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Nonconvex Low-Rank Tensor Representation for
Multi-View Subspace Clustering With Insufficient
Observed Samples

Meng Ding *““, Jing-Hua Yang *““, Xi-Le Zhao

Abstract—Multi-view subspace clustering (MVSC) separates the
data with multiple views into multiple clusters, and each clus-
ter corresponds to one certain subspace. Existing tensor-based
MVSC methods construct self-representation subspace coefficient
matrices of all views as a tensor, and introduce the tensor nuclear
norm (TNN) to capture the complementary information hidden in
different views. The key assumption is that the data samples of
each subspace must be sufficient for subspace representation. This
work proposes a nonconvex latent transformed low-rank tensor
representation framework for MVSC. To deal with the insufficient
sample problem, we study the latent low-rank representation in the
multi-view case to supplement underlying observed samples. More-
over, we propose to use data-driven transformed TNN (TTNN),
resulting from the intrinsic structure of multi-view samples, to
preserve the consensus and complementary information in the
transformed domain. Meanwhile, the proposed unified nonconvex
low-rank tensor representation framework can better learn the
high correlation among different views. To resolve the proposed
nonconvex optimization model, we propose an effective algorithm
under the framework of the alternating direction method of multi-
pliers and theoretically prove that the iteration sequences converge
to the critical point. Experiments on various datasets showcase
outstanding performance.
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1. INTRODUCTION

ULTI-VIEW data [1], collected by diverse feature ex-
M tractors, has multiple distinct features. One representa-
tive example is that an image can be described using various
features, e.g., texture, edge, and color. Another example is that
one can represent web pages using text or hyperlinks to transfer
information. Each feature represents the particular information
w.r.t. the corresponding view, different features can represent
more complementary and discriminative information to each
other, compared with the single-view data. Combining multiple
features for data analysis has become a fundamental and popular
tool for various tasks [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], e.g., clustering, image categorization,
and segmentation. This work studies the multi-view clustering
task, please refer to the comprehensive reviews [15], [16] and
references therein.

Multi-view clustering (MVC) aims to classify multi-view
data with similar structures into different groups by combining
the complementary and consensus information embedded in
multiple views. MVC has been widely studied in a number of
works, e.g., [5], [10], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27]. Among them, subspace clustering [28],
[29], [30] attracts much attention and achieves promising per-
formance. Subspace clustering assumes that the data samples
lie in a union of low-dimensional subspaces. By exploring the
correlation embedded in data, subspace clustering first learns the
affinity matrix and then applies the spectral clustering technique
to the learned matrix to obtain clustering results. Sparse subspace
clustering (SSC) [29] found a sparse coefficient matrix of the
data points using self-representation. Low-rank representation
(LRR) [28] aimed to obtain the representation matrix with the
low-rank structure. Inspired by the impressive performance, the
subspace clustering has been extended from single-view data to
the multi-view data case.

Multi-view subspace clustering (MVSC) methods construct a
unified affinity matrix using the self-representation coefficients
corresponding to multiple views to perform clustering. The
work [9] performed the subspace clustering on the learned
representations of all views simultaneously. The work [31]
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combined the smoothness and diversity terms to enhance the
complementary information between different views. Besides,
the work [25] integrated subspace representations into a shared
multi-view representation to encode the high correlation among
all views. These methods can be regarded as matrix-based
approaches and just capture the pairwise correlations among
different views [10], [32].

Recently, some works stack the multiple learned representa-
tion coefficients into a third-order tensor [33], [34], [35], [36],
[37] and then impose the structured constraint to fully exploit
the inner correlation among each view. The work [10] first pro-
posed the LRR-based multi-view subspace clustering strategy.
They constructed a tensor using the learned coefficient matrices
and imposed the Tucker tensor decomposition to explore the
low-tensor-rank prior. Then the work [24] utilized the tensor
nuclear norm (TNN)-based low-tensor-rank constraint [38] to
capture the complementary information along all views. Along
this line, a number of tricks were proposed to enhance the ability
of the stacked tensor to explore the complementary information,
such as graph learning [39], [40], kernel presentation [41],
[42], and hyper-Laplacian regularizer [43]. The aforementioned
LRR-based tensor low-rank methods can well capture the com-
plementary and consensus information within different views
and obtain impressive clustering performance. However, these
LRR-based tensor methods are based on a basic assumption,
in which the data samples in each individual view should be
sufficient to obtain robust clustering performance [24], [30].
Therefore, it would depress the clustering performance when the
data sampling is insufficient or/and noisy. Existing multi-view
clustering methods do not focus on the insufficient observed
data samples. The insufficient data problem has been studied
in the single-view clustering [44], [45], [46], [47] and plays
an important role in many applications, e.g., image fusion [48]
and fashion compatibility prediction [49]. However, these meth-
ods [44], [45], [46], [47] are designed for the single-view data.
Meanwhile, all TNN-based tensor multi-view clustering meth-
ods transform the representation tensor into the fixed Fourier
domain to preserve the correlation among multiple views and
different samples. Nonetheless, they neglect the intrinsic data
structure and may not be suitable for various multi-view data in
practice.

In this work, to tackle these issues, we propose a new la-
tent transformed low-rank tensor representation framework for
MVSC. Motivated by the work [30], we introduce the latent low-
rank representation to the multi-view case. Under the framework
of [30], the vth view data samples X () can be approximately
expressed as two terms, i.e., the principle component (denoted
as X Z®)y and salient component (denoted as L® X @),
Since the samples in different views belong to the same clus-
ter, the subspace representations Z (") share the highly similar
correlation with each other. Hence, we stack all representations
together as a third-order tensor and impose the low-tensor-rank
constraint to capture the high correlation and complementary
information hidden in multiple views. To better capture the
high correlation, we propose a unified nonconvex data-driven
transformed low-rank tensor representation. Meanwhile, we im-
pose the low-rank matrix prior to salient representations L) to
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explore the relationship among samples within each individual
view.

We summarize the main contributions as follows:

1) The LRR-based MVSC methods require sufficient data
samples to represent the subspace information. While this as-
sumption may be invalid, and the performance will be depressed
in real scenarios. In this work, we introduce the latent low-rank
representation into the multi-view clustering. Then we stack the
multiple subspace representations as a tensor. For the stacked
tensor and salient representations, we employ the low-rank ten-
sor/matrix priors to the correlation between and within different
view samples, respectively. For the first time to our knowledge,
we attempt to solve the problem of insufficient observed data
sampling in MVSC.

2) We propose a unified nonconvex transformed low-rank
tensor representation framework to better capture the consensus
and complementary information. TNN-based tensor methods
preserve the representation coefficients in the fixed Fourier
domain, while the proposed unified transformed low-rank tensor
representation can adaptively preserve the coefficients in trans-
formed according to the data’s intrinsic structure. Moreover, we
adopt a unified nonconvex surrogate to exploit the difference of
singular values of the representation tensor for better learning
the subspace representations for all views.

3) We resolve the formulated optimization problem using
the alternating direction method of multipliers (ADMM) frame-
work. Meanwhile, we give an approximate solver for the prox-
imal problem related to the proposed transformed nonconvex
tensor representation. Each subproblem admits the closed-form
solution, hence our algorithm can be easily employed. Although
the proposed optimization problem is nonconvex, we establish
the theoretical convergence of our algorithm. Numerical exper-
iments showcase the outstanding performance of the proposed
method.

The rest of this paper is organized as follows. Section II
presents the notations and preliminaries used in this work.
Section III reviews related subspace clustering and MVSC
works. Section IV proposes the nonconvex data-driven trans-
formed MVSC model and ADMM-based algorithm. Section V
performs various experiments to demonstrate the performance
of our method. Section VI concludes this work.

II. NOTATIONS AND PRELIMINARIES
A. Notations

The symbol = (or X) represents the scalar, & denotes the
vector, X represents the matrix, and X denotes the tensor.
For a third-order tensor X € R™*"2*"s g, ., denotes the
(i, 7, k)th element. The symbol X(:,:, k) or X *) denotes the
kth frontal slice of X. The jth column of a matrix X with
size m1 X ny is denoted as x;. Given two tensors X and Y
with same sizes n; X ny X ng, the inner product is defined as
(&, ) =>712 (X® Yy *) The Frobenius norm and the £,
norm of X' € R™t*"2*"3 gre respectively denoted as || X||r =

\/ 2k Th g and [ Xl = max; j k [ j x| The £2 1 norm of

a matrix X € R™*"2 is defined as || X|[|l21 = Y72, [lz;]|2.
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The matrix nuclear norm is defined as || X ||. = > o(X), where
o(X) is the singular value.

