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Abstract. In this work, we study the subspace clustering and recovery of multidimensional images. Existing
matrix-based/tensor-based subspace clustering methods successfully consider unilateral information
(i.e., the similarity between image samples) to cluster samples into subspaces by using low-rank repre-
sentation. The key issue of the unilateral representation-based methods is that the number of samples
in each subspace should be sufficient for subspace representation. In practice, the clustering perfor-
mance can be degraded when there is only a small number of observed samples in each subspace.
To address the problem of insufficient observed samples, we propose to introduce hidden tensor data
to supplement an insufficient number of observed samples. We employ both observed samples and
hidden tensor data under low-rank constraints so that a new bilateral tensor low-rank representation
(BTLRR) in subspace clustering is formulated. We show that a closed-form solution of block-diagonal
tensor structure is obtained in subspace clustering of observed samples and hidden tensor data. Also
the proposed BTLRR optimization problem can be solved by using the convex relaxation technique
and augmented Lagrangian multiplier algorithm. The proposed BTLRR can fully explore the bi-
lateral information of observations, including not only the similarity between samples but also the
relationship among features. Extensive numerical results on multidimensional image data clustering
and recovery illustrate that the effectiveness and robustness of the proposed bilateral representation
are better than those of state-of-the-art methods (e.g., the popular LRR and TLRR methods).
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1. Introduction. The problem of simultaneous data recovery and clustering has been
developed in many applications of image processing [4, 6, 17, 18, 23, 33, 45, 48, 52, 56, 61],
e.g., image/video denoising [15, 30, 34, 53, 54, 62, 59], face recognition [51, 43], and data
segmentation [24, 35, 38, 39, 47, 64]. Matrix-based methods are well studied in image data
recovery and subspace clustering. Robust principal component analysis (RPCA) [3] recovered
the original low-rank matrix component from the sparsely corrupted observation. Low-rank
representation (LRR) [29] and sparse subspace clustering (SSC) [9] were studied by vectorizing
multidimensional image data and clustering sample vectors into subspaces under predefined
priors like low rankness [29] and sparsity [9]. In the literature, their variants are developed
and studied; see, for example, [1, 30, 55]. On the other hand, deep learning has been successful
in many image processing applications [10, 16, 37, 42].

Besides the vectorization operator being employed to reshape multidimensional samples
into a list of vectors, the work [11] integrated Tucker decomposition [44] and sparse coding to
simultaneously seek the low-rank spatial (two-dimensional) structures over samples and the
sparse representation in the feature space for data clustering. To characterize the intrinsic
structure of multidimensional data, a tensor LRR (TLRR) [62] employed a tensor linear
representation for capturing the multilinear relations among image samples. More precisely,
TLRR aims at finding a low-rank tensor representation in a given tensor dictionary as follows:

min
\scrZ 

\| \scrZ \| \ast s.t. \scrX O =\scrA \ast \scrZ ,(1.1)

where \scrX O \in \BbbR n1\times n2\times n3 are the observed data (each lateral slice, i.e., \scrX O(:, j, :), is an observed
sample), \scrA \in \BbbR n1\times n2\times n3 denotes the representation base, \scrZ \in \BbbR n2\times n2\times n3 denotes the represen-
tation coefficient, \| \scrZ \| \ast represents the tensor nuclear norm (see Definitiion 2.10), and \ast denotes
the tensor-tensor product (see Definition 2.1). Zhou et al. [62] showed that the minimizer to
(1.1) has the tensor block-diagonal structure formed by nonzero tubes (see the structure of
\scrZ in Figure 2(b)), which indicates the clustering membership of the samples. Usually, TLRR
methods [8, 62] set the dictionary \scrA as the observed tensor data (i.e., \scrA =\scrX O) or the denoised
result.

In the above matrix-based/tensor-based methods for subspace clustering, one fundamental
issue is that the number of samples from each subspace should be sufficient for subspace
representation. For example, let \scrX O be a set of samples drawn from a union of P tensor
subspaces (see Definition 2.11) \{ \scrS p\} Pp=1, each \scrS p has a tensor tubal rank (see Definition 2.9)
of rp. Suppose that \scrX O = [\scrX 1,\scrX 2, . . . ,\scrX P ], and \scrX p contains np samples drawn from the pth
tensor subspace \scrS p. Then the sampling of \scrX O is sufficient if and only if rank(\scrX p) = rp,
p= 1, . . . , P . It is clear that problem (1.1) admits a trivial solution \scrZ  \star = \scrI (\scrI is the identity
tensor (see Definition 2.3)) if rank(\scrX p) < rp, p = 1, . . . , P . To illustrate this issue, we show
an example in Figure 1. We demonstrate that when the observed tensor data are insufficient,
\scrZ = \scrI may only be a feasible solution to problem (1.1); see Figure 1(a). In the figure, we

construct all frontal slices (\scrZ  \star )(k) from \scrZ to construct the affinity matrix \bfitZ as follows,

\bfitZ =
1

2n3

n3\sum 
k=1

\biggl( \bigm| \bigm| \bigm| (\scrZ  \star )(k)
\bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| (\scrZ  \star )(k)

\bigm| \bigm| \bigm| \top \biggr) ,(1.2)
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22 DING, ZHAO, YANG, ZHOU, AND NG

(a) TLRR (b) BTLRR

Figure 1. Illustrated example under insufficient samples: (a) and (b) are the affinity matrices obtained by
performing (1.2) on solutions to unilateral representation (1.1) and our bilateral representation (1.4), respec-
tively. Here we generate an observed tensor as \scrX O = [\scrX 1,\scrX 2, . . . ,\scrX 10] with \scrX p =\scrD p \ast \scrT p (p= 1,2, . . . ,10), where
the entries of \scrD p \in \BbbR 100\times 15\times 30 and \scrT p \in \BbbR 15\times 10\times 30 are randomly sampled from independent and identically
distributed (i.i.d.) \scrN (0,1). We randomly add the sparse noise with noise ratio 0.05. The number of samples
(s= 10) at each subspace is less than the rank (r= 15) of each subspace, i.e., the data samples are insufficient.

where | (\scrZ  \star )(k) | is a matrix where its entries take the absolute value of the entry of (\scrZ  \star )(k)

and \cdot \top denotes the matrix transpose operation.
Note that TLRR only considers the unilateral similarity between samples, thereby its

clustering performance can be degraded when the observed samples are insufficient and/or
severely corrupted. This problem has been studied in the work [30], latent LRR (LatLRR),
for the insufficient matrix data. However, LatLRR is limited to the matrix data. When han-
dling the multidimensional image data or tensor (e.g., face data, videos, and multispectral
images), LatLRR has to flatten the tensor data into a matrix. Such a preprocessing un-
avoidably destroys the multidimensional structure and subsequently leads to the performance
degradation. Moreover, LatLRR represents the data entries using few other entries, which
cannot fully exploit the complex relationships between tensor samples; please see the details
in section 3.3.

To address the problem of insufficient sampling in the tensor case, we introduce the hidden
tensor data to supplement the insufficient number of observed samples. We employ both
observed and hidden tensor data and consider the following problem:

min
\scrZ O,H

\| \scrZ O,H\| \ast (1.3)

s.t.\scrX O = [\scrX O,\scrX H ] \ast \scrZ O,H ,

where \scrX H \in \BbbR n1\times n4\times n3 denotes the hidden (unobserved) tensor data, and the concatenation
(along the column dimension) of \scrX O and \scrX H , denoted as [\scrX O,\scrX H ] (see section 2.1), is used as
the dictionary. We note that [\scrX O,\scrX H ] can be sufficient to represent the underlying subspaces.
Let \scrZ  \star 

O,H = [\scrZ  \star 
O;\scrZ  \star 

H ] be the optimal solution to (1.3) such that \scrZ  \star 
O and \scrZ  \star 

H , respectively,
correspond to \scrX O and \scrX H , where [\scrZ  \star 

O;\scrZ  \star 
H ] denotes the concatenation of \scrZ  \star 

O and \scrZ  \star 
H along

the first dimension (see section 2.1), then \scrZ  \star 
O has a nontrivial tensor block-diagonal structure

that exactly indicates the tensor subspace membership of each observed sample. Given the
observed tensor data \scrX O, recovering \scrZ  \star 

O in problem (1.3) is generally not practical due to the
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BTLRR FOR INSUFFICIENT OBSERVED SAMPLES 23

absence of \scrX H . Based on Theorem 3.1 (see section 3), we can equivalently reformulate the
constraint in (1.3) as the following bilateral tensor representation relationship

\scrX O =\scrX O \ast \scrZ  \star 
O +\scrL  \star 

H \ast \scrX O,

where \scrZ  \star 
O and \scrL  \star 

H are unknown variables related to \scrX O and \scrX H . Assume \scrX O and \scrX H are
sampled from the same collection of low-rank tensor subspaces, one can derive that both \scrZ  \star 

O

and \scrL  \star 
H should be low rank (the detailed proof is shown in section 3). Therefore, we propose

a new convex bilateral TLRR (BTLRR) for subspace clustering as follows:

min
\scrZ O,\scrL H

\| \scrZ O\| \ast + \| \scrL H\| \ast (1.4)

s.t.\scrX O =\scrX O \ast \scrZ O +\scrL H \ast \scrX O.

