenMSR
method to effectively remove RSI mixed noise.

B. Contributions
The main contributions of this work are as follows.
1) We design a new TenMSR method to finely characterize

the essential structure of RSI. Based on the t-product,
TenMSR represents RSI as the multibasis tensor and
multicoefficient tensor. The proposed TenMSR can adap-
tively capture the multiple subspace structures of RSIs
by exploring the wavelength difference or temporal
variability.

2) Based on the advantage of TenMSR in accurately
depicting the internal structure of RSIs, we propose a
TenMSR-based model for RSI mixed noise removal.
To fully mine the tensor multi-subspace structure, we
develop a nonlinear transform-based 3-D tensor nuclear
norm (N-3DTNN) to fully and comprehensively charac-
terize the low rankness of multi-subspace representation
coefficient tensor.

3) We design an effective algorithm under the proximal
alternating minimization (PAM) algorithm framework to
solve the proposed model. Theoretically, we prove that
the proposed algorithm converges to a critical point.
The proposed denoising method is evaluated on exten-
sive remote sensing data, including semi-real and real
RSI. Experiments on various datasets and noise settings
demonstrate that the proposed method outperforms base-
lines qualitatively and quantitatively.

The rest of this work is organized as follows. Section II
presents some notations and preliminaries used in this work

and gives the definition of N-3DTNN. Section III presents
the proposed TenMSR denoising model. Section IV shows the
proposed PAM algorithm for solving the proposed model with
theoretical guarantees. Section V tests the performance of the
proposed method on different datasets. Section VI presents
some discussions. Section VII summarizes the work.

II. NOTATIONS AND DEFINITIONS

A. Notations

We use symbols Z , Z, z, and z to denote the tensor, the
matrix, the vector, and the scalar, respectively. For a third-
order tensor Z ∈ Rn1×n2×n3 , we use the MATLAB notations
Z(i, :, :), Z(:, j, :), and Z(:, :, k) to denote the ith horizontal, jth
lateral, and kth frontal slice, respectively. For convenience, we
denote the slice Z(:, :, k) by Z (k), the (i, j, k)th entry by Zi, j,k,
and the mode-1, mode-2, and mode-3 fibers by Z(:, j, k), Z(i, :
, k), and Z(i, j, :), respectively. The tensor Frobenius norm is

‖Z‖F =
�P

i, j,k |Zi, j,k |
2
�1/2

, the tensor infinity norm is ‖Z‖∞ =

maxi, j,k |Zi, j,k |, and the tensor l1 norm is ‖Z‖1 =
P

i, j,k |Zi, j,k |.
The matrix nuclear norm is ‖Z‖∗ =

P
σ(Z), where σ(Z) is the

singular value of Z. For Z ∈ Rn1×n2×n3 , the permuted tensor
can be obtained by ~Z := Permute(Z , [1, 3, 2]) ∈ Rn1×n3×n2 ,
where the frontal slice of Z is transformed into the lateral
slice of ~Z . Then, the original data can be obtained by the
inverse operation Z := inv-Permute( ~Z , [1, 3, 2]).

B. Generalized Definitions

To better understand the definition of N-3DTNN, we intro-
duce some related definitions.

Definition 1 (Mode-s Matrix-Tensor Product [32]): The
mode-s matrix-tensor product of Z ∈ Rn1×n2×···×np and A ∈
Rm×ns yields a tensor X of size n1 × · · ·× ns−1 ×m× ns+1 ×
· · ·× np, i.e.,

X = Z ×s A = folds
�

AZ(s)
�

where Z(s) is the mode-s matricization of Z by Z(s) =
unfolds(Z) and unfolds is the inverse operator of folds
operator, i.e., Z = folds(unfolds(Z)).

Define the discrete Fourier transform (DFT) matrix
Fn = [ f 1, . . . , f k, . . . , f n] ∈ Cn×n, where f k =

[ω0×(k−1);ω1×(k−1); . . . ;ω(n−1)×(k−1)] ∈ Cn with ω = e−(2π
√
−1/n).

The DFT of Z along the sth mode can be obtained by
Ls = Z ×s Fns . Similarly, the inverse operator is defined as
Z = Ls ×s FH

ns
, where FH

ns
is the conjugate transpose of Fns .

Definition 2 (T-Product [60]): The t-product C = A ∗ B of
two tensors A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is a tensor with
size n1 × n4 × n3, whose each tube is computed as

C (i, l, :) =

n2X
j=1

A (i, j, :) ? B ( j, l, :)

where ? is the circular convolution operation of two vectors.
Definition 3 (Conjugate Transpose [39]): For a tensor Z

of size n1× n2× n3, its conjugate transpose Z> (n2× n1× n3)
is obtained by conjugately transposing each frontal slice and
then revering the order of transposed frontal slices 2 to n3.

Definition 4 (Identify Tensor [39]): An identity tensor I ∈
Rn×n×n3 is given by setting the first frontal slice to be the n×n
identity matrix and other frontal slices to be zeros.
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Definition 5 (Mode-s TNN [38]): The mode-s tensor
nuclear norm of Z ∈ Rn1×n2×n3 is

‖Z‖TNNs
= Σ

ns
i=1



(Ls)(i)
s




∗

(1)

where Ls = Z ×s Fns and (Ls)
(i)
s is the ith slice of Ls along

the sth mode.
Definition 6 (3DTNN [38]): Let Z ∈ Rn1×n2×n3 , and then,

three-direction tensor nuclear norm (3DTNN) is defined as

‖Z‖3DTNN =

3X
s=1

αs ‖Z‖TNNs
(2)

where αs (s = 1, 2, 3) are the nonnegative weights satisfyingP3
s=1 αs = 1.
The above 3DTNN depends on the linear transform,

i.e., DFT, to explore the low rankness of the underly-
ing tensor. However, for exploiting the low-rank struc-
ture of the data, a linear transform may not always
be effective. Inspired by [61], we define the nonlin-
ear transform-based tensor nuclear norm along different
modes.