B. Preliminaries About Transformed Tensor Nuclear Norm

Given a tensor X € R™1*"2*n"s3  the block circular matrix
bcirce(X) is defined as

x@ xMms) ... x(2)
xX® x@ . X®

ningxXnan
6R13 23.

bcirce(X) =

X (n3) x(ns=1). .. x (1)
The operators unfold and fold are defined as

x 1)
xX(2)
unfold(X) =

c RnlnSXnQ’
(n3)

fold(unfold(X)) = X.

From the definitions, unfold stacks the frontal slices of X’ to
a column-wise matrix, and fold is the inverse operator.

The work [50] proposed a new definition of ¢-product for the
tensor-tensor product induced by the invertible linear transform.
To begin with, let D : R"1*"2x"s — RM*"2X"3 he the linear
transform, and X’ be the tensor obtained by applying the trans-
form to X along the third mode, then

X =D(X) =X x3 D, (1)

where X3 denotes the mode-3 product [51], and D is the arbi-
trary invertible matrix. The inverse operator can be formulated
as

DY X)=X x3 D"

For two tensors A of size n; X no X n3 and B of size
ng X ng X n3, we denote C = A © B as the frontal-slice-wise
product [50],i.e., C*) = AW BW) =1, ... ns.

Note that the following definitions are all based on the linear
transform D.

Definition 1. (T-product [50]): The transform D based t-
product of two tensors A € R"1*"2X"s apnd 5 € R"2*"4axn3
is denoted as C = Axp B, which is equivalent to D(C) =
D(A) © D(B).

We denote X € R™"3%"2"3 a5 a block diagonal matrix,
whose kth diagonal block is the kth frontal slice X k) of
X = D(X), as follows:

X
- - X2
X =bdiag(X) = ) ,
X (ns)

where the operator bdiag(:) represents the frontal slices of
X as the diagonal blocks of a matrix. Then one can get that
D(C) = D(A) @ D(B) is equivalent to C = AB. This implies
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that the linear transformed t-product of two tensors in the original
domain can be calculated using the matrix-matrix product in the
transformed domain.

Definition 2. (Tensor transpose [50]): Let X be a third-order
tensor with size nj X ng X ng. Its tensor transpose, denoted
as X1 € Rm2*mxns atisfies D(XT)F) = (D(X)FN)T, k=
].7 ..., ng.

Definition 3. (Identify tensor [50]): Assuming Z € R™*"*"s
satisfied that the each frontal slice of Z = D(Z) is an identify
matrix with size n x n. Then Z =D (Z) is called as the
identify tensor.

Definition 4. (Orthogonal tensor [50]): If a tensor Q €
R™*7%ns gatisfies Q' «p Q = Q*p Q' = 7, then Q is called
as an orthogonal tensor.

Definition 5. (F-diagonal tensor [50]): If each frontal slice
of a tensor Q € R™*™*"3 is a diagonal matrix, then Q is an
F-diagonal tensor.

Based on the above definitions, we give the definition of
transformed tensor singular value decomposition (TTSVD) and
tensor tubal rank.

Definition 6. (TTSVD [50]): Given a third-order tensor X’ €
R71*m2x7s it can be decomposed as

X=UxpSxp V',

where U/ € R *"1*73 and )V € R"2*™2*73 are two orthogonal
tensors, and S € R™*"2*"3 ig F-diagonal.

Definition 7. (Tensor tubal rank [52]): Let X =U xp S *p
VT be the TTSVD of a tensor X € R™1*"2X"3_ The tensor tubal
rank rank,(X') is equivalent to the number of nonzero singular
tubes of S, that is rank, (X') = #{i : S(¢,1,:) # 0}.

If a tensor X" has the tubal rank r, one can get its skinny
TTSVD as X = Uy *p Sy *p Vi, where Uy =U(:,1: 1,2,
Sy=81:r1:r:),and Vy = V(:,1:r,:) in which U}, p
Uy :IandV; *p Vy =1T.

Next, we give the convex surrogate of the nonconvex ten-
sor tubal rank, named as the transformed tensor nuclear norm
(TTNN). To proceed, we have the following assumption on the
matrix D in (1), i.e.,

D'D=DD'"=DI,,, ()

where D > 0 is a constant, and I,,, € R"3*"3 is an identify
matrix.

Definition 8. (TTNN [52]): Let the linear transform D satisfy
the assumption in (2). For tensor X € R™ *"2*73 _jts TTNN is
defined as

1 &&= k
1l = 2 21X
k=1

C. Unified Nonconvex Transformed Low-Rank Tensor
Approximation

Here, we give the proposed unified nonconvex transformed
low-rank tensor approximation.

Definition 9 (Unified nonconvex surrogate): Let X =U xp
S #p VT bethe TTSVD of a third-order tensor X € R™1*"2xn3
then the unified nonconvex surrogate of the transformed tensor
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nuclear norm is defined as

ny n
b(X) = %ZZM%(X)), 3)
k=1 i=1
where n = min{ny, na}, o (X) is the ith singular value of the
kth frontal slice, and ¢ : R™ — R is the concave, continuous,
and monotonically increasing function.

Many nonconvex functions ¢ have been widely studied, e.g.,
£,-norm [53], minimax concave penalty (MCP) [54], smoothly
clipped absolute deviation (SCAD) [55], Logarithm [56], and
Laplace [57], more details can be found in [58], [59].

Next, we consider the following generalized proximal prob-
lem of ®(X)

. 1
min 2.8(X) + S| & = V|7 @)

However, the most challenge is that for a general nonconvex
function ®(X), it may not exist the explicit solver on tensor sin-
gular values of ) for (4). In this paper, we utilize the iteratively
reweighted scheme to solve Problem (4).

For the nonconvex ¢ defined in Def. (3), due to the concavity,
one can obtain the antimonotone property [58], [59], i.e., when
x>y, u> v, forany u € 9¢(x) and v € dP(y), where I (x)
is the supergradient of ¢(-) at x. We denote o, = 0;,(X) and
okt = 0k (Ay) for simplicity. On the other hand, ¢ satisfies

P(oir) < ¢(0ikt) + wirt(Tik — Tikt), 5
where w;p € 09(oike). Since o1 > Oogr > -+ > Oppt >
0,k =1,2,...,ns, by the antimonotone property, we have

0 <winr Cwapr < -+ < Wikt

Instead of ®(X'), we can minimize the right-hand side of (5).
Then we solve the following nonconvex relaxed problem

) 1 ns n
X* = arg;[lln XB I; Zl (gb(alkt) + wikt(am - Jikt))

1
+5l1% = YII%
, 1 )
= argmin A[[ X[l + S|4 = Vi, (6)

where || X||o.« = % Yo > | wikeoqk. Fortunately, (6) ad-
mits a closed-form solution, as shown in the following weighted
transformed tensor singular value thresholding.

Theorem 1: For any A > 0, X € R™*"2*"3 and the weight
0<wip Swsgp < <wng,k=1,2,...,n3, the following
problem

. 1
argmin )\||X\w7*+§||x—y|\% (7)
X

admits a globally optimal solution
X*=Uxp Tu,(S)*p V', (8)

where U xp Sxp V' is TISVD of Y, and 7;,(S) =
DY((S —AW)y), in which W € Rmxn2xns g R
diagonal whose kth diagonal frontal slice is W(:,:, k) =

Diag(wlk,o.)gk7 e ,wnk).
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The proof is presented in Appendix A, available online.

III. RELATED WORKS

In this section, we briefly introduce related works about
subspace clustering and multi-view subspace clustering.

A. Subspace Clustering

Subspace clustering methods construct the affinity matrix
using the representation coefficient matrices and group data
samples into different clusters. Assuming there exists a dataset
X =[xy, x3,...,2xyN], and data points are sampled from mul-
tiple subspaces. Under the framework of subspace clustering,
each data sample can be expressed as the linear combination
of all data points, i.e., X = XZ + FE, where Z is the linear
self-representation coefficient matrix, and E is the error matrix.