In our new BTLRR, we compute \scrZ O and \scrL H from the observed \scrX O without using the hidden
\scrX H . The detailed explanation can be found in section 3. The proposed BTLRR method
can explore the bilateral information within the observations, i.e., the subspace membership
of observed samples and the relationship among sample features. Our proposed BTLRR
approach provides the estimated block-diagonal affinity matrices, as shown in Figure 1(b),
that are capable of learning the block-diagonal structure, which is close to that identified by
the sufficient sampling.

In this paper, we study the problem of recovering the representation tensor \scrZ  \star 
O by using

the observed tensor data \scrX O only. The main contributions of this paper are given as follows.
\bullet We utilize both observed samples and hidden tensor data and propose the bilateral

tensor low-rank representation to resolve the problem of insufficient observed samples
of existing unilateral representation-based methods. The proposed BTLRR can fully
explore the subspace membership of samples and the relationship among features.

\bullet We provide the theoretical guarantee of the proposed BTLRR. For the noise-free
observed tensor data, we prove that the noiseless BTLRR admits the closed-form
solutions; meanwhile, for the tensor data with sparse corruptions, we can find globally
optimal solutions of our BTLRR by establishing the connection between BTLRR and
tensor RPCA [31] under certain conditions.

\bullet We give an analysis of exploring the effects of the hidden tensor data. Under the
low-rank assumption, we show that \scrX H and the optimal minimizer to (1.3) can be
approximately recovered by solving a convex tensor nuclear norm minimization prob-
lem.

\bullet We employ an efficient algorithm based on the augmented Lagrangian multiplier
method to solve the resulting optimization model. Extensive experiments includ-
ing subspace clustering and data recovery based on various datasets demonstrate the
outstanding performance of our method compared to state-of-the-art methods.

The rest of this paper is organized as follows. In section 2, we present the notations and
preliminaries used in this work. Also we review the related works, including matrix- and
tensor-based subspace clustering methods. In section 3, we study the effect of hidden tensor
data and formulate the proposed BTLRR model. We also provide the exact recoverability
analysis of the proposed model. In section 4, we present the proposed optimization algorithm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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24 DING, ZHAO, YANG, ZHOU, AND NG

In section 5, we perform various experiments to demonstrate the effectiveness of the proposed
method. In section 6, some concluding remarks are given.

2. Notations and preliminaries.

2.1. Notations. We denote the scalar, the vector, the matrix, and the tensor by the
symbols x (or X), \bfitx , \bfitX , and \scrX , respectively. Given a third-order tensor \scrX \in \BbbR n1\times n2\times n3 , its
(i, j, k)th entry is denoted as [\scrX ]i,j,k, and its ith horizontal, jth lateral, and kth frontal slice
are denoted as \scrX (i, :, :), \scrX (:, j, :), and \scrX (:, :, k) (or \scrX (k)), respectively. The (i, j)th entry of a
matrix \bfitX \in \BbbR n1\times n2 is denoted as [\bfitX ]i,j . The inner product of \scrX and \scrY in \BbbR n1\times n2\times n3 is defined
as \langle \scrX ,\scrY \rangle =

\sum n3

k=1\langle \scrX (k),\scrY (k)\rangle . The trace of a matrix \bfitX is denoted as tr(\bfitX ). For tensors
\scrA \in \BbbR n1\times n2\times n3 and \scrB \in \BbbR n4\times n2\times n3 , the concatenation of \scrA and \scrB along the first dimension is a

tensor \scrC = [\scrA ;\scrB ] = [
\scrA 
\scrB ]\in \BbbR (n1+n4)\times n2\times n3 , where \scrC (1 : n1, :, :) =\scrA and \scrC (n1+1 : n1+n4, :, :) =\scrB .

Given two tensors \scrX \in \BbbR n1\times n2\times n3 and \scrY \in \BbbR n1\times n4\times n3 , the concatenation of \scrX and \scrY along the
second dimension is a tensor \scrZ = [\scrX ,\scrY ] of size n1 \times (n2 + n4)\times n3, where \scrZ (:,1 : n2, :) = \scrX 
and \scrZ (:, n2 + 1 : n2 + n4, :) = \scrY . We denote the Frobenius norm as \| \scrX \| F =

\sqrt{} \sum 
i,j,k[\scrX ]2i,j,k,

the \ell 1 norm as \| \scrX \| 1 =
\sum 

i,j,k | [\scrX ]i,j,k| , and the \ell \infty norm as \| \scrX \| \infty = maxi,j,k | [\scrX ]i,j,k| . The
matrix nuclear norm is defined as the sum of the singular values, i.e., \| \bfitX \| \ast =

\sum 
\sigma (\bfitX ).

2.2. Preliminaries. For \scrX \in \BbbR n1\times n2\times n3 , \=\scrX denotes the discrete Fourier transform (DFT)
along the third dimension of \scrX . Defining the DFT matrix \bfitF n3

= [\bfitf 1, . . . ,\bfitf k, . . . ,\bfitf n3
]\in \BbbC n3\times n3 ,

where \bfitf k = [\omega 0\times (k - 1);\omega 1\times (k - 1); . . . ;\omega (n3 - 1)\times (k - 1)] \in \BbbC n3\times 1 with \omega = e - (2\pi 
\surd 
 - 1/n3), we obtain

each tube \=\scrX (i, j, :) =\bfitF n3
\scrX (i, j, :). The block circular matrix bcirc(\scrX ) with size n1n3\times n2n3

of \scrX is defined as

bcirc(\scrX ) =

\left[     
\scrX (1) \scrX (n3) \cdot \cdot \cdot \scrX (2)

\scrX (2) \scrX (1) \cdot \cdot \cdot \scrX (3)

...
...

. . .
...

\scrX (n3) \scrX (n3 - 1) \cdot \cdot \cdot \scrX (1)

\right]     .

Two operators unfold and fold are denoted as

unfold(\scrX ) =

\left[     
\scrX (1)

\scrX (2)

...

\scrX (n3)

\right]     \in \BbbR n1n3\times n2 , fold(unfold(\scrX )) =\scrX .

We also give the definition of \=\bfitX \in \BbbC n1n3\times n2n3 as follows,

\=\bfitX = bdiag( \=\scrX ) =

\left[     
\=\scrX (1)

\=\scrX (2)

. . .
\=\scrX (n3)

\right]     ,

where bdiag(\cdot ) reshapes the tensor \=\scrX to a block-diagonal matrix.
Based on the above definitions, we define the tensor-tensor product, tensor singular value

decomposition (TSVD), and tensor nuclear norm (TNN) as follows.
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BTLRR FOR INSUFFICIENT OBSERVED SAMPLES 25

Definition 2.1 (tensor-tensor product [21]). The tensor-tensor product of \scrA \in \BbbR n1\times n2\times n3

and \scrB \in \BbbR n2\times n4\times n3 is defined as a tensor of size n1 \times n4 \times n3:

\scrA \ast \scrB = fold(bcirc(\scrA )\times unfold(\scrB )).

Definition 2.2 (conjugate transpose [21, 31]). For a tensor \scrX of size n1 \times n2 \times n3, its
conjugate transpose \scrX \top of size n2 \times n1 \times n3 is obtained by conjugate transposing each frontal
slice and then reversing the order of transposed frontal slices 2 to n3.

Definition 2.3 (identity tensor [21]). An identity tensor \scrI \in \BbbR n\times n\times n3 is given by setting the
first frontal slice to be the n\times n identify matrix and other frontal slices to be zeros.

Definition 2.4 (tensor inverse [20, 60]). The inverse of a tensor \scrA \in \BbbR n\times n\times n3 is denoted as
\scrA  - 1 satisfying

\scrA \ast \scrA  - 1 =\scrA  - 1 \ast \scrA = \scrI ,

where \scrI is the identity tensor of size n\times n\times n3.

Definition 2.5 (tensor pseudoinverse [62]). For a tensor \scrX \in \BbbR n1\times n2\times n3, its pseudoinverse
is defined as a tensor \scrX \dagger \in \BbbR n2\times n1\times n3, which satisfies \scrX \ast \scrX \dagger \ast \scrX = \scrX , \scrX \dagger \ast \scrX \ast \scrX \dagger = \scrX \dagger ,
\scrX \ast \scrX \dagger = (\scrX \ast \scrX \dagger )\top , and \scrX \dagger \ast \scrX = (\scrX \dagger \ast \scrX )\top .