Definition 7 (N-3DTNN): For Z ∈ Rn1×n2×n3 , N-3DTNN
as

‖Z‖N-3DTNN =

3X
s=1

αs ‖φ (Z)‖TNNs

=

3X
s=1

nkX
i=1

αs


φ �(Ls)(i)

s

�


∗

where φ is the element-wise nonlinear transform. Since Ls =
Z ×s Fns , the above nonlinear transform is composed of
Fourier transform along different modes and the element-wise
nonlinear transform on slices of the transformed tensor.

Compared with 3DTNN, N-3DTNN can achieve a better
low-rank approximation of the underlying tensor. Under the
framework of TenMSR, we introduce N-3DTNN to character-
ize the low rankness of representation tensor, thus effectively
preserving the image details and textures of RSI, see
Section VI for more details.

III. PROPOSED TENMSR MODEL

A. Problem Formulation
Given the observed RSI Y ∈ Rn1×n2×n3 , due to the cor-

ruption by various noises (including Gaussian noise, impulse
noise, dead lines, and stripes), the data degradation process
can be mathematically formulated as

Y = X + S +N (3)

where X is the underlying RSI; S is the mixture of impulse
noise, dead lines, and stripes; and N denotes the Gaussian
noise. The goal of RSI denoising is to restore the underlying
clean image X from the noisy data Y .

B. Proposed Model
As aforementioned, due to the wavelength difference of col-

lected spectral images, the RSI ~X can be divided into multiple
groups { ~Xg}

G
g=1. Each ~Xg admits a high global correlation;

hence, the bands of ~Xg lie in a low-tensor-rank subspace.

By the t-product, ~Xg can be represented as the tensor linear
representation of the tensor basis, i.e.,

~Xg = Ag ∗ Zg, g = 1, . . . ,G (4)

where ~Xg ∈ R
n1×mg×n2 is the gth group data, Ag ∈ R

n1×rg×n2

denotes the tensor basis with rank rg, and Zg ∈ R
rg×mg×n2 is

the tensor representation coefficient (see Fig. 2). Considering
all groups, ~X can be rewritten as ~X = [ ~X1, ~X2, . . . , ~XG].
According to (4), we have

~X =
h
~X1, ~X2, . . . , ~XG

i
= [A1,A2, . . . ,AG] ∗

264Z1
. . .

ZG

375 (5)

where Z1,Z2, . . . ,ZG represent the tensor representation
coefficients of different subspaces. They are distributed
on the diagonal of the tensor, thus forming a block-
diagonal tensor. Based on the above discussion, the RSI
is distributed in multiple subspaces rather than a single
subspace.

In this work, we propose a new TenMSR for RSI mixed
noise removal. Define A = [A1,A2, . . . ,AG] ∈ Rn1×r×n2 with
r =

P
rg and the block-diagonal tensor

Z =

264Z1
. . .

ZG

375 ∈ Rr×n3×n2

then (5) can be equivalently reformulated as

~X = A ∗ Z .

Here, Z is the multiple subspace representation coefficient
and depicts the correlation of RSI belonging to different
subspaces. In the proposed method, we use the pre-denoised
data by [38] as the dictionary A, then each Zg characterizes
the similarity between bands in the gth subspace and the
membership of bands to the subspace. Therefore, according
to the block-diagonal structure of Z , we can adaptively learn
the number of subspaces by the number of blocks, and
the dimension of each subspace can be estimated by the
dimension of the corresponding basis tensor Ag. Naturally,
Z can cluster all bands ~X (:, j, :) ( j = 1, 2, . . . , n3) into G
groups, and the images belonging to one certain group ~Xg
are highly correlated between each other and more closely
distributed. Therefore, we consider the low rankness of tensor
representation Z to characterize the similarity of data in each
subspace. We can use the mode-s TNN to explore the low
rankness of Z . However, there exist two limitations. First,
one certain mode-s TNN only considers the low rankness
along the sth dimension. Second, the linear transform-based
TNN may not effectively exploit the low rankness of tensor
data.

To accurately mine the tensor multi-subspace structure, we
introduce N-3DTNN to characterize the low rankness of the
tensor representation coefficient and propose the following ten-
sor multi-subspace low-rank representation for RSI denoising:

min
Z ,S,Lk

3X
s=1

nsX
i=1

λ1s


φ �(Ls)(i)

s

�


∗
+ λ2




 ~S



1
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+
1
2




 ~Y −A ∗ Z − ~S



2

F

s.t. Z = Ls ×s FH
ns

(6)

where λ1s (s = 1, 2, 3) and λ2 are regularization parame-
ters, φ is the element-wise nonlinear transform, and (Ls)

(i)
s

is the ith slice of Ls along the sth mode. The first term
aims to explore the low rankness of representation tensor
of TenMSR. The second term is to constrain the sparse
noise. The third term aims to learn the tensor multi-
subspace structure of RSIs along the spectral dimension and
the Frobenius norm is used to constrain Gaussian noise.
Note that the proposed TenMSR can adaptively learn the
inherent multi-subspace structure of RSIs, rather than a
simple combination of traditional single subspace learning
methods.