Subspace clustering aims to obtain the subspace representa-
tion by solving

min Ri(Z) + ARa(E),

st. X =XZ+E, €))

where R1(Z) and Ry (E) are the regularization functions of Z
and F, respectively. Some popular regularization terms were
studied to exploit the different underlying structures of the
coefficient matrix. For example, SSC [29] applied the ¢; norm
(i.e., || Z||1 and || E||1) to find the sparse representation and noise;
LRR [28] utilized the trace norm of matrix || Z||. to capture the
low-rankness of the representation coefficient and /5 ; to learn
the noise structure; the work [20] combined the sparsity and
low-rankness for revealing the coefficient matrix. When the ob-
served data samples are insufficient, the clustering performance
will be dropped. To resolve the problem of insufficient observed
samples, the work [30] introduced the hidden data and proposed
the following problem

mZin 1Z]., st. X = [X, X Z, (10)
where X, is the hidden data. It is not practical to recover Z* due
to the absence of X ;. As proved in [30], one can reformulate
the constraint in (10) as follows:

X=XZ+LX.

Under the low-rank assumption, [30] proposed the following
model for noisy subspace clustering:

guin |1 Z]. + L] + 2B, st X = XZ + LX + E.

Many variants [44], [45], [46], [47] have been developed to solve
the problem of insufficient observed samples. To reduce the com-
putational complexity, the work [44] proposed the fixed-rank
representation based on matrix factorization to explore the low-
rank prior of the representation coefficient, and the work [46]
utilized the Frobenius norm to replace the nuclear norm. Based
on [30], the works [45], [47] developed a variety of regularization
terms to characterize the priors of the representation coefficients,
such as Laplacian regularization [45] and weighted distance
penalty regularization [47].
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Although these methods achieved good performance in solv-
ing the problem of insufficient observed samples, they are de-
signed to handle the data with single-view feature. Compared
with the single-view data, the multi-view data contains multiple
distinct features, each of which represents the particular infor-
mation relative to the corresponding view, and different features
can represent more complementary information to each other.
Therefore, for the multi-view clustering, the main challenges
are how to simultaneously handle the insufficient observed
samples in multi-view case and fully explore the consensus and
complementary information among multiple views.

B. Multi-View Subspace Clustering

Multi-view subspace clustering first learns the affinity matrix
using the multiple representation matrices and then performs
spectral clustering to get clustering results. The single-view
subspace clustering shown in (9) can be intuitively developed
for the multi-view case. To be specific, let X () (v = 1,...,V)
be the vth view’s data matrix, and Z(*) be the corresponding
subspace representation, then the general model of MVSC can
be formulated as

RU(ZD,...,ZV)) £ AR, (E<1>, S

min
Z@) E)

st X@

BV,

=XWZzO L EW y=1,...,V, 1)

where R, and R, are the regularizers of Z(*) and E™), re-
spectively. Then the final affinity matrix for MVSC can be con-
structed using S = ZUV:1(Z(U) +(Z™)T)/V. The work [9]
introduced an indicator matrix to ensure consistency among
different views and performed the clustering for all subspace
representations simultaneously. The work [60] constructed an
underlying representation for all subspace representations to
explore the complementary information among different views.
Some other matrix-based methods, e.g., structured matrix factor-
ization [19] and deep matrix factorization [23], were proposed
to preserve the local information. However, these matrix-based
methods only capture the pairwise correlations within different
views [10], [32].

To fully explore the correlation between different views’
representations, a number of MVSC methods from the tensor
perspective, which stack the multiple representation matrices
{z U}le) as a third-order tensor, have been proposed using
low-rank tensor representation. For example, the work [10]
proposed a tensor multi-view clustering method based on Tucker
tensor decomposition. They used the sum of the nuclear norm
to explore the low-rankness of the stacked third-order repre-
sentation tensor. Inspired by the powerful ability of TSVD, the
work [24] applied TNN on the stacked representation tensor to
exploit the correlation hidden in all views. The work [61] sought
the underlying representation tensor under both sparse and low-
rank constraints. Although the aforementioned LRR-based ten-
sor clustering methods achieve impressive performance, there
exist some limitations. First, the basic assumption of LRR is that
the sampling points in each view should be sufficient for captur-
ing the correlation between sample points [24], [30]. Second, the
TNN-based methods keep the stacked self-representation tensor
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‘7z ‘
ZW

Fig. 1. Tllustration of tensor Z construction by the operator V.

in the fixed Fourier domain—which may not be suitable for
different multi-view data. Third, the existing MVSC methods
based on the nuclear norm and TNN treat all singular values
equally and ignore the prior information of each singular value.
To solve these problems, we first introduce the latent low-rank
presentation into MVSC to support the insufficient samples. We
also propose a unified transformed low-rank tensor representa-
tion to better explore the high correlation and complementary
information among all views and suit different kinds of multi-
view data clustering problems.

IV. PROPOSED MODEL AND ALGORITHM

In this section, we present the proposed nonconvex latent
transformed low-rank tensor model for MVSC and the designed
ADMM-based [62], [63] algorithm.

A. Proposed Model

To solve the insufficient sampling problem in MVSC, we uti-
lize the latent low-rank representation strategy [30]. Specifically,
denoting X (*) € RMv*N a5 the vth view data, we introduce the
hidden data into each view and represent each observed data as
follow:

X0 = x@zO 4 g0 x@) 4 )

where Z() € RN*N and L(") € RMv*Mv are the subspace
representation coefficient and salient representation, respec-
tively, E(*) € RMv*N is the corresponding error matrix.

In order to fully capture the high correlation em-
bedded in inter-views, we construct the tensor Z =
v(zM, Zz®? .. ZM) following [24], where the operator
T(-) merges the representation matrices {Z(")}V_, to a 3D
tensor, and then rotates its dimensionality to N x V' x N; see
Fig. 1. The inverse operator ¥~ (Z) rotates Z toan N x N x V

tensor and \Il(’vl) (Z) = Z¥). We apply the noncovex approxi-

mation ®(-) on the tensor Z for better capturing the correla-
tion among views and impose the nuclear norm on the salient
representations {L(")}"_, to exploit the relationship between
samples of one view.

We proposed the following optimization formulation

min -+ )\.QHE”Q’l
Z) L) E®) *

1%
MO(Z)+ Y HL(”)
v=1
st XW = xWz0 L g x® L g =1 ...V,

Z-U (ZU),Z(?),. N ,Z(V)> E— [EU);E<2>;. L EWV),
(12)
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where Z € RVXVXN_ ), and A, are two parameters, E €
R MvxN jg the vertical concatenation along the column of the
error matrices, and the ¢5 ;-norm is used to make the columns
of E() to have consistent magnitude values.

Remark 1: Compared with existing MVSC methods, our
method have the following advantages: First, we are the first
attempt to resolve the insufficient sampling problem of existing
LRR-based tensor clustering approaches. Second, we propose a
unified nonconvex transfromed tensor low-rank approximation
to explore the prior information of the singular values of the
representation tensor to better characterize the high correlation
among all views. Third, different from previous TNN-based
clustering works, we preserve the representation coefficient
structure in the transformed domain determined by the intrinsic
property of multi-view data itself.

Remark 2: In our proposed model, we apply the nuclear
norm on the representation L(*) to explore the relationship
among samples within each individual view. The multi-view
data describes the data from multiple views, hence there may
exist some correlation among different L(“). However, since
the sizes of L(") are different with each other, we handle the
representation L(*) independently. One interesting direction is
to stack all {L(")}V_ into an irregular tensor whose size is not
fixed, and then apply the irregular tensor factorization [64], [65],
[66] to exploit the correlation among all salient representations.

Remark 3: Note that some nonconvex low-rank tensor ap-
proximations have been proposed for MVSC problem, e.g, [21],
[40]. However, all of these methods deal with the representation
tensor in the Fourier domain for different multi-view data, not
consider the structure of data sampling. Different from existing
nonconvex methods, we preserve the representation coefficient
structure in the transformed domain determined by the intrinsic
property of multi-view data itself, which is more useful to ex-
plore the high correlation among different views. Meanwhile, we
propose a unified nonconvex low-rank tensor surrogate and give
a general solver for the related proximal problem. The existing
nonconvex approximations can be merged into the proposed
nonconvex low-rank tensor representation framework.