Definition 2.6 (orthogonal tensor [21, 31]). A tensor \scrQ \in \BbbR n\times n\times n3 is orthogonal if \scrQ \top \ast \scrQ =
\scrQ \ast \scrQ \top = \scrI .

Definition 2.7 (F-diagonal tensor [21]). A tensor is F-diagonal if each of its frontal slices
is a diagonal matrix.

Based on the above definitions, we can define TSVD for a tensor \scrX as follows.

Definition 2.8 (TSVD and skinny TSVD [21, 31]). Given a third-order tensor \scrX \in \BbbR n1\times n2\times n3,
its TSVD is

\scrX = \scrU \ast \scrS \ast \scrV \top ,

where \scrU \in \BbbR n1\times n1\times n3 and \scrV \in \BbbR n2\times n2\times n3 are orthogonal tensors, and \scrS \in \BbbR n1\times n2\times n3 is an
F-diagonal tensor. Then the skinny TSVD of \scrX is \scrX = \scrU \scrX \ast \scrS \scrX \ast \scrV \top 

\scrX , where \scrU \scrX = \scrU (:,1 : r, :),
\scrS \scrX = \scrS (1 : r,1 : r, :), and \scrV \scrX = \scrV (:,1 : r, :) in which r denotes the tensor tubal rank of \scrX (see
Definition 2.9).

Note that there is one definition of tensor rank based on TSVD similar to matrix rank.

Definition 2.9 (tensor tubal rank [20, 31]). For any \scrX \in \BbbR n1\times n2\times n3, the tensor tubal rank is
defined as the number of nonzero singular tubes of \scrS in which the TSVD of \scrX = \scrU \ast \scrS \ast \scrV \top ,
i.e., rank(\scrX ) =\#\{ i : \scrS (i, i, :) \not = 0\} .

Given two tensors\scrA \in \BbbR n1\times n2\times n3 and \scrB \in \BbbR n2\times n4\times n3 , rank(\scrA \ast \scrB )\leq min\{ rank(\scrA ), rank(\scrB )\} 
holds [63].

Then we give the definition of TNN used in our work.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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26 DING, ZHAO, YANG, ZHOU, AND NG

Definition 2.10 (TNN [31]). Given a tensor \scrX \in \BbbR n1\times n2\times n3, its tensor nuclear norm is
defined as

\| \scrX \| \ast =
1

n3

n3\sum 
k=1

\| \=\scrX (k)\| \ast ,

where \=\scrX (k) is the kth frontal slice of \=\scrX .

A tensor space is a set of tensors that are closed under tensor addition and scalar multi-
plication. We refer the tensor space as the set \BbbK = \{ \forall \scrK \in \BbbR n1\times 1\times n3\} . Given a set of tensors
\{ \scrD (1), . . . ,\scrD (P )\} , each of \scrD (p) is the pth lateral slice of \scrD \in \BbbR n1\times P\times n3 . Then \{ \scrD (p)\} Pp=1 is

linearly independent if there is not a nonzero \scrT \in \BbbR P\times 1\times n3 satisfying \scrD \ast \scrT = \bfzero .

Definition 2.11 (tensor subspace [62]). Given a set \{ \scrD (1), . . . ,\scrD (P )\} \subseteq \BbbK , the elements \scrD (p)

are linearly independent. Then the set \Xi = \{ \scrM | \scrM =\scrD \ast \scrT ,\forall \scrT \in \BbbR P\times 1\times n3\} is called a tensor
subspace of dimension dim(\scrD ) = P . Here \{ \scrD (1), . . . ,\scrD (P )\} is the basis of \Xi .

2.3. Related works.

2.3.1. Matrix-based methods. The matrix-type method aims at finding the linear repre-
sentation of all vector-valued samples and then clusters samples into corresponding subspaces.
To be specific, given a two-dimensional (2D) dataset \{ \bfitX j\} n2

j=1, where \bfitX j \in \BbbR n1\times n3 and n2 is
the total number of samples, the matrix methods usually reshape the 2D sample \bfitX j into a
vector \bfitx j \in \BbbR n1n3 and then forms a matrix \bfitX \in \BbbR n1n3\times n2 .

Cand\`es et al. [3] proposed RPCA to estimate the clean 2D data from the observed \bfitX .
However, RPCA assumed that the data are collected from a single subspace. The works in
[9, 29] sought the linear representation (i.e., \bfitZ ) w.r.t a given dictionary \bfitA by solving the
following formulation:

min
\bfitZ ,\bfitE 

R1(\bfitZ ) + \lambda R2(\bfitE )

s.t. \bfitX =\bfitA \bfitZ +\bfitE ,

where each column of \bfitX is obtained by \bfitX (:, j) = \bfitx j , \bfitE is the noise, R1(\bfitZ ) and R2(\bfitE )
denote the regularization terms of the representation matrix \bfitZ and the noise \bfitE , respectively
(see Figure 2(a) for an illustration). A variety of regularization terms have been used for
characterizing the priors of \bfitZ and \bfitE . For example, SSC [9] used the \ell 1-norm \| \bfitZ \| 1 and \| \bfitE \| 1
in favor of the sparse representation and noise. LRR [29] employed the nuclear norm \| \bfitZ \| \ast to
find the low-rank representation matrix, and the \ell 2,1-norm is used on the noise to improve the
robustness to outliers. In order to resolve the insufficient samples problem of LRR, LatLRR
[30] introduced the hidden data and proposed the following optimization problem:

min
\bfitZ ,\bfitL ,\bfitE 

R1(\bfitZ ) +R2(\bfitL ) + \lambda R3(\bfitE )

s.t. \bfitX =\bfitX \bfitZ +\bfitL \bfitX +\bfitE .

LatLRR employed nuclear norm regularizations \| \bfitZ \| \ast and \| \bfitL \| \ast and the sparse regularization
\| \bfitE \| 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

3/
25

 to
 2

3.
24

7.
13

6.
39

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



BTLRR FOR INSUFFICIENT OBSERVED SAMPLES 27

(a) Matrix low-rank representation

(b) Tensor low-rank representation

Figure 2. Illustration of matrix LRR (top) and TLRRs (bottom).

In fact, SSC, LRR, and their variants [30, 55, 58] are matrix-type methods, which can only
process the matrix data. When handling the high-dimensional data (i.e., tensor data), these
methods have to first reshape the tensor data into a matrix and destroy the high-dimensional
structure of tensor data, resulting in the limited clustering performance. Therefore, the tensor-
based subspace clustering methods are proposed to keep the multidimensional structure.

2.3.2. Tensor-based methods. Differently from the matrix-based methods, the tensor-
type methods arrange all samples into a tensor without destroying the tensor data structure.
In particular, considering the 2D samples \{ \bfitX j\} n2

j=1, the tensor methods formulate a third-order
tensor \scrX \in \BbbR n1\times n2\times n3 whose jth lateral slice is such that \scrX (:, j, :) =\bfitX j .

Existing tensor-based methods employ tensor decomposition to find the low-rank correla-
tion hidden in the tensor data. For instance, Fu et al. [11] used Tucker decomposition on the
tensor data to explore the low-rank spatial correlations among samples for data clustering.
However, the work [11] still reshaped the 2D samples into vectors. Recently, based on TSVD,
Lu et al. [31] studied the tensor RPCA (TRPCA) problem that extends RPCA from the 2D
matrix to the three-dimensional tensor data and proposed the following optimization problem,

min
\^\scrX ,\scrE 

rank( \^\scrX ) + \lambda \| \scrE \| 1(2.1)

s.t.\scrX = \^\scrX + \scrE ,

where \^\scrX represents the underlying clean tensor data, and \| \scrE \| 1 is used to characterize the
sparsity of the tensor corruption \scrE . Lu et al. [31] proved that the underlying low-rank and
sparse tensors can be exactly recovered by the convex version of (2.1) with an overwhelming
probability under certain conditions. To better explore the tensor subspace information,
TLRR [62] represented the tensor data as a predefined dictionary by a low-rank coefficient
under the tensor-tensor product framework. Generally, TLRR can be modeled as

min
\scrZ ,\scrE 

\scrR 1(\scrZ ) + \lambda \scrR 2(\scrE )

s.t. \scrX =\scrA \ast \scrZ + \scrE ,
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28 DING, ZHAO, YANG, ZHOU, AND NG

where \scrR 1(\scrZ ) and \scrR 2(\scrE ) denote the regularizations of the coefficient \scrZ and the noise \scrE ,
respectively (see Figure 2(b) for illustration). Zhou et al. [62] utilized the regularization's
TNN (i.e., \| \scrZ \| \ast ) and the \ell 1-norm (i.e., \| \scrE \| 1) that can recover the underlying tensor data and
cluster them as well. Johnson et al. [19] used the weighted TNN to enhance the low-tensor
rankness of the representation tensor. TLRR not only characterizes the linear relations among
tensor samples, but also reveals the cluster structure. Nonetheless, the performance of TLRR
would drop when the observations are insufficient and/or corrupted seriously.