IV. OPTIMIZATION TECHNIQUE

In this section, we propose an effective algorithm
to solve our model (6) and establish its convergence
analysis.

A. Proposed Algorithm
By using the half quadratic splitting (HQS) [62], [63] tech-

nique and introducing the variables U = Z and Ws = φ(Ls),
we can rewrite the optimization problem as

min
Ws,Z ,S,Ls,U

3X
s=1

(
nsX

i=1

λ1s


(Ws)(i)

s




∗
+
β3s

2
‖Ws − φ (Ls)‖2F

)
+
β1

2
‖U − Z‖2F +

β2

2




 ~Y −A ∗ U − ~S



2

F

+ λ2




 ~S



1
+
β4

2



Z − Ls ×s FH
ns



2
F (7)

where β1, β2, β3s, and β4 are penalty parameters. To solve
the optimization problem (7), we develop an effective PAM
algorithm [64], [65]. Then, defining the objective function in
(7) as f (Ws,Z ,S,Ls,U), the above variables can be itera-
tively updated as follows, (8), as shown at the bottom of
the page, where t denotes the iteration number and ρ is a
positive constant. Next, we show the details for solving all
subproblems.

1) The Ws-subproblem is

min
Ws

nsX
i=1

λ1


(Ws)(i)

s




∗
+
β3s

2



Ws−φ
�
Lt

s

�

2
F+
ρ

2



Ws−W t
s



2
F .

The above subproblem can be decomposed into the
following ns problems:

min
Ws

λ1


W (i)

s




∗
+
β3s + ρ

2



W (i)
s −H(i)

s



2
F

where H(i)
s = (β3sφ((Lt)(i))+ρW t

(i))/(β3s +ρ). According
to the singular value thresholding operator [66], we have

W (i)
s = UΓ λ1

β3s+ρ

(Σ) V> (9)

where UΣV> is the singular values decomposition of
H(i)

s and Γλ1/(β3s+ρ)(Σ) = diag(max(σ j − λ1/(β3s + ρ), 0)),
in which σ j denotes the jth singular value.

2) The Z-subproblem is

min
Z

β1

2



U t−Z


2

F+
β4

2



Z−Lt
s ×s FH

ns



2
F+

ρ

2



Z − Z t


2

F .

This is a least-squares problem with the following
closed-form solution:

Z t+1 =
β1U t + β4Lt

s ×s FH
ns
+ ρZ t

β1 + β4 + ρ
. (10)

3) The S-subproblem is

min
S
λ2




 ~S



1
+
β2

2




 ~Y −A ∗ U t − ~S



2

F
+
ρ

2




 ~S − ~S t



2

F
.

Then, we have

min
S
λ2




 ~S



1
+
β2 + ρ

2







 ~S − β2

�
~Y −A ∗ U t

�
+ ρ ~S t

β2 + ρ








2

F

.

The subproblem can be calculated by the soft shrinkage
operator

~S t+1 = shrink

0@β2

�
~Y −A ∗ U t

�
+ ρ ~S t

β2 + ρ
,

λ2

β2 + ρ

1A
(11)

where [shrink(D, ξ)]i, j,k = sgn(Di, j,k) max(|Di, j,k | − ξ, 0),
and sgn denotes the sign function, which is defined as
follows:

sgn (x) =

8<:1, if x > 0
0, if x = 0
−1, if x < 0.

4) The Ls-subproblem is

min
Ls

3X
k=1

β3s

2



W t+1
s −φ (Ls)



2
F +

β4

2



Z t+1−Ls ×s FH
ns



2
F

+
ρ

2



Ls − Lt
s



2
F .

The subproblem can be equivalently transformed into

min
Ls(s)

3X
s=1

β3s

2




Wt+1
s(s) − φ

�
Ls(s)

�


2

F

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

W t+1
s = arg min

Ws

n
Q1
�
Ws|W t

s

�
= f

�
Ws,Z t,S t,Lt

s,U t�+ ρ

2



Ws −W t
s



2
F

o
Z t+1 = arg min

Z

n
Q2
�
Z |Z t� = f

�
W t+1

s ,Z ,S t,Lt
s,U t�+ ρ

2



Z − Z t


2

F

o
S t+1 = arg min

S

n
Q3
�
S |S t� = f

�
W t+1

s ,Z t+1,S,Lt
s,U t�+ ρ

2



S − S t


2

F

o
Lt+1

s =arg min
Ls

n
Q4
�
Ls|Lt

s

�
= f

�
W t+1

s ,Z t+1,S t+1,Ls,U t�+ ρ

2



Ls − Lt
s



2
F

o
U t+1 =arg min

U

n
Q5
�
U |U t�= f

�
W t+1

s ,Z t+1,S t+1,Lt+1
s ,U

�
+
ρ

2



U − U t


2

F

o
(8)
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+
β4

2




Ls(s) − FsZt+1
(s)




2

F
+
ρ

2



Ls(s) − Lt
s(s)



2
F

= min
Ls(s)

3X
s=1

β3s

2




φ �Ls(s)
�
−Wt+1

s(s)




2

F
+
β4 + ρ

2



Ls(s)−Ms


2

F

(12)

where Ms = (β4Fns Zt+1
(s) + ρLt

s(s))/(β4 + ρ).
We solve the above subproblem by the Newton
method.

5) The U-subproblem is

min
U

β1

2



U−Z t+1


2

F+
β2

2




 ~Y−A ∗ U−~S t+1



2

F
+
ρ

2



U−U t


2

F .