B. Proposed Algorithm

We solve the proposed (12) using ADMM. By introducing
the auxiliary variables Z = F and L(*) = P("), the augmented
Lagrangian function becomes

r (Zw);L(v) EW.F.G; P, Q(v);Y(v))

14
— 0 ]—')+ZHP(”) tho||Ellz
v=1 *
P 2
G, 2-F)+5 |1 2-FlF
*Z <<Y<v ) _ x @) zO) _ 0 x®) 7E(v>>
v=1

LK me _xW gz _ 0 x0 _ O
2

)
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1%
'y (<Q<v>7L<v> ~P0Y) 4 g HL(U) _ pw

v=1

2
F) ’
(13)

where the tensor G and the matrices Y (*) and Q(*) are Lagrange
multipliers, and p, u, and 6 are penalty parameters. Next we
respectively update Z(*), L"), E®), P(*) and F by using the
alternating minimization scheme.

Updating F: We minimize the following problem:

]__+gt

Pt

According to (6), we replace (14) by the following optimization
problem

argmin A ®(F) + pt

F

(14)

F

—rs 2

Pt

Pz RENGE

argmin Aq || F||w.« +
F F

which has the following closed-form solution by Theorem 1

Frr1=Usp T, 1 (S)*p V', (16)

where U *p S*p V' is the TTSVD of Z,+Gi/ps,

and T, (S)=L7H(S - %W)H, W € RVXVXN
is a F-diagonal tensor that satisfies W(:,:,n) =
Diag(win, won, - - - ,wlﬁ), n=1,2,...,N,inwhichw,,, is the
mith singular value of F4(:, :,n ) form=1,2,...,min{N,V}.
Then we can get each F,Ei)l L L(Figr).
Updating P"): The P(")-subproblem is
(v) 0: (v) (v) gv)
argmmHP +—||L; =P+ —— (17)
P(v) 2 9t

We can get the optimal solution by the singular value threshold-
ing operator [67] as follows:

P =UT,,,(S)V',

1=
where USV T is the SVD of L,E”) + Qtv)/Gt, and T’y /g, (S) =

Diag{vamu — l/et}+, my, = 1, 27 . ,Mv.
Updating E"): The E(*)-subproblem is

(18)

v
argmin Ao|| E||21 + Z % x@ _ X(’U)ng)_
E v=1

vy
Ht

LX® @ 4 (19)

F

Denoting E € REMoxN a5 the vertically concatenating the
matrices X — X® 2z _ LM x @ 4y /1, together
along with the column, then (19) is equivalent to

argmlnA2||E||2 1 + (20)

The above problem can be divided into independent several
column-wise subproblems

Db+ 2 B o) - B

argmin As|| E(:, , (21)
E(:,i)
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which has a closed-form solution

LEC)llo—ta /e T B i
E(:i)i41 = { o IECOT: EG i), 1BG lla > Ao/,

otherwise,
(22)

where E(:, ) represents the ith column of the matrix E.
Updating Z*): The Z(*)-subproblem is

2
G(U)
argmm zWw F§+)1 it 20 i
Z(v) » 2 F
where Z =X — L§“)X<v> B +Y" /. The
closed-form solution is
Zgi)1 =
-1
(oo L+ (X)X D) (X)) Z4py FLD, -G
(23)

Updating L") : The L(*)-subproblem is

0 Qt
F+ 2

t+1 H

argmin — L& _p

HL LW x @)
L)

)

where L = X (®)
can get the solution as

— X(“)Zgi)l Ei)l + Y /p,. Then we

Lgi)l =

(e E(X©) T +6,PL, - Qt”)(9t1+utx<v>(x<v>)r)’l.
(24)

Updating Y ), G, and Q") : The multipliers Y'(*), G, and
Q) are updated as follows:

Giy1 =Gt + pi(Zi41 — Fra1), (25)
Qs = Q" + 6. (L) - P 26)
9, 29 4 (20X 280, L0, X BLD,)

27

We summarize our unified latent tensor low-rank representa-
tion (ULatTLRR) for MVSC in Algorithm 1.

C. Computational Complexity

To update F € RY*V*N computing the transform of F x3
D takes O(VN?), computing N SVDs on N x V matri-
ces costs O(V? N?), and computing the inverse transform of
F x3 DT will take O(VN?). To update P(*) ¢ RMv*Mo
it mainly involves the SVD of M, x M, at the cost of
O(M?). To update E™) € RM*N it costs O(M,N (M, +
N)). Computing Z™) € R¥*N and L") € RMexMv cost
O(M2N + M,N? + N*) and O(M2N + M,N? + M3), re
spectively. Therefore, Algorithm 1 takes O(V N3 + V2 N2 +
SV_, M, (M2 4 M,N + N?)) at each iteration.
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Algorithm 1: ADMM-Based Algorithm for Solving (12).

Input: Multi-view data X1, X @) X) the
regularization parameters A1 and Ao, and cluster number
K.

Initialize: Z = F = 0, L") = P(") =0, E) =0,
Y =0,

QW =0,v=12,...,V,G=0,p=py=0h =104
Pmax = Pmax = Omax = 10, n=2ande= 1077

While not converged do

1. Update F by (16).

2.forv=1,...,V do

3. Update P by (18).
4. end

S.forv=1,. V do

6. Update E ) by (22).
7. end
8.forv=1,...,V do

9. Update Z*) by (23).
10. end
11.forv=1,. V do
12.  Update L ) by (24).
13. end

14. Update multipliers by (25), (26), and (27).
15. Update jiz41 = min(nie, fhmax)

Pt+1 = min(npn Pmax), and 61 = min(nGt, gmax)-
16.(ZzM, 2z ... . ZzV)) =w1(2).

17. Check the stopping criteria:

(v) _ plo)

F(v) t+1 t+1

max (|[x© - x9z{), - L) X - B
Hzt-‘rl t+1

L.
| Jeth ] ) <=

end while

18. Obtain the affinity matrix by

v

S = (T4 1200 +1(Z80) /.
Output: Applying the spectral clustering method on S to
get the clustering result.

D. Space Complexity

The proposed method involves several variables, includ-
ing the observed data {X (") € RM-*N1V_ | the representa-
tion coefficients {Z(*) € RN*N1V_ " salient representations
{L®) ¢ RMo*MoA V. "error matrices { E() € RMvxN1V_
auxiliary variables F € RN*V*N [p) ¢ RMuxMoAV_ and
Lagrange variables G € RNXVXN, {y®) ¢ RMoxNYV_ . “and
{QW) ¢ RMv*MoAV_  Therefore, the space complexity of the
proposed method is O(N2V + N S.V_ M, + SV_ | M?).

E. Convergence Analysis

Now we present the convergence of the proposed algorithm.

Theorem  2: Assume that the sequence H,;=
(ng), Lg”), E,E”),]-'t, G, ng), §”), Yg”)) is  generated
by Algorithm 1, then
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TABLE I
STATISTICS OF THE EXPERIMENTAL DATASETS

Datasets Classes Size Views Type
Yale 15 165 Gabor, Intensity, LBP Image
ORL 40 400 Gabor, Intensity, LBP Image
Extended YaleB 10 600 Gabor, Intensity, LBP Image
Coil-20 20 1440 Gabor, Intensity, LBP Image
WebKB 4 203 Page, Anchor text, Title Webpage
Scene-15 15 4485 PHOW, PRI-CoLBP, CENTRIST Image

1) any accumulation point of {H;};2, is the Karush-
Kuhn-Tucker (KKT) point, i.e., the accumulation point H =
(ZW LW E® F .G P® QW Y ™) satisfies the follow-
ing KKT conditions of (13):

ZW = FO L) = pO) (X)) Ty = GO,
YOXNT=QW G € 9| Fllw., Y (i) € 220/ E(:, ) |21,

X = x®Z0) L L0 x 0 L BO) Q) cpp, H P

*

2) {2} (L")} AE ), {F}. and {P{"} are Cauchy
sequences and thus converge to the critical point of (13).