3. BTLRR. In this section, we investigate the proposed BTLRR method for addressing
the problem of insufficient observed data samples.

In order to study the effect of hidden tensor data, we need to explore the minimizer of
(1.3).

Theorem 3.1. Given any third-order tensors \scrX O (\scrX O \not = 0) and \scrX H , assume that \scrU \ast \scrS \ast \scrV \top 

is the skinny TSVD of [\scrX O,\scrX H ], then Problem (1.3) has the following unique and closed-form
solution \scrZ  \star 

O,H = [\scrZ  \star 
O;\scrZ  \star 

H ],

\scrZ  \star 
O = \scrV O \ast \scrV \top 

O and \scrZ  \star 
H = \scrV H \ast \scrV \top 

O ,(3.1)

where \scrV = [\scrV O;\scrV H ] and \scrX O = \scrU \ast \scrS \ast \scrV \top 
O .

The proof of Theorem 3.1 is given in Appendix A. With Theorem 3.1, we will show that
the recovery of hidden tensor data can be obtained when there is no noise in the observed
data samples:

\scrX O = [\scrX O,\scrX H ] \ast \scrZ  \star 
O,H

= \scrX O \ast \scrZ  \star 
O +\scrX H \ast \scrZ  \star 

H

= \scrX O \ast \scrZ  \star 
O +\scrX H \ast \scrV H \ast \scrV \top 

O

= \scrX O \ast \scrZ  \star 
O + \scrU \ast \scrS \ast \scrV \top 

H \ast \scrV H \ast \scrV \top 
O

= \scrX O \ast \scrZ  \star 
O + \scrU \ast \scrS \ast \scrV \top 

H \ast \scrV H \ast \scrS \dagger \ast \scrU \top \ast \scrX O.

Let

\scrL  \star 
H = \scrU \ast \scrS \ast \scrV \top 

H \ast \scrV H \ast \scrS \dagger \ast \scrU \top .(3.2)

Then we equivalently reformulate the observed \scrX O as the following bilateral tensor represen-
tation:

\scrX O =\scrX O \ast \scrZ  \star 
O +\scrL  \star 

H \ast \scrX O.(3.3)

Even we have insufficiently observed samples, we can still make use of (3.3) and observed
tensor samples to study the effect of hidden tensor data.

Suppose that \scrX O and \scrX H are two sets of samples drawn from a union of k tensor subspaces
\{ \scrS i\} ki=1, each \scrS i having a tensor tubal rank of ri. Then with (3.1), we have

rank(\scrZ  \star 
O)\leq rank(\scrV O)\leq rank([\scrX O,\scrX H ])\leq 

k\sum 
i=1

ri = r.
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BTLRR FOR INSUFFICIENT OBSERVED SAMPLES 29

According to (3.2), we also obtain

rank(\scrL  \star 
H)\leq rank(\scrV H)\leq rank([\scrX O,\scrX H ])\leq r.

Both \scrZ  \star 
O and \scrL  \star 

H should be low tubal rank tensors. We can recover \scrZ  \star 
O and \scrL  \star 

H from the
observed data \scrX O by the following optimization problem:

min
\scrZ O,\scrL H

rank(\scrZ O) + rank(\scrL H)

s.t.\scrX O =\scrX O \ast \scrZ O +\scrL H \ast \scrX O.

The two low tubal-rank tensors \scrZ O and \scrL H play different important roles. The representation
tensor \scrZ O can capture the similarity between samples, and \scrL H \ast \scrX O can be interpreted as
extracting the relationship among features. These two terms boost each other to achieve a
satisfactory clustering and recovery performance. For simplicitly, we omit the subscripts of
\scrZ O, \scrL H , and \scrX O in the following discussions.

3.1. BTLRR for noiseless data. Since minimizing the tubal rank is generally NP-hard,
we employ its convex relaxation and its associated TNN [31] in the optimization model.
Therefore, when the observed tensor data are noiseless, the following optimization problem is
studied:

min
\scrZ ,\scrL 

\| \scrZ \| \ast + \| \scrL \| \ast (3.4)

s.t.\scrX =\scrX \ast \scrZ +\scrL \ast \scrX .

Next we give solutions to (3.4) without noise as the following theorem.

Theorem 3.2. Suppose that \scrU \scrX \ast \scrS \scrX \ast \scrV \top 
\scrX is the skinny TSVD of \scrX , and \=\bfitS \scrX = bdiag( \=\scrS \scrX )

has full rank. The solutions to (3.4) are given as follows,

\scrZ  \star = \scrV \scrX \ast \scrW \ast \scrV \top 
\scrX and\scrL  \star = \scrU \scrX \ast (\scrI  - \scrW ) \ast \scrU \top 

\scrX ,(3.5)

where \scrW is a tensor, which satisfies (i) \scrW is compatible with \scrS \scrX , i.e., [ \=\bfitW ]i,j = 0 if [ \=\bfitS \scrX ]i,i \not =
[\=\bfitS \scrX ]j,j, where \=\bfitW = bdiag( \=\scrW ) and (ii) both \=\bfitW and \=\bfitI  - \=\bfitW are positive semidefinite.

The proof can be found in Appendix B.
Here we compare our proposed method with current methods. Liu and Yan [30] proposed

LatLRR for clustering the vector-valued samples. Compared with LatLRR, the proposed
BTLRR uses tensors to model the multidimensional samples, which can keep the intrinsic
multidimensional structure within collected data. Also we employ the tensor representation to
explore the complex membership between tensor samples and the relationship among features,
better than the vector representation used in LatLRR. Zhou et al. [62] proposed TLRR for
subspace clustering and data recovery. Compared with TLRR, we introduce the hidden tensor
data and recover the corresponding effects by a TNN-based convex optimization problem,
which can resolve the problem of insufficiently observed data samples. Also the proposed
BTLRR takes into account the similarity between samples and the relationship among features
of the tensor data.
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30 DING, ZHAO, YANG, ZHOU, AND NG

3.2. BTLRR for noisy data. To address the problem of insufficiently observed tensor
samples corrupted by sparse noise, we propose the following BTLRR model by using \scrX  - \scrE 
(i.e., the underlying clean tensor data) as the dictionary:

min
\scrZ ,\scrL ,\scrE 

\| \scrZ \| \ast + \| \scrL \| \ast + \lambda \| \scrE \| 1(3.6)

s.t.\scrX = (\scrX  - \scrE ) \ast \scrZ +\scrL \ast (\scrX  - \scrE ) + \scrE .

Next, we show that problem (3.6) admits the closed-form solutions in the following theorem.

Theorem 3.3. Suppose that ( \^\scrX  \star ,\scrE  \star ) is an optimal solution to the TRPCA problem in (2.1),
\scrU \^\scrX  \star \ast \scrS \^\scrX  \star \ast \scrV \top 

\^\scrX  \star 
is the skinny TSVD of \^\scrX  \star , and \=\bfitS \^\scrX  \star = bdiag( \=\scrS \^\scrX  \star ) has full rank. Then the

relaxation problem in (3.6) has a minimizer (\scrZ  \star ,\scrL  \star ,\scrE  \star ), where

\scrZ  \star = \scrV \^\scrX  \star \ast \scrW \ast \scrV \top 
\^\scrX  \star 

and\scrL  \star = \scrU \^\scrX  \star \ast (\scrI  - \scrW ) \ast \scrU \top 
\^\scrX  \star 
,(3.7)

where \scrW is a tensor, which satisfies (i) \scrW is compatible with \scrS \^\scrX  \star , i.e., [ \=\bfitW ]i,j = 0 if [ \=\bfitS \^\scrX  \star ]i,i \not =
[\=\bfitS \^\scrX  \star ]j,j, where \=\bfitW = bdiag( \=\scrW ); and (ii) both \=\bfitW and \=\bfitI  - \=\bfitW are positive semidefinite. Con-
versely, let (\scrZ  \star ,\scrL  \star ,\scrE  \star ) be any optimal solution to the problem in (3.6). Then (\scrX  - \scrE  \star ,\scrE  \star ) is
a minimizer of the TRPCA problem in (2.1).

The proof of Theorem 3.3 can be found in Appendix C.

Remark 3.4. We first establish the theoretical performance guarantees for the proposed
tensor BTLRR (both noiseless and noisy cases), which are not studied in the matrix work
LatLRR. The main challenge is how to tackle the tensor algebra instead of the standard
matrix algebra. From the TSVD of the observed tensor data, Theorem 3.2 theoretically
provides the solution of the proposed noiseless BTLRR. Furthermore, Theorem 3.3 builds the
close connection between the solutions of our noisy BTLRR and TRPCA [31] and gives the
closed-form solution to problem (3.6).