The solution satisfies the following equation:�
A> ∗A+

β1 + ρ

β2
I
�
∗ U =

�
A> ∗ ~Y −A> ∗ ~S t+1

�
+
β1

β2
Z t+1 +

ρ

β2
U t. (13)

Algorithm 1 TenMSR for RSI Mixed Noise Removal
Input: the observed tensor X , dictionary A, parameters λ1s,

λ2, β1, β2, β3s, β4, ρ = 1.2, and βmax = 1010.
Output: the denoising result.

1: InitializeW0
s , Z0, S0, L0

s , U0, maximum iterations Tmax =

500.
2: While ‖Z t+1−Z t‖F

‖Z t‖F
> 10−4 and t ≤ Tmax Do

3: Updating Ws via (9);
4: Updating Z via (10);
5: Updating S via (11);
6: Updating Ls via (12);
7: Updating U via (13);
8: End
9: Return: inv-Permute(A ∗ Z t+1, [1, 3, 2]).

The solving algorithm is summarized in Algorithm 1, which
will be named as the TenMSR algorithm in the sequel.
The dictionary A can be estimated by some preprocessing
approaches (see Section V). Moreover, the tensor multi-
subspace structure can be automatically divided based on the
learned representation tensor Z .

B. Computational Complexity
The proposed algorithm involves multiple variables Ws,

Z , S, Ls, and U . For Ws ∈ R
r×n3×n2 -subproblem, since

DFT and inverse DFT cost O(rn3n2
2) and computing n2 sin-

gular value decompositions on r × n3 costs O(r2n2n3), the
computational cost of Ws-subproblem is O(r2n2n3 + rn3n2

2).
For Z ∈ Rr×n3×n2 -subproblem, the computational cost is
O(rn2

2n3). For S ∈ Rn1×n3×n2 -subproblem, the main cost is to
calculate A ∗ U , which costs O(rn1n2n3). For Ls ∈ R

r×n3×n2 -
subproblem, the cost of Newton method is O(rn2n3). For
U ∈ Rr×n3×n2 -subproblem, the main computation depends
on the t-product at the cost of O(rn1n2n3). Therefore, the
computational complexity of each iteration of the proposed
algorithm is O(r2n2n3 + rn2

2n3 + rn1n2n3).

C. Convergence Analysis
We establish the theoretical convergence of the proposed

algorithm in the following theorem.

Theorem 1: For the sequence {Ws,Z ,S,Ls,U } generated
from Algorithm 1, it can globally converge to a critical point
of Problem (7).

According to the framework in [64], we need to verify the
following three conditions.

1) f (W t
s,Z t,S t,Lt

s,U t) is a proper lower semi-continuous
function.

2) f (W t
s,Z t,S t,Lt

s,U t) is a Kurdyka–Łojasiewicz (KŁ)
function and satisfies the Kproperty.

3) (W t
s,Z t,S t,Lt

s,U t) satisfies the decrease condition and
relative error condition. Therefore, we show the details
of each condition.

The proof can be found in the Supplementary
Materials.

Remark 1: We clarify the effect of parameters on the
convergence of the proposed algorithm. Among the param-
eters in our algorithm, the proximal parameter ρ plays an
important role in the sufficient descent and relative error
conditions of the convergence theorem. Specifically, in the
sufficient descent condition, the parameter ρ should sat-
isfy ρ ≥ L/2, where L is the gradient Lipschitz constant
[64], to ensure that the objective function value decreases
monotonically. In the relative error condition, ρ controls the
accuracy of the solution of the subproblem, and small ρ
ensures a small approximation error. Therefore, to guarantee
the convergence of the proposed algorithm, the parameter
ρ should be small, but ρ ≥ L/2. The results shown in
Section VI-D demonstrate the numerical convergence of our
algorithm.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed
TenMSR on semi-real RSI (including multitemporal RSI and
HSIs) and real RSI. The test data are normalized to [0, 1] band
by band. All numerical experiments are tested in MATLAB
R2018b with an Intel1 Core2 i7-8700M CPU with 3.70 GHz
and 32 GB of RAM on a desktop.

Baselines: We select ten RSIs denoising methods, including
the following.

1) Four Original Space Representation-Based Methods:
Low-rank matrix recovery (LRMR) [24], Kronecker-
basis-representation-based tensor sparsity measure
(KBR) [67], low-rank tensor recovery (LRTR)
[37], and 3-D tensor nuclear norm (3DTNN)
[38].

2) Four Single Subspace Representation-Based Methods:
Fast HSI denoising based on low-rank and sparse repre-
sentations (FastHyDe) [68], spectral-spatial L0 gradient
regularized low-rank tensor factorization (LRTFL0)
[69], nonlocal meets global (NGmeet) [58], and Eigen-
image2Eigenimage (E2E) [8].

3) Two Deep Learning Methods: Three-dimensional
spatial–spectral attention Transformer (TDSAT) [70]
and unsupervised feature fusion-guided network
(UFFGNet) [5].

Parameter Settings: The proposed TenMSR contains reg-
ularization parameters λ1k (k = 1, 2, 3) and λ2 and penalties
parameters β1, β2, β3k (k = 1, 2, 3), β4, and ρ. In our
experiments, we empirically set the regularization parameters

1Registered trademark.
2Trademarked.
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Fig. 5. Denoising results on Sentinel2A dataset under Gaussian noise σ = 0.05 and impulse noise ν = 0.05. (a) Original. (b) Noisy. (c) LRMR. (d) KBR.
(e) LRTR. (f) 3DTNN. (g) FastHyDe. (h) LRTFL0. (i) NGmeet. (j) E2E. (k) TDSAT. (l) UFFGNet. (m) TenMSR.

in the range of {10−5, 10−4, 10−3, 10−2, 10−1, 100}. β1 is selected
from [1, 10] with increment of 1. We empirically choose
β3k (k = 1, 2, 3) and β4 from the set {10−4, 10−3, 10−2, 5 ∗
10−2, 10−1, 5 ∗ 10−1}. In addition, β2 and ρ are set to 0.0001
in all experiments. The nonlinear transform φ = Tanh is
chosen in our experiments. We use the estimated data by
3DTNN [38] as the dictionary A. The parameters of baselines
are adjusted according to the rules suggested in the corre-
sponding papers, which can be found in the Supplementary
Materials.