The proof can be found in Appendix B, available online.

Remark 4: In terms of convergence, the properties of our
algorithm are similar to those of the work [21]. Nevertheless,
the proof of convergence results of our case are more challeng-
ing. First, we consider a more general nonconvex transformed
low-rank tensor approximation, making the convergence proof
challenging. Second, we apply the latent low-rank representa-
tion to the multi-view case to resolve the insufficient sampling
problem—that introduce many of auxiliary variables (i.e., L("),
P(“), and Q(“)). Therefore, our proof covers more cases that
could not be covered by the convergence in [21].

V. NUMERICAL EXPERIMENTS

In this section, we present simulations on various real-world
datasets to showcase the performance of the proposed algorithm.
All simulations are performed using MATLAB 2018b on a
desktop with 3.4 GHz i7 CPU and 64 GB RAM.

A. Datasets

The statistics of the six experimental datasets is summarized
in Table I, and the detailed descriptions of the used datasets are
presented as follows.

e Yale' dataset contains 165 grayscale images of 15 different
subjects. Each subject has 11 images, and the images are
obtained under various facial expressions or configura-
tions. Following [68], we select three views, i.e., Gabor
view, Intensity view, and LBP view.

® ORL? dataset consists of 40 different subjects, each of
subject has 10 face images collected distinct time changing,
facial details, and expressions. We choose three different
views (Gabor view, Intensity view, and LBP view).

Thttp://cve.yale.edu/projects/yalefaces/yalefaces.html
Zhttp://www.uk research.att.com/facedatabase.html
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e Extended YaleB® dataset contains 38 individuals’ face im-
ages. Each individual has around 60 images with various
lighting conditions. As works in [10], [24], we use the first
10 classes with total 600 face images in the experiment.
The Extended YaleB dataset has three views, i.e., Gabor
view, Intensity view, and LBP view.

e Coil-20* dataset includes 1440 images of 20 objects ob-
tained from varying angles. Each object has 72 images, in
which each image is normalized to 32 x 32 following the
works in [10], [31]. This dataset contains three different
views Gabor, Intensity, and LBP.

* WebKB® dataset is a webpage set obtained by several
universities. This data contains 203 samples belonging to
different classes. Each sample has three views, including
the page’s content, the anchor text, and the title [69].

o Scene-15° dataset contains 4485 images of 15 natural scene
categories with various indoor and outdoor environments.
Similar to [24], [27], [70], we choose three views: PHOW,
PRI-CoLBP, and CENTRIST.

B. Baselines

We choose state-of-the-art baselines for comparison. Since the
proposed method is based on the multi-view subspace clustering
framework, thus we select several subspace clustering meth-
ods, including affine subspace clustering [70] and dictionary
representation-based subspace clustering methods [10], [24],
[26], [40], [71], [72]. Besides, for comprehensive evaluation,
we choose another two kinds of methods, i.e., Markov chain
methods [20], [27] and latent representation methods [60], [73],
[74]. Details of all baselines are shown in Appendix C in the
supplemental material, available online.

For the proposed method, we choose two linear transforms,
i.e., Discrete Cosine Transform (DCT), and the data-driven
transform linked with the multi-view data. To be specific,
we first obtain an estimated representation Z by the pro-
posed DCT based-method and then apply the left singular
matrix of the SVD of the mode-3 unfolding matrix of Z as
the learned linear transform for MVSC. Meanwhile, we uti-
lize two nonconvex functions, including Minimax Concave
Penalty (MCP) [54] and Smoothly Clipped Absolute Devia-
tion (SCAD) [55]. Our methods are named as ULatTLRRE G,
ULatTLRRES!,, ULatTLRRYS,, and ULatTLRREA . For all
baselines, we do our best to turn the parameters to achieve
the best clustering performance following the relevant papers’
suggestions.

C. Quantitative Metrics

Following works [10], [24], to numerically evaluate the clus-
tering performance, we employ six popular metrics, including
accuracy (ACC), normalized mutual information (NMI), ad-
justed rank index (AR), F-score, Precision, and Recall. For all

3http://cve.cs.yale.edu/cve/projects/yalefacesB/yalefacesB.html
“http://www.cs.columbia.edu/CAVE/software/softlib/
Shttps://lings.org/datasets/
Ohttps://www.kaggle.com/datasets/zaiyankhan/ 1 5scene-dataset
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Fig. 2.

of the metrics, the higher values indicate the better clustering
quality. Note that all simulations are performed for 10 random
trials, and we report the average results and standard deviations.
We highlight the best values in bold.

D. Experimental Results

Atfirst, we construct the experiments to showcase the motiva-
tions of our algorithm, i.e., the effects of the latent representation,
data-driven transform, and the unified transformed nonconvex
low-rank representation for the MUSC task. Here, we take the
Extended YaleB as the texting dataset. Extended YaleB dataset
has three views, each view contains 10 classes with 60 samples
per class. To demonstrate the quality of our method in han-
dling the insufficient sampling problem, we randomly choose S
samples per class of all views, then each view has total of 105
observed data samples. In this experiment, we set S = 5, 10, and
30, respectively. To study the effects of data-driven transform
and nonconvex low-rank approximation, we also set Fast Fourier
Transform (FFT) as the transform and replace the nonconvex ap-
proximation in our model (12) with convex tensor nuclear norms
induced different transforms. The convex methods are named
as LatTLRR-FFT, LatTLRR-DCT, and LatTLRR-Data, respec-
tively. We choose MCP function in our nonconvex methods, thus
we denote our methods using FFT, DCT, and data-driven trans-
form as ULatTLRRE Y, ULatTLRRYSE, and ULatTLRRDY,
respectively. We compare our methods with two TSVD-based
tensor methods, i.e., t-SVD-MSC and WTNNMMSC.

Fig. 2 shows the clustering performance of different methods
with different data samples in terms of ACC and NMI. From this
figure, one can get the following insights:

e Compared t-SVD-MSC and LatTLRR-FFT, the only dif-
ference between these two methods is that LatTLRR-FFT
considers the latent low-rank representation for multi-view
data. When the number of the data sample is insufficient,
i.e., S = 5,10, and 30, the method LatTLRR-FFT achieves
higher clustering values than t-SVD-MSC. This indicates
that for multi-view clustering, with the help of latent low-
rank representation, the proposed method can resolve the
insufficient observed sample problem.
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Tlustration of the effects of the latent representation, data-driven transform, and the unified nonconvex low-rank approximation.

e Existing TSVD-based MVSC methods preserve the corre-
lation in the Fourier domain, however, applying the FFT
on Z requires that the tensor Z should have the periodic
boundary, which may not hold in multi-view clustering.
Hence, compared with LatTLRR-FFT, the methods with
DCT and data-driven transform (i.e., LatTLRR-DCT and
LatTLRR-Data) can obtain better clustering performance.
We can also get the same result compared ULatTLRREF,
with ULatTLRRYGh and ULatTLRRYS,.

® From the results obtained by LatTLRR-FFT and
ULatTLRRY, (LatTLRR-DCT and ULatTLRREGE or
LatTLRR-Data and ULatTLRRY%), one can see that the
methods equipped with nonconvex MCP function can
achieve higher values of ACC, NMI, and F-score. One
reason is that the convex TNN-based methods treat all
singular values equally—that ignore the prior information
of the different singular values. Applying the nonconvex
envelope to capture the priors of singular values can better
explore the correlation among different views.

According to the aforementioned discussions, one can see
that for all data sampling cases, only with the latent low-rank
representation, the performance is already improved compared
to t-SVD-MSC. With the linear transforms and nonconvex low-
rank approximation, the performance can be further improved.
This suggests the proposed method can resolve the insufficient
sample problem in MVSC task and better preserve the correla-
tion among different representation matrices in the transformed
domain, thus improving the clustering performance.

Next, we report the clustering performance for all datasets.