In practice, we use the predenoised data as an estimate of \scrX  - \scrE and propose the following
robust BTLRR optimization model,

min
\scrZ ,\scrL ,\scrE 

\| \scrZ \| \ast + \| \scrL \| \ast + \lambda \| \scrE \| 1(3.8)

s.t.\scrX = \widetilde \scrX \ast \scrZ +\scrL \ast \widetilde \scrX + \scrE ,

where \widetilde \scrX denotes the predenoised tensor data obtained by a denoising method, e.g., TRPCA
[31].

3.3. Interpretation of BTLRR. Compared with LatLRR flattening the tensor data into
a matrix, the proposed BTLRR is capable of directly handling the tensor data, which can
preserve the multidimensional structures of tensor samples. More importantly, the proposed
bilateral tensor representation can fully exploit the complex relationships between tensor sam-
ples. Therefore, the proposed BTLRR is capable of effectively handling the insufficient tensor
samples problem. To show the advantage of our method in characterizing the relationship, we
give the expressions and involved entries for each tensor data entry in LatLRR and BTLRR
for comparison.
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LatLRR represents noiseless \bfitX as \bfitX =\bfitX \bfitZ +\bfitL \bfitX , where \bfitZ \in \BbbR n2\times n2 and \bfitL \in \BbbR n1n3\times n1n3 .
In LatLRR, each entry [\scrX ]i,j,k is expressed as

[\scrX ]i,j,k =

n2\sum 
j1=1

[\scrX ]i,j1,k \times [\bfitZ ]j1,j +

n1\sum 
i1=1

n3\sum 
k1=1

[\bfitL ](k - 1)n1+i,(i1 - 1)n3+k1
\times [\scrX ]i1,j,k1

,

where [\scrX ]i,j,k involves n2 + n1n3 entries (i.e., \scrX (i, :, k) and \scrX (:, j, :)) and requires n2
2 + n2

1n
2
3

parameters.
BTLRR represents \scrX as \scrX =\scrX \ast \scrZ +\scrL \ast \scrX , where \scrZ \in \BbbR n2\times n2\times n3 and \scrL \in \BbbR n1\times n1\times n3 . In

BTLRR, each entry [\scrX ]i,j,k is expressed as

[\scrX ]i,j,k =

k\sum 
k1=1

n2\sum 
j1=1

[\scrX ]i,j1,k+1 - k1
\times [\scrZ ]j1,j,k1

+

n3\sum 
k1=k+1

n2\sum 
j1=1

[\scrX ]i,j1,k+1+n3 - k1
\times [\scrZ ]j1,j,k1

+

k\sum 
k1=1

n1\sum 
i1=1

[\scrL ]i,i1,k+1 - k1
\times [\scrX ]i1,j,k1

+

n3\sum 
k1=k+1

n1\sum 
i1=1

[\scrL ]i,i1,k+1+n3 - k1
\times [\scrX ]i1,j,k1

,

where [\scrX ]i,j,k involves n2n3+n1n3 entries (i.e., \scrX (i, :, :) and \scrX (:, j, :)) and requires (n2
1+n2

2)n3

parameters.
According to the above entries' expressions, LatLRR only involves the entries \scrX (i, :, k),

which means that LatLRR just considers the interrelationship between samples. In contrast,
the proposed BTLRR involves \scrX (i, :, :), i.e., BTLRR not only explores the interrelationship
between samples but also the internal relationship embedded in each sample. Exploring the
internal relationship within the sample can help reveal the similarities and difference between
samples belonging to one cluster, which is beneficial for finding representative samples and
improving the clustering performance. Moreover, the proposed BTLRR adopts the tensor-
tensor product to transform the data samples into the frequency domain, which can help
reduce the noise and make the proposed method more robust to noise.

To numerically illustrate the advantage of BTLRR in characterizing the relationships
between tensor samples, we, respectively, perform BTLRR and LatLRR on the insufficient
tensor data and build the affinity matrices, which are shown in Figure 3. We also list the
relative errors between the affinity matrices estimated by BTLRR and LatLRR and the ground
truth (i.e., the block-diagonal matrix, where each block is the identity matrix with the proper
size). From Figure 3, one can see that the proposed BTLRR achieves the lower relative error
in estimating the affinity matrix for different numbers of samples. Meanwhile, the affinity
matrices obtained by our method have much clearer block-diagonal structures.

4. Proposed algorithm. In this work, we adapt the alternating direction method of mul-
tipliers (ADMM) [2, 5, 14, 25, 26, 27] to solve problem (3.8). However, directly applying
ADMM will be computationally expensive when the size n1 and sample number n2 are large,
as they require to compute the SVD of n3 matrices of sizes n1 \times n1 and n2 \times n2. Hence, to
reduce the computational cost, we provide an equivalent reformulation based on the subspace
projection for problem (3.8). Specifically, assume the skinny TSVD of \widetilde \scrX is \scrU \widetilde \scrX \ast \scrS \widetilde \scrX \ast \scrV \top \widetilde \scrX .

Defining \scrA = \scrU \widetilde \scrX \ast \scrS \widetilde \scrX \in \BbbR n1\times r \widetilde \scrX \times n3 , where r \widetilde \scrX = rank( \widetilde \scrX ), then we replace \widetilde \scrX and \scrZ of \widetilde \scrX \ast \scrZ 
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error = 0.814 error = 0.792 error = 0.766 error = 0.722

L
a
tL

R
R

error = 0.388 error = 0.335 error = 0.312 error = 0.306

B
T
L
R
R

s = 3 s = 5 s = 7 s = 9

Figure 3. Illustrations of the effects of LatLRR (first row) and BTLRR (second row) in handling the in-
sufficient tensor data. Here we generate an observed tensor as \scrX O = [\scrX 1,\scrX 2, . . . ,\scrX 10] with \scrX p = \scrD p \ast \scrT p

(p = 1,2, . . . ,10), where the entries of \scrD p \in \BbbR 100\times 10\times 10 and \scrT p \in \BbbR 10\times s\times 10 are randomly sampled from i.i.d.
\scrN (0,1). We randomly add the sparse noise with noise ratio 0.05. The number of samples (i.e., s) at each
subspace is less than the rank (r= 10) of each subspace, hence, the data samples are insufficient.

in (3.8) with \scrA and \scrZ \flat , respectively, where \scrZ \flat \in \BbbR r \widetilde \scrX \times n2\times n3 is a variable which will be opti-
mized. In a similar way, \scrL and \widetilde \scrX of \scrL \ast \widetilde \scrX in (3.8) can be, respectively, replaced with \scrL \flat and
\scrB = \scrS \widetilde \scrX \ast \scrV \top \widetilde \scrX \in \BbbR r \widetilde \scrX \times n2\times n3 , where \scrL \flat \in \BbbR n1\times r \widetilde \scrX \times n3 is a variable needing to be optimized. Then

problem (3.8) can be reformulated into the following problem:

min
\scrZ \flat ,\scrL \flat ,\scrE 

\| \scrZ \flat \| \ast + \| \scrL \flat \| \ast + \lambda \| \scrE \| 1(4.1)

s.t.\scrX =\scrA \ast \scrZ \flat +\scrL \flat \ast \scrB + \scrE .

Using the above reformulation, we only need to compute the SVD of matrices with smaller
sizes of n1\times r \widetilde \scrX and n2\times r \widetilde \scrX . The following Theorem 4.1 builds the relationship of solutions to
problems (3.8) and (4.1) to show the feasibility of such reformulation. The proof is performed
in Appendix D.

Theorem 4.1. Assume (\scrZ  \star 
\flat ,\scrL 

 \star 
\flat ,\scrE 

 \star ) is a minimizer to (4.1), then (\scrV \widetilde \scrX \ast \scrZ  \star 
\flat ,\scrL 

 \star 
\flat \ast \scrU 

\top \widetilde \scrX ,\scrE  \star ) is

a solution to Problem (3.8).