Evaluation Metrics: The peak signal-to-noise ratio (PSNR)
(dB) and the structural similarity index (SSIM) [71] are
commonly used metrics to evaluate the quality of recovered
results in image processing tasks. Specifically, PSNR is a
measure of the difference between the original image and the
reconstructed image, and SSIM is a metric that assesses the
structural similarity between two images. By calculating
the mean of PSNR (MPSNR) and mean of SSIM
(MSSIM) values of all bands, we can obtain the
metrics of whole spectral images. Higher (M)PSNR
and (M)SSIM values indicate better recovered image
quality.

A. Experiments on Multitemporal RSIs
To evaluate the effectiveness of the proposed TenMSR in

removing mixed noises, we perform the experiments on two
multitemporal remote sensing data.3 Due to the difference
between spectrums in different periods, it is appropriate to
assume that the multitemporal RSI lies in the multiple sub-
spaces. We set the images corrupted by Gaussian noise and
salt and pepper noise, i.e., all bands of images are corrupted
by zero-mean Gaussian noise with different variances σ and
salt and pepper noise with different proportions ν.

The first experiment is obtained by Sentinel2A. The Sen-
tinel2A data contain the spectral image of four time nodes
(i.e., 20181024, 20181103, 20181113, and 201812034), and
the size of image of each time node is 400× 400× 4.

Table I lists the quantitative results by all methods on
Sentinel2A data corrupted by different Gaussian noise and
salt and pepper noise levels. Compared with baselines, the
proposed TenMSR achieves better performance with respect
to the MPSNR and MSSIM values while also remaining
competitive in running time. Fig. 5 shows the visual effects

3https://theia.cnes.fr/atdistrib/rocket/ /signin
4The number “20181203” means the time December 3, 2018.

of recovered images under Gaussian noise σ = 0.05 and
salt and pepper noise ν = 0.05. These results show that all
methods can suppress the most mixed noise. Nevertheless, the
images restored by LRMR, KBR, LRTR, 3DTNN, and TDSAT
remain a small amount noise. FastHyDe, LRTFL0, and E2E
oversmooth the edges and lose some detailed information. The
reason is that the methods based on the original space and sin-
gle subspace representation cannot fully exploit the essential
structure of multitemporal RSIs. In comparison, by mining
the multi-subspace structure of data, the proposed method can
effectively preserve the sharp edges and smooth regions of
RSIs.

For the second experiment, the used multitemporal image
captured by Landsat8 from seven time nodes (i.e., 20180619,
20180721, 20180806, 20180923, 20181009, 20181025, and
20181116). The image of each time node is of size 400 ×
400× 7.

Table II presents the MPSNR and MSSIM values recov-
ered by all methods. Again, the proposed method achieves
the best performance with the acceptable time cost in most
cases for different noise levels, which shows the robustness
of our method. Fig. 6 shows the recovery results of the
Landsat8 data under Gaussian noise σ = 0.10 and salt and
papper noise ν = 0.10. Compared with baselines, TenMSR
can effectively reduce the mixed noise and keep the detail
sharpness and structures. The quantitative and visual results
on multitemporal images prove the effectiveness of the mul-
tiple tensor subspace low-rank representation of the proposed
TenMSR.

Fig. 7 shows the PSNR and SSIM curves of all bands of
Landsat8 under two cases σ = 0.05 and ν = 0.05, and σ = 0.1
and ν = 0.1, respectively. Clearly, our TenMSR obtains the
highest PSNR and SSIM values in most bands.

To verify the effectiveness of the proposed TenMSR in
processing multi-subspace data, Fig. 8 shows the affinity
matrix Z̃ learned by the proposed method on the Landset8
dataset with different noise, which contains the multiple
subspace division structure. Here, the affinity matrix can
be obtained by the representation tensor Z , i.e., Z̃ =
1/(2n3)Σn3

k=1(|Z (k)| + |(Z (k))>|). One can see that the repre-
sentation coefficients have a clear block-diagonal structure
under different mixed noise levels. Each block represents
a subspace, and Fig. 8 implies that the Landset8 dataset
is distributed in seven subspaces. Therefore, the proposed
TenMSR can finely mine the tensor multi-subspace structure
of the data—that is beneficial to deal with the noise removal
problem.
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TABLE I
PERFORMANCE [MPSNR, MSSIM, AND TIME (SECONDS)] OF DATA RECOVERY ON SYNTHETIC DATASET SENTINEL2A WITH

DIFFERENT NOISE LEVELS. THE BEST VALUES ARE HIGHLIGHTED BY BOLD FRONTS

TABLE II
PERFORMANCE [MPSNR, MSSIM, AND TIME (SECONDS)] OF DATA RECOVERY ON SYNTHETIC LANDSAT8 DATASET WITH DIFFERENT

NOISE LEVELS. THE BEST VALUES ARE HIGHLIGHTED BY BOLD FRONTS

Fig. 6. Denoising results on Landsat8 dataset under Gaussian noise σ = 0.10 and impulse noise ν = 0.10. (a) Original. (b) Noisy. (c) LRMR. (d) KBR.
(e) LRTR. (f) 3DTNN. (g) FastHyDe. (h) LRTFL0. (i) NGmeet. (j) E2E. (k) TDSAT. (l) UFFGNet. (m) TenMSR.