Tables II and III list the clustering results in terms of six
metrics on Yale and ORL datasets, respectively. One can see
that the TNN-based tensor methods t-SVD-MSC and WTNN-
MMSC achieve the promising performance, e.g., 0.993 in ACC
of t-SVD-MSC and 0.980 in ACC of WITNNMMSC for ORL
dataset. The possible reasons are two-fold. First, the observed
samples in the ORL dataset can provide extensive consensus and
complementary information among different views. Therefore,
many baselines achieve good performance in this dataset. Sec-
ond, employing the tensor nuclear norm-based regularization
on the representation tensor can fully capture the consensus
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TABLE II
CLUSTERING PERFORMANCE ON YALE DATASET
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TABLE V
CLUSTERING PERFORMANCE ON COIL-20 DATASET

Method ACC NMI AR F-score Precision Recall Method ACC NMI AR F-score Precision Recall

RMSC [20] 0.5660.000 | 0.607+0.000 | 0.3834-0.000 | 0.4224-0.000 | 0.412--0.000 | 0.4324-0.000 RMSC [20] 0.740-+0.004 | 0.81540.004 | 0.695+0.008 | 0.687+0.009 | 0.704+40.007 | 0.67940.008
CoMSC [71] 0.520+0.005|0.538-£0.004 | 0.262+£0.006 | 0.313-£0.005 | 0.277+0.007 | 0.360-£0.003 CoMSC [71] 0.647=£0.008 [ 0.7460.004 { 0.543£0.007 | 0.568=+0.006 [ 0.51320.008 | 0.637-£0.004
ETLMSC [27] 0.8480.000 | 0.860£0.000 | 0.760=£0.000 | 0.775£0.000 | 0.762=£0.000 | 0.789-£0.000 ETLMSC [27] 0.833£0.005 | 0.8854-0.003 [ 0.798+0.006 | 0.808-+0.005 | 0.803+0.007 | 0.8134-0.004
LMSC [60] 0.718+0.020{0.742£0.015|0.551£0.027 | 0.580-£0.025 | 0.544£0.028 | 0.622£0.021 LMSC [60] 0.74540.014 {0.82630.007 | 0.668-£0.013 | 0.685+0.012 [ 0.64410.019{0.733£0.016
LTMSC [10] 0.738+0.002 | 0.763+0.003 | 0.59840.004 | 0.62440.003 | 0.602-0.003 | 0.6474-0.004 LTMSC [10] 0.72940.012|0.81340.005 [ 0.667+0.014 | 0.684+£0.013 | 0.66040.017 | 0.71040.009
MCLES [74] 0.740+0.006 | 0.7614+0.006 | 0.58740.009 | 0.61440.008 | 0.584+0.011 | 0.64740.007 MCLES [74] 0.794-40.004 | 0.86440.003 { 0.7530.006 | 0.76540.006 | 0.74540.007 | 0.787-0.004
OPMC [26] 0.500+0.059{0.566£0.036 | 0.323£0.045 | 0.370=£0.040 | 0.336£0.050 | 0.412£0.031 OPMS [26] 0.55440.062 0.72940.017{0.518-£0.033 | 0.54640.030 | 0.4700.044 | 0.655-£0.007
ISTC [73] 0.612:£0.000 | 0.615-0.000 | 0.449-£0.000 | 0.418-0.000 | 0.395-£0.000 | 0.433-0.000 JSTC (73] 0.68940.000|0.8214-0.000 | 0.7304-0.000 | 0.625-0.000 | 0.655+0.000 | 0.673-£0.000
ASR-ETR [72] 0.5700.0000.639::0.000 | 0.4070.000 | 0.447£0.000 | 0.397£0.000 | 0.512£0.000 ASR-ETR [72] {0.903=0.000 |0.9334-0.000{0.873=0.000 | 0.87940.000 | 0.8454-0.000 | 0.916=0.000

ARLRR-TU [70] |0.770+£0.000{0.807+0.001|0.701+0.000| 0.668-£0.001 | 0.6630.000 | 0.683-£0.000
t-SVD-MSC [24] |0.955+0.021]0.95740.015|0.92040.028 | 0.92540.027|0.915+0.031 | 0.935+0.022
WTNNMMSC [40]|0.968+0.017]0.97340.011 |0.94940.021 | 0.95240.020 | 0.944+0.026 | 0.960+0.014
ULatTLRRDED 0.999+£0.002{0.999-£0.002 | 0.999£0.003 | 0.999-£0.002 | 0.999+0.003 | 0.998+0.003

ARLRR-TU [70] |0.97740.024 {0.9764-0.009 { 0.965+0.018 | 0.96040.029 [ 0.96140.025 | 0.963-0.006
t-SVD-MSC [24]|0.804=+0.002 | 0.8664-0.001 | 0.75840.002 | 0.77040.002 | 0.7554-0.003 | 0.786+0.002
WTNNMSC [40]|0.82640.004 [ 0.8754-0.002 | 0.772:£0.001 | 0.78340.001 { 0.76740.009 | 0.801-0.008
ULatTLRRYCE | 0.95740.006 [0.96740.002 | 0.939-40.002 | 0.95740.006 | 0.932-£0.004 | 0.92540.007

MCP "MCP
ULatTLRREEY,) [ 1.00040.001 {0.999-£0.001 { 0.9990.002 | 1.0004:0.001 |0.999-:0.002 | 0.99940.002 ULatTLRREST, |0.95740.001 | 0.960+0.001 [0.931:£0.001 |0.95740.001 | 0.9240.001 | 0.916:£0.001
ULatTLRRD, [0.999:4:0.0020.999-£0.003 | 0.999-0.004 |0.999-£0.002 | 0.99840.005 | 0.998-:0.005 ULatTLRRY, | 0.97740.007 [0.977-£0.005 | 0.977:0.007 | 0.95940.010 {0.956:0.012 | 0.963:0.009
ULatTLRRGAS, | 1.00020.000 | 1.000-£0.000 | 1.0000.000 | 1.000+-0.000 | 1.000-:0.000 | 1.000+0.000 ULatTLRREZZ ) | 0.982-:0.001 | 0.980--0.001 |0.9694-0.001 |0.982-0.001 | 0.967+0.001 | 0.965--0.001
TABLE III TABLE VI
CLUSTERING PERFORMANCE ON ORL DATASET CLUSTERING PERFORMANCE ON WEBKB DATASET

Method ACC NMI AR F-score Precision Recall Method ACC NMI AR F-score Precision Recall

RMSC [20] 0.715-0.000 | 0.837-£0.000 | 0.604=-0.000 | 0.61340.000 | 0.58340.000 | 0.646+0.000 RMSC [20] 0.53840.016 0.22740.027 | 0.483+0.023 | 0.604£0.028 | 0.40340.020 | 0.24640.033
CoMSC [71] 0.74340.008 |0.870-0.005 | 0.65440.012 | 0.66340.011 | 0.6094-0.013 | 0.72740.011 CoMSC [71] 0.744-0.000 | 0.37840.000 | 0.4280.000 | 0.691=£0.000 | 0.5910.000 | 0.73140.000
ETLMSC [27]  |0.840-0.000 [0.908£0.000 | 0.763=£0.000 | 0.7680.000 | 0.7274-0.000 | 0.81540.000 ETLMSC [27] 0.63140.000 [0.25640.000 | 0.329+0.000 | 0.567-0.000 | 0.623-£0.000 | 0.51640.000
LMSC [60] 0.813+0.022 [0.904-£0.016 | 0.74840.033 | 0.75440.033 | 0.7164-0.029 | 0.796+0.039 LMSC [60] 0.67040.000 | 0.31240.000 | 0.3740.000 | 0.600-£0.000 | 0.653--0.000 | 0.5554-0.000
LTMSC [10] 0.82640.010|0.917+0.006 | 0.769+0.015 |0.775+0.015 [ 0.733-£0.018 | 0.82140.011 LTMSC [10] 0.53740.001 [0.1534:0.000 | 0.179+0.001 | 0.470-0.001 | 0.522-0.000 | 0.4284-0.001
MCLES [74] 0.841+£0.012 [0.917+0.005 | 0.7780.013 | 0.78440.013 | 0.7514-0.013 | 0.820+0.014 MCLES [74] 0.65040.013 [0.23340.016 | 0.30120.018 | 0.563+0.014 | 0.59040.017 | 0.53940.028
OPMS [26] 0.55440.020 0.744+0.013 | 0.412+0.018 |0.427+0.016 | 0.378-£0.015 | 0.49040.021 OPMC [26] 0.65240.039 [0.39140.045 | 0.424+0.055 | 0.621-£0.046 | 0.7130.039 | 0.55340.067
JSTC [73] 0.65240.000 | 0.824-0.000 | 0.6214-0.000 | 0.475-0.000 | 0.5260.000 | 0.539-0.000 JSTC [73] 0.621=:0.000 | 0.255:0.000 | 0.484-£0.000| 0.585=0.000 | 0.2710.000 | 0.530:0.000
ASR-ETR [72] |0.882-0.000 |0.836-:0.000 | 0.865-0.000 | 0.8680.000 | 0.397+0.000 | 0.9034-0.000 ASR-ETR [72] 0.744=0.000 | 0.4030.000 | 0.460£0.000| 0.6700.000 | 0.67740.000 | 0.663+0.000