To solve (4.1), we introduce two auxiliary variables \scrZ \flat =\scrF and \scrL \flat =\scrP and minimize the
following augmented Lagrange function,

\| \scrF \| \ast + \| \scrP \| \ast + \lambda \| \scrE \| 1 + \langle \scrG ,\scrZ \flat  - \scrF \rangle + \rho 

2
\| \scrZ \flat  - \scrF \| 2F + \langle \scrQ ,\scrL \flat  - \scrP \rangle + \theta 

2
\| \scrL \flat  - \scrP \| 2F

+ \langle \scrY ,\scrX  - \scrA \ast \scrZ \flat  - \scrL \flat \ast \scrB  - \scrE \rangle + \mu 

2
\| \scrX  - \scrA \ast \scrZ \flat  - \scrL \flat \ast \scrB  - \scrE \| 2F ,(4.2)

where \scrY , \scrG , and \scrQ are the Lagrange multipliers, and \mu , \rho , and \theta are the nonnegative penalty
parameters. Finally, we solve the above unconstrained problem through alternately updating
\scrZ \flat , \scrL \flat , \scrF , \scrP , and \scrE by fixing other variables. Details of updating each variable are as follows.
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Updating \scrZ \flat : We minimize the following problem,

\scrZ \flat ,t+1 = argmin
\scrZ \flat 

\rho t
2

\bigm\| \bigm\| \bigm\| \bigm\| \scrZ \flat  - \scrF t +
\scrG t

\rho t

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

+
\mu t

2

\bigm\| \bigm\| \bigm\| \bigm\| \scrX  - \scrA \ast \scrZ \flat  - \scrL \flat ,t \ast \scrB  - \scrE t +
\scrY t

\mu t

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

(4.3)

=
\Bigl( 
\rho t\scrI + \mu t\scrA \top \ast \scrA 

\Bigr)  - 1
\ast 
\Bigl( 
\mu t\scrA \top \ast \scrA 1 + \rho t\scrF t  - \scrG t

\Bigr) 
,

where \scrA 1 = \scrX  - \scrL \flat ,t \ast \scrB + \scrY t/\mu t  - \scrE t. Based on the property \| \scrX \| 2F = 1
n3
\| \=\bfitX \| 2F and the fact

that \=\bfitX is block-diagonal, \scrZ \flat ,t+1 can be updated by computing \=\scrZ \flat ,t+1 first via

\=\scrZ (k)
\flat ,t+1 =

\=\scrZ (k)
1

\Bigl( 
\mu t( \=\scrA (k))\top \=\scrA (k)

1 + \rho t \=\scrF (k)
t  - \=\scrG (k)

t

\Bigr) 
,

where \scrZ 1 =
\bigl( 
\rho t\scrI + \mu t\scrA \top \ast \scrA 

\bigr)  - 1
. Then we can obtain \scrZ \flat ,t+1 = ifft( \=\scrZ \flat ,t+1, [ ],3).

Updating \scrL \flat : We minimize the following problem,

\scrL \flat ,t+1 = argmin
\scrL \flat 

\theta t
2

\bigm\| \bigm\| \bigm\| \bigm\| \scrL \flat  - \scrP t +
\scrQ t

\theta t

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

+
\mu t

2

\bigm\| \bigm\| \bigm\| \bigm\| \scrX  - \scrA \ast \scrZ \flat ,t+1  - \scrL \flat \ast \scrB  - \scrE t +
\scrY t

\mu t

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

(4.4)

=
\Bigl( 
\mu t\scrB 1 \ast \scrB \top + \theta t\scrP t  - \scrQ t

\Bigr) 
\ast 
\Bigl( 
\theta t\scrI + \mu t\scrB \ast \scrB \top 

\Bigr)  - 1
,

where \scrB 1 =\scrX  - \scrA \ast \scrZ \flat ,t+1 +\scrY t/\mu t  - \scrE t.
Updating \scrF : We minimize the following problem,

\scrF t+1 = argmin
\scrF 

\| \scrF \| \ast +
\rho t
2

\bigm\| \bigm\| \bigm\| \bigm\| \scrZ \flat ,t+1  - \scrF +
\scrG t

\rho t

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

,(4.5)

which can be solved via the tensor singular value thresholding operator [31], i.e.,

\scrF t+1 = \scrU 1 \ast \Phi 1/\rho t
(\scrS 1) \ast \scrV \top 

1 ,(4.6)

where \scrU 1 \ast \scrS 1 \ast \scrV \top 
1 is the TSVD of \scrZ \flat ,t+1 +\scrG t/\rho t, and \Phi \tau (\scrS ) = ifft(( \=\scrS  - \tau )+, [ ],3), in which

s+ =max\{ s,0\} .
Updating \scrP : We minimize the following problem,

\scrP t+1 = argmin
\scrP 

\| \scrP \| \ast +
\theta t
2

\bigm\| \bigm\| \bigm\| \bigm\| \scrL \flat ,t+1  - \scrP +
\scrQ t

\theta t

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

= \scrU 2 \ast \Phi 1/\theta t(\scrS 2) \ast \scrV \top 
2 ,(4.7)

where \scrU 2 \ast \scrS 2 \ast \scrV \top 
2 is the TSVD of \scrL \flat ,t+1 +\scrQ t/\theta t.

Updating \scrE : We minimize the following problem,

\scrE t+1 = argmin
\scrE 

\lambda \| \scrE \| 1 +
\mu t

2

\bigm\| \bigm\| \bigm\| \bigm\| \scrE  - \scrX +\scrA \ast \scrZ \flat ,t+1 +\scrL \flat ,t+1 \ast \scrB  - \scrY t

\mu t

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

=\Psi \lambda /\mu t

\bigl( 
\scrX  - \scrA \ast \scrZ \flat ,t+1  - \scrL \flat ,t+1 \ast \scrB +\scrY t/\mu t

\bigr) 
,(4.8)

where \Psi \lambda /\mu t
(\cdot ) denotes the soft-thresholding operator [7].

Updating \scrY , \scrG , and \scrQ : Update the multipliers by
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\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bfone . ADMM-based algorithm for solving (4.1).

\bfI \bfn \bfp \bfu \bft : Tensor data \scrX , \scrA = \scrU \widetilde \scrX \ast \scrS \widetilde \scrX and \scrB = \scrS \widetilde \scrX \ast \scrV \top \widetilde \scrX with skinny TSVD \scrU \widetilde \scrX \ast \scrS \widetilde \scrX \ast \scrV \top \widetilde \scrX of \widetilde \scrX .

\bfI \bfn \bfi \bft \bfi \bfa \bfl \bfi \bfz \bfe : \scrZ \flat =\scrF = 0, \scrL \flat =\scrP = 0, \scrE = 0, \scrY = 0, \scrG = 0, \scrQ = 0, \mu 0 = \rho 0 = \theta 0 > 0, \eta = 1.1,
and \varepsilon = 10 - 8.
\bfW \bfh \bfi \bfl \bfe not converged \bfd \bfo 

1. Update \scrZ \flat by (4.3).
2. Update \scrL \flat by (4.4).
3. Update \scrF by (4.6).
4. Update \scrP by (4.7).
5. Update \scrE by (4.8).
6. Update the multipliers by (4.9), (4.10), and (4.11).
7. Update the parameters (\mu t+1, \rho t+1, \theta t+1) = \eta (\mu t, \rho t, \theta t).
8. Check the convergence conditions:

max
\bigl( 
\| \scrX  - \scrA \ast \scrZ \flat ,t  - \scrL \flat ,t \ast \scrB  - \scrE t\| \infty ,\| \scrZ \flat ,t  - \scrF t\| \infty ,\| \scrL \flat ,t  - \scrP t\| \infty 

\bigr) 
< \varepsilon ,

\bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 

\bfO \bfu \bft \bfp \bfu \bft : \widehat \scrX =\scrA \ast \scrZ \flat ,t+1 +\scrL \flat ,t+1 \ast \scrB , \widehat \scrZ = \scrV \widetilde \scrX \ast \scrZ \flat ,t+1, \widehat \scrL =\scrL \flat ,t+1 \ast \scrU \top \widetilde \scrX , \widehat \scrE = \scrE t+1.

\scrY t+1 =\scrY t + \mu t(\scrX  - \scrA \ast \scrZ \flat ,t+1  - \scrL \flat ,t+1 \ast \scrB  - \scrE t+1),(4.9)

\scrG t+1 = \scrG t + \rho t(\scrZ \flat ,t+1  - \scrF t+1),(4.10)

\scrQ t+1 =\scrQ t + \theta t(\scrL \flat ,t+1  - \scrP t+1).(4.11)

The proposed algorithm for handling (4.1) is outlined in Algorithm 4.1. Therefore, we
first obtain the optimal minimizer (\scrZ  \star 

\flat ,\scrL 
 \star 
\flat ,\scrE 

 \star ) to problem (4.1), and then get the solution
(\scrV \widetilde \scrX \ast \scrZ  \star 

\flat ,\scrL 
 \star 
\flat \ast \scrU 

\top \widetilde \scrX ,\scrE  \star ) to problem (3.8).

4.1. Complexity analysis. Computing \scrZ \flat ,t+1 and \scrL \flat ,t+1 both cost \scrO (r \widetilde \scrX n1n2n3+r \widetilde \scrX (n1+
n2)n3 log(n3)). The major cost of computing \scrF t+1 involves an n3 SVD on r \widetilde \scrX \times n2 matrices
at the cost of \scrO (r2\widetilde \scrX n2n3) and the inverse DFT at the cost of \scrO (r\scrX n2n3 log(n3)). Similarly,

computing \scrP t+1 costs \scrO (r \widetilde \scrX n1n3(r \widetilde \scrX + log(n3))). When updating \scrE t+1, the main two steps
of computing tensor-tensor product cost \scrO ((r \widetilde \scrX + log(n3))n1n2n3). So Algorithm 4.1 takes
\scrO ((r \widetilde \scrX + log(n3))n1n2n3) at each iteration. However, directly solving the original (3.8) costs
\scrO ((n1+n2)(n

2
1+n2

2)n3+(n2
1+n1n2n

2
2)n3 log(n3)). Therefore, the reformulation (4.1) reduces

the cost complexity significantly---usually r \widetilde \scrX \ll min(n1, n2) holds.