Fig. 7. Performance (PSNR and SSIM values) of each band by different methods on Landset8 dataset. (a) σ = 0.05 and ν = 0:05. (b) σ = 0.10 and ν = 0.10.

B. Experiments on HSIs

As discussed above, due to the multitemporal property,
the TenMSR can finely characterize the distribution of

multitemporal RSI, which is better than the single tensor
subspace assumption.

Actually, for the HSI, usually containing hundreds of fre-
quency bands, we can also use the TenMSR to finely deliver
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Fig. 8. multi-subspace structure on Landset8 dataset under different Gaussian noise and impulse noise settings. (a) σ = 0.05 and ν = 0.10. (b) σ = 0.10 and
ν = 0.10. (c) σ = 0.20 and ν = 0.10. (d) σ = 0.05 and ν = 0.05. (e) σ = 0.05 and ν = 0.20. (f) σ = 0.05 and ν = 0.30.

Fig. 9. Performance (PSNR and SSIM) of each band by different methods on the PaC dataset. (a) Case 1. (b) Case 3. (c) Case 5.

Fig. 10. multi-subspace structure of PaC dataset under different cases. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6.

the intrinsic structure of HSI due to the wavelength difference
along the spectral dimension.

In this section, we conduct experiments on two representa-
tive datasets to evaluate the noise removal performance of our
TenMSR.

The data include hyperspectral Pavia City Center data (PaC)
and HYDICE Washington DC Mall data (WDC).5 The PaC
dataset with size 200 × 200 × 80 uses the subscene of the
image, which is acquired by the ROSIS sensor over Pavia,
northern Italy. The WDC dataset (256 × 256 × 191) is the
subimage of HSI obtained by an airborne hyperspectral data
flight line over the Washington DC Mall. To simulate mixed
noise scenarios, we conduct the following different noise
cases.

Cases 1–3 (Gaussian Noise + Salt and Pepper Noise): All
bands are added to the mixtures of zero-mean Gaussian noise
and impulse noise. For Cases 1–3, the variances σ of Gaussian
noise and the proportion ν of salt and pepper noise are set to
σ = ν = 0.05, 0.10, 0.20.

Case 4 (Gaussian Noise + Salt and Pepper Noise + Dead
Lines): All bands are added to the mixtures of zero-mean
Gaussian noise, salt and pepper noise, and dead lines. The

5https://rslab.ut.ac.ir/data

variance of Gaussian noise is set as 0.10 and the percentages
of salt and pepper noise are 0.10 in all bands. In addition,
about 25% of bands are corrupted by dead lines and the width
of deadlines is randomly generated from 1 to 3.

Case 5 (Gaussian Noise + Salt and Pepper Noise + Stripes):
All bands are added to the mixtures of zero-mean Gaussian
noise, salt and pepper noise, and stripes. The settings of
Gaussian noise and salt and pepper noise are the same as Case
4. In addition, about 15% of bands are corrupted by stripes
and the number of stripes is from 10 to 20.

Case 6 (Gaussian Noise + Salt and Pepper Noise + Dead
Lines + Stripes): All bands are added to the mixtures of zero-
mean Gaussian noise, salt and pepper noise, dead lines, and
stripes. The distributions of Gaussian noise and salt and pepper
noise are the same as Case 4. In addition, the distribution of
deadlines is the same as Case 4, and the distribution of strip
contamination is the same as Case 5.

Tables III and IV list the restoration results by all methods
in terms of MPSNR, MSSIM, and Time values for PaC
and WDC datasets. It is clear that under different noise
settings, the proposed TenMSR achieves the better perfor-
mance than comparison methods in most cases. The original
space representation-based method 3DTNN and deep learning
method UFFGNet obtain suboptimal results. This suggests
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TABLE III
PERFORMANCE [MPSNR, MSSIM, AND TIME (SECONDS)] OF DATA DENOISING BY DIFFERENT METHODS ON SIMULATED PAC DATASET.

THE BEST VALUES ARE HIGHLIGHTED BY BOLD FRONTS

TABLE IV

PERFORMANCE [MPSNR, MSSIM, AND TIME (SECONDS)] OF DATA DENOISING BY DIFFERENT METHODS ON SIMULATED WDC DATASET.
THE BEST VALUES ARE HIGHLIGHTED BY BOLD FRONTS

that the representation ability of tensor multi-subspace is
stronger than that of the original space representation. Besides,
UFFGNet utilizes the high-quality guidance image to extract
semantic features of images, thereby enhancing the restoration
results. In contrast, without the guidance image, TenMSR
achieves a competitive performance by exploring the tensor
multi-subspace prior of HSI. Fig. 9 presents the PSNR and
SSIM values across all bands of the recovered results on the
PaC dataset under Cases 1, 3, and 5. Obviously, our method
achieves the highest PSNR values in most bands. This also
illustrates the effectiveness of the proposed TenMSR for RSI
mixed noise removal.

To show the ability of our method in exploiting the multiple
tensor subspace relationship embedded in HSI, Fig. 10 dis-
plays the structure of representations learned by the proposed
TenMSR on PaC dataset under Cases 1–6. We observe that all
of the representation coefficients show obvious group effects
and have clear block-diagonal structures, especially for Cases
1 and 2. From the block-diagonal structures of representation
coefficients, one can conclude that the PaC dataset is dis-
tributed in three tensor subspaces, which is consistent with the
above discussion. Fig. 10 verifies the ability and superiority of
the proposed tensor in exploring the multiple tensor subspace
representation for HSI.