ARLRR-TU [70] {0.959+0.004 | 0.9854-0.003 | 0.96640.009 | 0.93740.004 | 0.9504-0.006 | 0.951£0.006
t-SVD-MSC [24]{0.993+0.007 [ 0.9984-0.002 | 0.99240.007 | 0.992+0.007 | 0.9864-0.012 | 0.998+0.002
WTNNMSC [40]|0.98040.005 [ 0.99440.002 | 0.979-0.005 | 0.97940.005 | 0.96540.008 | 0.994-0.002

ULalTLRR]'\J,l(g'l; 0.9994:0.001 {0.999+0.001 [0.9994-0.002 | 0.999+0.001 | 0.998+0.003 | 0.998+0.003
ULalTLRRSDg\FD 0.996+0.011|0.99940.004 | 0.99940.003 | 0.996£0.009 | 0.9964-0.012 | 0.99240.020
ULalTLRRE“L‘.}, 0.99940.002 { 0.999+0.002 | 0.9984-0.004 | 0.999+0.002 | 0.998+0.004 | 0.998+0.004
ULatTLRRRA | 1.00040.000 | 1.000=0.000 | 1.0004-0.000 | 1.000--0.000 | 1.000--0.000 | 1.000-£0.000

SCAD

TABLE IV
CLUSTERING PERFORMANCE ON EXTENDED YALEB DATASET

Method ACC NMI AR F-score Precision Recall

RMSC [20] 0.28240.000 | 0.2254-0.000| 0.1040.000 | 0.1940.000 | 0.1894-0.000 | 0.200-+0.000
CoMSC [71] 0.608+0.001 | 0.58140.001|0.348+0.001 { 0.42140.001 | 0.367+0.001 | 0.49440.001
ETLMSC [27] 0.456+0.005 | 0.43240.010|0.3040.009 | 0.37340.008 | 0.3704-0.008 | 0.377+0.008
LMSC [60] 0.45840.020 | 0.408+0.024 | 0.18440.010{0.27940.009 | 0.2354-0.009 | 0.343+£0.022
LTMSC [10] 0.486+0.001 | 0.47540.002|0.275+0.003 | 0.35140.002 | 0.328+0.003 | 0.378+0.002
MCLES [74] 0.479+0.006 | 0.44340.010|0.198+0.002 | 0.29440.002 | 0.243+0.003 | 0.37040.001
OPMC [26] 0.29140.019{0.27940.029|0.127+0.018 | 0.219£0.016 | 0.20540.016 | 0.236+0.022
JSTC [73] 0.2204-0.000 | 0.148-0.000 | 0.15940.000 | 0.1404-0.000 | 0.049+-0.000 | 0.148-£0.000

ASR-ETR [72] 0.51240.000 | 0.510£0.000 | 0.34940.000 | 0.4154-0.000 | 0.40340.000 | 0.4270.000
ARLRR-TU [70]  {0.7394:0.000|0.7484-0.003 | 0.6702£0.009 | 0.646+0.004 | 0.6204-0.006 | 0.658+-0.006
t-SVD-MSC [24] |0.672+0.003 | 0.6944-0.002 | 0.521+0.003 | 0.5704-0.003 | 0.547+0.002 | 0.59440.003

WTNNMMSC [40]{0.68940.002|0.7064-0.003 | 0.5310.004 | 0.58040.004 | 0.5524-0.004 | 0.61140.003

ULalTLRRE,E{, 0.94240.000 | 0.922£0.000 | 0.897+0.000 { 0.94240.000 | 0.8924-0.001 | 0.8862:0.001
ULalTLRR'Sjg{D 0.9402-0.000 | 0.912£0.000 | 0.894=+0.000 | 0.9404-0.000 | 0.88620.000 | 0.878=£0.000
ULatTLRRYS, 0.9600.000 | 0.939+0.000 | 0.9260.000 | 0.960+0.000 | 0.923+0.001 | 0.920+0.001
ULatTLRRRA® 0.93740.002 | 0.897+0.003 | 0.884-0.003 | 0.93740.002 | 0.8794-0.003 | 0.8764-0.003

SCAD

and complementary information among all views, so that two
methods (i.e., t-SVD-MSC and WTNNMSC) based on tensor
nuclear norm achieve better performance compared with another
baselines. However, our methods can obtain the nearly perfect
clustering performance in terms of all six metrics, which means
that for these two datasets, the proposed approaches still perform
better than all baselines.

Tables IV and V present the clustering metrics by all methods
on Extended YaleB and Coil-20 datasets, respectively. One
can see that the proposed methods yield the best clustering
performace over all compared methods. Note that for these

ARLRR-TU [70]  [0.75320.000 |0.4750.000 | 0.687-0.000 | 0.725:0.000 | 0.5232:0.000 | 0.706:0.000
-SVD-MSC [24] | 0.714:0.000|0.409:£0.000 | 0.450-:0.000 0.665:0.000 | 0.670::0.000 | 0.661::0.000
WTNNMMSC [40] |0.719-:0.000 0.416:0.000 | 0.456-£0.000 | 0.669-:0.000 | 0.672:0.000 | 0.667:£0.000
ULatTLRRYCE | 0.759:0.000|0.438:0.001 | 0.719-£0.000| 0.7932:0.000 | 0.666-:0.000 | 0.782:-0.000
ULaTLRREST,  [0.769:0.000 [ 0.4810.001 | 0.731::0.000 | 0.823:0.000 | 0.740:0.000 | 0.7210.000
ULa(TLRRD, |0.778::0.000 [0.447-£0.007 | 0.737-:0.003 | 0.8030.000 | 0.673:£0.004 | 0.813::0.000

ULa[TLRR?&“XD 0.7734:0.000 | 0.458£0.000 | 0.733+0.000 | 0.79840.000 | 0.6702:0.000 | 0.809£0.000

TABLE VII
CLUSTERING PERFORMANCE ON SCENE-15 DATASET

Method ACC NMI AR F-score Precision Recall
RMSC [20] 0.42540.004 | 0.4344-0.001 | 0.254+0.000 | 0.307£0.000 | 0.3020.000 | 0.31240.000
CoMSC [71] 0.49540.002|0.49940.001 | 0.345+0.001 | 0.393£0.001 | 0.369-+0.002 | 0.4204-0.001
ETLMSC [27] 0.85440.000{0.90240.000 | 0.811+0.000 | 0.824-£0.000 | 0.827-0.000 | 0.82140.000
LMSC [60] 0.52440.000|0.48040.000 | 0.3460.000 | 0.393-£0.000 | 0.378-£0.000 { 0.41140.000
LTMSC [10] 0.568+0.000 | 0.57140.000 | 0.424-+0.000 | 0.465+0.000 | 0.45340.000 | 0.478+0.000
MCLES [74] - - - - - _
OPMS [26] 0.50020.062 | 0.53240.017 | 0.344+0.033 | 0.392+0.030 | 0.37240.044 | 0.41440.007
ISTC [73] 0.498+0.000 | 0.54340.000 | 0.429-+0.000 | 0.359+0.000 | 0.34240.000 | 0.391=40.000
ASR-ETR [72]  {0.95340.000 |0.938=£0.000 | 0.9204-0.000 | 0.92640.000 | 0.922+0.000 | 0.93040.000