4.2. Convergence guarantee. Now we give the convergence analysis of the proposed
algorithm in the following theorem, which is proved in Appendix E.

Theorem 4.2. Let \{ \scrH t\} = \{ \scrZ \flat ,t,\scrL \flat ,t,\scrE t,\scrF t,\scrG t,\scrP t,\scrQ t,\scrY t\} be the sequences generated by
Algorithm 4.1, then (i) there exists a limit point \scrH  \star = \{ \scrZ  \star 

\flat ,\scrL 
 \star 
\flat ,\scrE 

 \star ,\scrF  \star ,\scrG  \star ,\scrP  \star ,\scrQ  \star ,\scrY  \star \} satisfying
the Karush-Kuhn-Tucker conditions of (4.2), i.e.,
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\scrZ  \star 
\flat =\scrF  \star , \scrL  \star 

\flat =\scrP  \star , \scrA \top \ast \scrY  \star = \scrG  \star , \scrY  \star \ast \scrB \top =\scrQ  \star ,

\scrX =\scrA \ast \scrZ  \star 
\flat +\scrL  \star 

\flat \ast \scrB + \scrE  \star , \scrY  \star \in \lambda \partial \| \scrE  \star \| 1,\scrG  \star \in \partial \| \scrF  \star \| \ast , \scrQ 
 \star \in \partial \| \scrP  \star \| \ast 

and (ii) the sequences \{ \scrZ \flat ,t,\scrL \flat ,t,\scrE t,\scrF t,\scrP t\} are Cauchy sequences and thus converge to the
critical point of (4.2).

Remark 4.3. To solve the proposed tensor optimization problem, we develop an ADMM-
based algorithm and establish its theoretical convergence by exploiting the structure of the
proposed model and designing the updating rule of penalty parameters (see line 7 of Algorithm
1). The factor \eta is larger than 1 so that the boundedness requirement can be established in
the convergence proof.

5. Experimental results. In this section, we showcase the effectiveness of the proposed
BTLRR using extensive experiments on both subspace clustering and data recovery of mul-
tidimensional images. All simulations are performed using MATLAB R2018b on a desktop
with a 3.70 GHz Intel Core i7-8700 M CPU and 32 GB RAM.

5.1. Experimental settings.

5.1.1. Baselines. We compare BTLRR with some relevant baselines. For the subspace
clustering task, baselines include LRR [29], SSC [9], LatLRR [30], block diagonal representa-
tion (BDR) [32], and TLRR [62].

For the data recovery task, baselines include RPCA [3], LatLRR [30], high-order RPCA
(HoRPCA) [13], TRPCA [31], and TLRR [62].

5.1.2. Algorithm settings. The proposed BTLRR involves two parameters, i.e., the regu-
larization parameter \lambda and the penalty parameter \mu . Empirically, the parameter \lambda is selected
from one of the values in \{ a/

\sqrt{} 
max(n1, n2)n3\} , where a = [0.6 : 0.2 : 3]. The parameter \mu is

selected from one value of \{ 0.001,0.005,0.01,0.05\} . For the parameter settings of baselines,
we mainly follow the corresponding papers' suggestions and take proper parameters to obtain
their best performance under our experimental settings.

For the dictionary-based methods, e.g., the works in [29, 62], a high-quality dictionary
is very important to the methods' performance. Indeed, we can use the raw observed data
as the dictionary---that is similar to the scheme in LRR [29]. However, when the data are
grossly corrupted, choosing the observed data as the dictionary would drop the performance.
Therefore, in this work, we select the result \widetilde \scrX by applying TRPCA onto the observed \scrX as
the dictionary for TLRR and our BTLRR. Similarly, for LRR and LatLRR, the dictionary is
set as the estimation by RPCA.

5.1.3. Metrics. In the clustering experiments, we use three metrics, including accuracy
(ACC) [9], normalized mutual information (NMI) [46], and purity (PUR) [36]. ACC computes
the accuracy of the best matching permutation between the clustered and the ground-truth
labels. NMI measures the mutual dependence between the clustered and true labels. PUR is
calculated by the percentage of the number of correctly matched labels over the total number
of data points. Higher ACC, NMI, and PUR values demonstrate higher clustering accuracy.
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In the data recovery, we use the peak signal-to-noise ratio (PSNR) and the structural
similarity (SSIM) [49] as the denoising performance metrics. PSNR generally measures the
error between the corresponding pixels of original and estimated images, SSIM is used for
measuring the similarity between images. Higher PSNR and SSIM values indicate better
recovered quality.

5.2. Synthetic data experiments. Here, we present the synthetic data simulations, in-
cluding clustering and recovery, to demonstrate the effectiveness of the proposed method.
The procedures of generating \scrX O and \scrX H are detailed as follows: (1) we first generate three
kinds of tensors \scrD i \in \BbbR n1\times r\times n3 , \scrT i \in \BbbR r\times s1\times n3 , and \scrK i \in \BbbR r\times s2\times n3 (i = 1, . . . , I) following
the i.i.d. Gaussian distribution with unit variance and zero mean; (2) we then generate the
observed tensor data by \scrX O = [\scrD 1 \ast \scrT 1, . . . ,\scrD I \ast \scrT I ] \in \BbbR n1\times Is1\times n3 , and the hidden tensor data
by \scrX H = [\scrD 1 \ast \scrK 1, . . . ,\scrD I \ast \scrK I ]\in \BbbR n1\times Is2\times n3 .

5.2.1. Data recovery. In this simulation, we test the effect of the hidden tensor data. We
consider two observed tensors: one is of size 40\times 20\times 20 by setting n1 = 40, n3 = 20, I = 5,
r = 5, and s1 = 4; one is of size 50\times 16\times 30 by setting n1 = 50, n3 = 30, I = 4, r = 6, and
s1 = 4. Since the number of samples of each subspace is less than the corresponding subspace
rank, each observed datum is insufficient. For each subspace, we also generate the hidden
tensor data as \scrD i \ast \scrK i \in \BbbR n1\times s2\times n3 for i = 1, . . . , I. We randomly add the sparse noise with
noise ratio (NR)= 0.1. Figure 4 shows the recovery performance of TLRR and BTLRR under
the cases with/without hidden tensor data. One can get that (1) with the hidden tensor data,
the denoising performance of both TLRR and the proposed BTLRR can be improved; (2)
our BTLRR can achieve the better restored results than TLRR with the hidden tensor data.

30

35

40
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N

R

TLRR (no hidden data)
TLRR (with hidden data)
BTLRR (no hidden data)
BTLRR (with hidden data)

2 4 6 8
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Figure 4. Illustration of the improved recovery performance of the hidden effects.
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One can conclude that taking the hidden tensor data into account, the proposed method can
resolve the insufficient data problem.

5.2.2. Subspace clustering. We test the clustering performance of TLRR and the pro-
posed method on two data size cases. One size is that we set n1 = 20, n3 = 10, the total
number of subspaces I = 5, the rank of each subspace r= 5, and the number of sample s1 = 4,
then we get a tensor of data with a size of 20\times 20\times 10. The another one is of size 30\times 60\times 20
by setting n1 = 30, n3 = 20, I = 10, r= 10, and s1 = 6. We randomly set the pixels to random
values in [0,1] with NR from 0.05 to 1. Figure 5 presents the clustering accuracy of TLRR
and BTLRR under different noise levels. One can see that BTLRR is more robust than TLRR
under sparse corruption, i.e., the robustness of TLRR can be improved by incorporating the
hidden tensor data.

5.3. Subspace clustering experiments. In this subsection, we test the clustering perfor-
mance of the proposed method. The subspace clustering aims at grouping the observed data
into different clusters by exploring the correlation among each sample belonging to one group.
For the matrix-based methods, we form a matrix where each column is the vectorization of
each image and then perform the matrix clustering methods to get the affinity matrix \bfitZ .
For the tensor-based methods, we arrange each image as the lateral slice to get a third-order
tensor, perform the tensor clustering methods to get the learned coefficient tensor \scrZ  \star , and
get \bfitZ constructed by (1.2). Then, we use NCut [41] to obtain the clustering results. The
used multidimensional image datasets in this section are described in Table 1, and the image
samples are shown in Figure 6.

0.2 0.4 0.6 0.8 1
NR

0.2

0.4

0.6

0.8

1

A
C

C

TLRR
BTLRR

0.2 0.4 0.6 0.8 1
NR

0.2

0.4

0.6

0.8

1

A
C

C

TLRR
BTLRR

(a) 20× 20× 10 (b) 30× 60× 20

Figure 5. Illustration of the robustness of the proposed method under different noises.