Figs. 11 and 12 show the pseudo-clolor images of recovery
results of PaC and WDC datasets by different methods under
different cases, respectively. From these recovered images,
we see that TenMSR achieves the promising performance
than the compared methods. To be specific, in Case 5

of PaC dataset, the recovered results of LRMR, LRTR,
3DTNN, and TDSAT still have residual noise or stripes.
FastHyDe, LRTFL0, NGmeet, E2E, and UFFGNet recover the
coarse structure of the images but blur the image details. In
comparison, the images obtained by our method are closest
to the original ones. Similarly, from the zoomed-in area of
WDC in Case 3, one can observe that the proposed TenMSR
outperforms the compared methods in removing mixed noise
and recovering image details and textures. More experimental
results are shown in the Supplementary Materials.

C. Experiments on Real RSIs
We also test the performance of all methods on real RSIs,

including Urban data and GaoFen-5 data.6 Since there is no
clean data as the References, we evaluate the effectiveness
using the visual effects of recovered images. The parameters
involved in all methods are adjusted to achieve the best visual
performance.

The Urban dataset is one of the most widely used RSI,
which is collected by the HYDICE sensor. The spatial size
of Urban dataset is 307 × 307 and contains 210 spectral
bands. This image is heavily contaminated with Gaussian
noise and stripes. Fig. 13 shows the recovered images of the
original data and denoising results by different methods. In
order to conduct a more detailed comparison, we zoom in
on a specific region in each subfigure, indicated by a red box.
Obviously, the recovered images of KBR, LRTR, and 3DTNN

6https://rslab.ut.ac.ir/data
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Fig. 11. Pseudo-color recovered results (R-G-B: 70-29-10 bands) of different methods on PaC dataset under Case 5. (a) Original. (b) Noisy. (c) LRMR.
(d) KBR. (e) LRTR. (f) 3DTNN. (g) FastHyDe. (h) LRTFL0. (i) NGmeet. (j) E2E. (k) TDSAT. (l) UFFGNet. (m) TenMSR.

Fig. 12. Pseudo-color recovered results (R-G-B: 79-120-170 bands) of different methods on WDC dataset under Case 3. (a) Original. (b) Noisy. (c) LRMR.
(d) KBR. (e) LRTR. (f) 3DTNN. (g) FastHyDe. (h) LRTFL0. (i) NGmeet. (j) E2E. (k) TDSAT. (l) UFFGNet. (m) TenMSR.

Fig. 13. Pseudo-color recovered results (R-G-B: 30-110-207 bands) of different methods on real Urban dataset. (a) Observed. (b) LRMR. (c) KBR. (d) LRTR.
(e) 3DTNN. (f) FastHyDe. (g) LRTFL0. (h) NGmeet. (i) E2E. (j) TDSAT. (k) UFFGNet. (l) TenMSR.

still exist stripe noise. The denoising results of FastHyDe,
LRTFL0, NGmeet, E2E, and TDSAT have noticeable image
edge blurring. UFFGNet can better preserve image details,
but the restored image appears to have a color cast. As a
comparison, the proposed TenMSR successfully maintains the
structure and details of the image while removing stripes.

The GaoFen-5 dataset is collected by the SAST-5000B
satellite platform. GaoFen-5 data have 256×256 spatial pixels
and 155 spectral bands and mainly contain the Gaussian noise
and the stripe noise. Fig. 14 shows the pseudo-color images
of the original data and denoising results of different methods.
Compared with the baselines, our method shows superiority
in removing stripe noise and preserving the overall structure
of the image. Moreover, in order to verify the ability of our

method in capturing the multiple tensor subspace structure of
real data, Fig. 15 presents the multi-subspace structures of the
affinity matrix on two real datasets. From the visual effects,
one can see that the Urban dataset lies in four subspaces,
and the GaoFen-5 dataset can be roughly divided into two
groups, i.e., lies in two subspaces. This figure shows that the
proposed TenMSR can effectively and superiorly identify the
tensor multi-subspace structure of real spectral image—that
is ignored in the single matrix/tensor subspace representation
methods.

VI. DISCUSSION

In this section, we will discuss the effects of number of sub-
spaces on denoising performance for the proposed TenMSR,
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Fig. 14. Pseudo-color recovered results (R-G-B: 96-151-54 bands) of different methods on real GaoFen-5 dataset. (a) Observed. (b) LRMR. (c) KBR.
(d) LRTR. (e) 3DTNN. (f) FastHyDe. (g) LRTFL0. (h) NGmeet. (i) E2E. (j) TDSAT. (k) UFFGNet. (l) TenMSR.

Fig. 15. Multi-subspace structure of the proposed method on (a) Urban and
(b) GaoFen-5 datasets.

TABLE V

DENOISING PERFORMANCE BY DIFFERENT SETTINGS ON SENTINEL2A
AND PAVIA DATASETS UNDER σ = 0.10 AND ν = 0.10

the effects of the nonlinear transform, the effects of regulariza-
tion of the TenMSR coefficient, and the numerical convergence
behavior of the proposed algorithm.

A. Effects of Number of Subspaces on TenMSR
For the acquired (multitemporal) RSIs, due to the wave-

length difference or collected period variability, the spectral
bands of RSI usually lie in multiple tensor subspaces.
The previous numerical experiments demonstrate that the
proposed TenMSR can finely excavate the intrinsic tensor
multi-subspace structure of RSI. Meanwhile, the learned repre-
sentation tensor admits the block-diagonal structure, and then,
we can identify the number of subspaces in which the spectral
bands of RSI are distributed.