ARLRR-TU [70] [0.97640.000|0.95340.000 | 0.953+0.000 { 0.9564-0.000 | 0.95140.000 | 0.955+0.000
t-SVD-MSC [24] |0.80940.002|0.82540.001 | 0.749+£0.002 | 0.7674-0.002 | 0.73440.003 | 0.804+0.002
WTNNMSC [40]|0.90440.004 | 0.92940.002 | 0.8944-0.001 | 0.901+£0.001 | 0.886+0.009 | 0.91740.008

ULatTLRRYCE,  [0.984::0.000 0.969--0.000 |0.971-:0.000 | 0.984-0.000 | 0.974-:0.000 | 0.968-0.000
ULatTLRREST,)  0.981::0.0000.9624:0.000 {0.963:0.000 | 0.981:0.000 | 0.966-:0.000 | 0.9604-0.000
ULatTLRRY,  0.964::0.002{0.937-4:0.003 [0.934::0.003 | 0.96440.002 |0.9370.003 | 0.9314:0.003

ULatTLRRDA®

seap | 0-96920.000 | 0.945+0.000 | 0.943+0.000 | 0.969+0.000 | 0.9460.000 | 0.939+0.000

“-" denotes that the method exceeded the time limit.

two datasets, our methods achieve a significant improvement
compared to the baselines. The proposed methods obtain the
clear improvements around 25% and 15% in terms of ACC
for Extended YaleB and Coil-20 datasets, respectively, over the
second best WTNNMMSC.

Tables VI and VII give the clustering results on Webkb and
Scene-15 datasets, respectively. Again, the proposed methods
outperform all baselines in most metrics. One can see that both
methods, including our approaches and all baselines, perform
not very well for the Webkb dataset. The reason may be that
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(a) RMSC (c) ETLMSC

(h) WINNMMSC (i) ARLRR-TU () ULatTLRRYGh

Fig. 3. The affinity matrices by all methods on Yale dataset.

(b) CoMSC (c) ETLMSC

b
N,

(i) ARLRR-TU

(a) RMSC

(h) WINNMMSC

(j) ULatTLRRyC

Fig. 4. The affinity matrices by all methods on ORL dataset.

Webkb is a web page dataset, it is hard to explore the high
correlation among different views for all methods. One potential
way to improve the clustering performance is to design the
suitable regularization according to the data structure of Webkb
for better capturing the high correlation.

As shown in Tables II—VII, one can see that our methods with
the data-adaptive transform can achieve the higher results than
the methods with DCT transform in most cases. It indicates that
the data-adaptive transform based methods can preserve the high
correlation and complementary information among all views in
the transformed domain w.r.t. the intrinsic data structure, better
than the methods with fixed transforms.

Figs. 3 and 4 compare the affinity matrices obtained by all
methods on Yale and ORL datasets, respectively. Since the
methods OPMC, JSTC, and ASR-ETR output vectors of clus-
tering indexes, so we omit them. For the Yale dataset, one can
see that the affinity matrices by our methods admit the clearer
block-diagonal structure than the baselines. This shows that our
methods can better explore the correlation among the samples
belonging to the same object and distinguish the difference
between samples of different objects. For the ORL dataset, one
can see that the structure of affinity matrices by t-SVD-MSC and
WTNNMMSC are similar to ours, and thus the performance of

(b) CoMSC

(d) LMSC

a N\
. “
s, RN
" N
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() -SVD-MSC

[os

(e) LTMSC

(f) MCLES

(k) ULatTLRREC A, (1) ULatTLRRp%, (m) ULatTLRRSE )

(e) LTMSC (f) MCLES (g) t-SVD-MSC

“ -‘ “l
\
o

(k) ULatTLRREGA,, (1) ULatTLRRy, (m) ULatTLRR§ES

t-SVD-MSC, WTNNMMSC, and our method are comparable
to each other—that is also demonstrated by the metrics shown
in Table III.

In Fig. 5, we present the view-specific affinity matrices and
the final matrices of t-SVD-MSC, WTNNMMSC, and our
method for the Yale dataset. One can see that: 1) for both
view-specific or final affinity matrices, our methods can achieve
aclearer block-diagonal structure than t-SVD-MSC and WTNN-
MMSC; 2) The block-diagonal structure of the view-specific
affinity matrices is different from each other, which means
that different views play a specific role in clustering the data
samples.

E. Advantages of Our Methods Over Single-View Clustering
Methods

As mentioned before, the insufficient observed sample prob-
lem has been studied in the single-view subspace cluster-
ing [30], [44], [45], [46], [47], which are designed to handle
the single-view data. When directly applying these methods to
multi-view data, it is essential to handle each view separately.
Compared with the single-view data, the multi-view data con-
tains multiple different features, and each feature represents the
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(a) t-SVD-MSC (b) WINNMMSC (c) ULatTLRRYGh

Fig. 5. The affinity matrices on each view S(*) = (\Z,(:_)l\ + |(Z/(:;_)1
(from top to bottom: S, §(2) §B3) and S) on Yale dataset.

)')/2

TR
[

[ LaTLRR,
L TRROCT
B UL TLRRCT,
[ ULaTLRRYS

[ [ty
LR,
I ULaTLRRE,
R,

Yale ORI Extended YaleB Yale ORL Extended YaleB

Fig. 6. Comparison between LatLRR with the single view and our methods
in terms of ACC and NMI. LatLRRGapor, LatLRRyensity, and LatLRRpgp
denote the applications of LatLRR on the Gabor, Intensity, and LBP view data,
respectively.

particular information. Directly applying single-view methods
on the multi-view data ignores consensus and complementary
information among multiple views, leading to unsatisfactory
performance.

Taking the method LatLRR [30], one of SOTA methods
handling the single-view insufficient sample problem, as an
example, Fig. 6 shows the results of LatLRR using each sin-
gle view on Yale, ORL, Extended YaleB datasets. One can
see that although LatLRR works to a certain extent, the per-
formance of LatLRR using different views vary significantly.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 6, JUNE 2025

0

(d) ULatTLRREGAy (e) ULatTLRRYY, (f) ULatTLRREZ,)

and the final version S = (Z:Zl \Z,(“)l\ + \(Z“’)

b+ L+1)T\)/V by all methods

For example, on ORL dataset, LatLRR achieves best perfor-
mance in Intensity view, while there is a serious degeneration
on Extended YaleB dataset. On the contrary, the proposed
method directly used all views and achieves almost perfect
performance, which demonstrates that our model can simul-
taneously resolve the insufficient data problem and capture
the consensus and complementary information among multiple
views.

F. Effects of Parameter Settings

In the proposed algorithm, there are two regularization pa-
rameters A1 and Ao and three initial penalty parameters g, po,
and 60 need to be turned. In experiments, we set pg = pg = 0.
Fig. 7 shows the clustering performance in terms of ACC and
NMI w.r.t. different choices of Ay, Ao, and pg (i-e., po and
fp) on Yale dataset. One can see that our methods achieve
nearly perfect high metrics in a relatively wide range of three
parameters, which indicates that our methods are stable while
changing A1, Ao, and po. In the experiments, we empirically set
o = po =06y = 107%, and select A1 and A from the values in
{0.1,0.3,0.5,0.8, 1,3, 5, 8}.
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Fig. 7. The clustering performance in terms of ACC and NMI for the turn-
ing parameters A1, A2, and po on the Yale dataset. From top to bottom:

ULatTLRREEE, ULatTLRREST ), ULatTLRRDYS, and ULatTLRREAS .

VI. CONCLUSION

In this work, we develop a nonconvex latent transformed
low-rank tensor model for MVSC. To solve the insufficient
data sampling problem in existing LRR-based tensor clustering
methods, we introduce the latent low-rank representation into
the multi-view case. By exploiting the prior information of
the singular values of the stacked representation tensor and
the intrinsic structure of data, we develop a unified nonconvex
transformed low-rank tensor representation for better exploring
the high correlation among different views. An ADMM-based
algorithm is proposed with guaranteed convergence [75], [76],
[771, [78], [79]. Extensive numerical experiments show that
our proposed method outperforms the existing contemporary
multi-view clustering approaches. As the future research works,
it is interesting to come up with algorithms that can reduce the
running time and apply the irregular tensor factorization [64],
[65], [66] on the irregular tensor stacked by {L(“) }7‘,/:1 to exploit
the correlation among all salient representations.
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