Here, we discuss the effects of numbers of subspaces on the
restoration performance. We take the PaC dataset corrupted by
Gaussian noise and salt and pepper noise with σ = 0.10 and
ν = 0.10 as the example. From the block structure shown
in Fig. 10, one can get that the spectral bands of PaC data
lie in three tensor subspaces. Fig. 16 shows the recovery
images and lists the recovered MPSNR and MSSIM values.
One can see that the proposed method with different numbers
of subspaces can remove the mixed noise. However, when
the number equals three, the proposed TenMSR performs best

TABLE VI

RECOVERY PERFORMANCE OF THE PROPOSED METHOD WITH DIFFERENT
NONLINEAR FUNCTIONS

in keeping sharp edges and details. The values listed on the
images show that the proposed TenMSR achieves the highest
MPSNR and MSSIM values when the number of subspaces
is three. Therefore, the proposed TenMSR can finely excavate
the intrinsic tensor multi-subspace structure of RSI, achieving
satisfactory performance.

B. Effects of the Nonlinear Transform
To show the effect of the nonlinear transform, Fig. 17

presents the comparisons of the singular value curves and
the accumulation energy ratio (AccEgy) of singular values
under the linear transform (FFT) and the nonlinear trans-
form (Tanh) of the multi-subspace representation coefficient.
We observe that the coefficient tensor under the nonlinear
transform exhibits more significantly low-rank property than
those obtained by the linear transform, i.e., N-3DTNN under
nonlinear transform can more accurately characterize the low
rankness of the data. Besides, the results shown in Table V
demonstrate the superior performance of the nonlinear trans-
form over the linear transform. This shows that the nonlinear
transform is a key factor in mining the low rankness of the
representation tensor.

To test the effect of different nonlinear transforms on
denoising performance, taking Sentinel2A and PaC datasets
corrupted by Gaussian noise and salt and pepper noise with
σ = 0.10 and ν = 0.10 as examples, we estimate different
nonlinear functions, including LeakyReLU, ReLU, Softmax,
Softsign, and Tanh. Table VI showsthe recovery performance
of the proposed method with different nonlinear functions. One
can see that the proposed method can achieve the promising
performance for different nonlinear transforms. Without loss
of generality, here we choose Tanh in our method.

C. Effects of Regularization of TenMSR Coefficient
In this work, we propose the N-3DTNN to fully explore

the tensor low rankness of the multiple tensor subspace
representation coefficient. To test the superiority of the
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Fig. 16. Pseudo-color recovered results (R-G-B: 70-29-10 bands) of the proposed method on PaC dataset with different numbers of subspaces. (a) Original.
(b) Noisy. (c) One-subspace. (d) Two-subspaces. (e) TenMSR (three-subspaces). (f) Four-subspaces. (g) Five-subspaces. (h) Six-subspaces. (i) Seven-subspaces.
(j) Eight-subspaces.

Fig. 17. Comparison of singular value curves of the representation tensor after
the linear and nonlinear transform on the PaC dataset. (a) Singular values.
(b) AccEgy.

Fig. 18. Relative error curves of the proposed method on different datasets.

proposed N-3DTNN, we impose different low-rank regulariza-
tions on the tensor representation coefficient, including TNN,
nonlinear TNN (NTNN), and 3DTNN, and the corresponding
methods are named as TenMSR/TNN, TenMSR/NTNN, and
TenMSR/3DTNN, respectively. Note that NTNN combines
the nonlinear transform and TNN. Taking Sentinel2A and
PaC datasets as examples, Table V presents the denoising
performance of different settings and TenMSR. One can
observe that the proposed TenMSR achieves the best results
and TenMSR/3DTNN method obtains the second-best results.
This demonstrates that considering the low rankness of the
data along three dimensions is better than the traditional
tensor nuclear norm that only considers the low rankness
of the data in the third dimension. TenMSR/NTNN obtains
higher MPSNR and MSSIM values than TenMSR/TNN, which
indicates that the low rankness of the data is more obvious
under the nonlinear transformation. As a comparison, the
proposed TenMSR achieves the promising results in most

cases, which reflects the effectiveness of N-3DTNN and the
accuracy of our TenMSR in characterizing the multiple tensor
subspace structure of RSIs.

D. Convergence Analysis
Theorem 1 theoretically proves the convergence of the

proposed algorithm. Here, we show the numerical convergence
performance of Algorithm 1. Taking Sentinel2A, Landset8,
PaC, and DaC datasets under Case 2 as examples, Fig. 18 plots
the relative error curves of the proposed TenMSR on different
datasets. We can observe that as the number of iterations
increases, the relative error has been decreasing and tends
to 0—that shows the numerical convergence of the proposed
algorithm.

VII. CONCLUSION

In this work, we propose a TenMSR method for RSI
mixed noise removal. Different from the single matrix/tensor
subspace methods, TenMSR can accurately describe the tensor
multi-subspace structure embedded in RSI. Moreover, an N-
3DTNN is used to fully characterize the tensor low rankness of
the representation coefficient. We develop a PAM-based algo-
rithm to solve the proposed model and prove that the sequences
produced by the proposed algorithm can converge to a critical
point. Numerical experiments on various datasets and mixed
noise scenarios show the outstanding denoising performance
over the existing original space and single subspace methods.
In the future, we will attempt to apply the proposed method
to solve other tasks, such as RSI cloud removal task and the
completion task.
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