Table 1
Descriptions of three clustering datasets.

Datasets \# Total image Size \# Class \# Per Class

UCSD 1200 32\times 32 18 \approx 66
YaleB 840 80\times 60 28 30
MIT 3240 32\times 32 10 324
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Figure 6. Image samples of clustering datasets. From top to bottom: UCSD, YaleB, and MIT, respectively.

Table 2
Clustering results (ACC, NMI, PUR) on the UCSD dataset under different NRs.

NRs Metrics SSC BDR LRR LatLRR TLRR BTLRR

0.1 ACC 0.7314 0.6220 0.8323 0.8400 0.8111 0.8910
NMI 0.8430 0.5884 0.8946 0.9132 0.8722 0.9195
PUR 0.8105 0.6663 0.8772 0.8842 0.8647 0.9076

0.2 ACC 0.5840 0.4960 0.7687 0.8138 0.7443 0.8624
NMI 0.6548 0.4877 0.8082 0.8602 0.7619 0.9052
PUR 0.6782 0.5433 0.8095 0.8578 0.7993 0.8888

(a) SSC (b) BDR (c) LRR (d) LatLRR (e) TLRR (f) BTLRR

Figure 7. The comparison of block-diagonal structures learned by different methods for the UCSD dataset
under NR = 0.1.

5.3.1. UCSD dataset. The first experiment that we use is the University of California
San Diego (UCSD)1 scene dataset. This database contains 1200 different environment images
with size 32\times 32 for 18 video sequences. We set the random sparse noise as NR = 0.1 and 0.2.

From Table 2, one can see that the proposed algorithm achieves the most promising
performance over various metrics under different noise levels. Figure 7 plots the block-diagonal
structure of the affinity matrix obtained by different methods. One can see that the proposed
BTLRR admits the clearer block-diagonal structure than other methods, which indicates the
superiority of learning the correlation along samples of our method.

5.3.2. YaleB dataset. The second experiment uses a subscene of the YaleB dataset [12].
The used YaleB dataset has 840 face images over 28 subjects under different lighting conditions

1Statistical Visual Computing Lab UC San Diego, http://www.svcl.ucsd.edu/projects/background
subtraction/ ucsdbgsub dataset.htm.
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Table 3
Clustering results (ACC, NMI, PUR) on the YaleB dataset under different NRs.

NRs Metrics SSC BDR LRR LatLRR TLRR BTLRR

0.1 ACC 0.7642 0.6774 0.8044 0.8162 0.8205 0.8490
NMI 0.8682 0.7805 0.8950 0.9011 0.9002 0.9093
PUR 0.7961 0.7262 0.8371 0.8468 0.8457 0.8675

0.2 ACC 0.7243 0.4232 0.6204 0.7876 0.8070 0.8408
NMI 0.8430 0.5227 0.7283 0.8833 0.8893 0.8988
PUR 0.7640 0.4662 0.6537 0.8195 0.8352 0.8571
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Figure 8. Clustering results on the YaleB data under different noises.

and various facial expressions, where each subject contains about 30 expressions with size
80\times 60. We randomly set the pixels to values in [0,1] with the NR from 0.05 to 0.3.

Table 3 lists the detailed ACC, NMI, and PUR metrics of all algorithms under NR = 0.1
and 0.2. One can see that our BTLRR achieves the highest metrics in all cases. We also
test the performance of all methods on different NRs that range from 0.05 to 0.3. Figure 8
displays the clustering results under different noises. One can see that the proposed method
outperforms the baselines in all cases, showing the promising performance.

5.3.3. MIT dataset. For the third experiment, we use the MIT face dataset, which con-
tains a total of 3240 images for 10 subjects. Each one has 324 images with size 32\times 32. The
sparse noise with NR = 0.1 or 0.2 is randomly added to the observed data.

Table 4 shows the reconstruction performance of different methods under NR = 0.1 and
0.2. Similarly to the previous experiment, the proposed BTLRR achieves the highest values
over different metrics. This superiority leads to the better visual block-diagonal effect, as
shown in Figure 9. One can see that the proposed method admits the superior ability to
explore the subspace membership of samples and the relationship among features.

The superior performance of the proposed method lies in two aspects. (1) BTLRR can pre-
serve the multidimensional structure of the tensor data, while matrix-type methods unfold the
tensor data along one certain mode, resulting in structural damage and limited performance.
(2) By introducing the hidden data, our method can fully explore the samples similarity and
features relationship, while TLRR only uses the similarity between samples.
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Table 4
Clustering results (ACC, NMI, PUR) on the MIT dataset under different NRs.

NRs Metrics SSC BDR LRR LatLRR TLRR BTLRR

0.1 ACC 0.5123 0.1735 0.5769 0.5815 0.8466 0.9031
NMI 0.5456 0.0375 0.7103 0.7059 0.8311 0.9366
PUR 0.5564 0.1927 0.6664 0.6707 0.8466 0.9031

0.2 ACC 0.2374 0.1429 0.5535 0.5764 0.8127 0.8929
NMI 0.1583 0.0155 0.6806 0.6941 0.8158 0.9200
PUR 0.2501 0.1524 0.6475 0.6662 0.8241 0.8929

(a) SSC (b) BDR (c) LRR (d) LatLRR (e) TLRR (f) BTLRR

Figure 9. The comparison of block-diagonal structures learned by different methods for the MIT dataset
under NR = 0.1.

5.4. Data recovery experiments. We test our method on the multidimensional image
recovery. The testing datasets include the multispectral images (MSIs) and videos.

5.4.1. MSI dataset. In the first data recovery experiment, the MSI database CAVE,2

consisting of 32 scenes, is used. Each MSI datum is with size of 256\times 256\times 31. We set the
values of each image in [0,1], and the sparse noise with NR = 0.2 and 0.3 is also added.

Figure 10 shows the images recovered by all methods. One can see that RPCA, LatLRR,
and HoRPCA both have undesired stripe noise in the recovered images. The methods TRPCA
and TLRR work reasonably well. However, the images obtained by the proposed method are
visually closer to the original ones, and our BTLRR outperforms the baselines in terms of
keeping the edges and details of recovered images. Figure 11 plots the denoising performance
for all images. One can see that the proposed method achieves the highest PSNR and SSIM
values in most scenarios. More detailed numerical comparisons under different noise levels
for some images can be found in Table 5. One can see that the proposed method stands out
under most metrics and cases.

5.4.2. Video dataset. For the second data recovery experiment, we test the performance
of our method on videos, including hall, salesman, suzie, foreman, and news. The size of each
video is 144\times 176\times 150. We also randomly add the sparse noise with NR = 0.2.

Table 6 lists the numerical results for recovering the videos by all methods. The recovered
values are averaged by all the frames. One can see that the proposed method obtains the
highest PSNR and SSIM values for all videos. We also plot the PSNR and SSIM curves w.r.t.
each frame of recovered results by all methods in Figure 12. Obviously, the proposed method
achieves the highest PSNR and SSIM values in most frames. Figure 13 shows the estimated

2https://cave.cs.columbia.edu/repository/Multispectral.
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(a) Noisy (b) RPCA (c) LatLRR (d) HoRPCA (e) TRPCA (f) TLRR (g) BTLRR (h) Original

Figure 10. Denoising results (R:30th band, G:20th band, B:10th band) on three MSIs under NR = 0.3.
From top to bottom: cd, beads, and cloth, respectively.
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Figure 11. Denoising performance on all MSIs under NR = 0.3. Top: PSNR (dB); bottom: SSIM.
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Table 5
Recovery performance (PSNR, SSIM) on MSIs under different NRs.

Images Metrics RPCA LatLRR HoRPCA TRPCA TLRR BTLRR

Toy (NR = 0.2) PSNR 27.17 29.71 28.79 41.71 43.91 47.68
SSIM 0.8909 0.9162 0.9283 0.9906 0.9912 0.9940

Feather (NR = 0.2) PSNR 26.72 30.16 26.91 38.90 41.63 44.72
SSIM 0.8999 0.9256 0.9127 0.9858 0.9878 0.9915

Flowers (NR = 0.2) PSNR 27.60 30.94 28.13 39.73 42.86 45.60
SSIM 0.8676 0.8943 0.9056 0.9846 0.9860 0.9893

Beads (NR = 0.3) PSNR 21.36 22.34 21.84 28.27 23.43 31.48
SSIM 0.6156 0.6219 0.7137 0.8439 0.5836 0.9127

Flowers (NR = 0.3) PSNR 26.40 28.73 26.92 36.18 38.55 40.25
SSIM 0.8086 0.8042 0.8694 0.9289 0.9434 0.9633

Table 6
Recovery performance (PSNR, SSIM) on videos under NR = 0.2.

Videos Metrics RPCA LatLRR HoRPCA TRPCA TLRR BTLRR

Hall PSNR 23.31 26.53 25.37 32.73 34.55 36.12
SSIM 0.8236 0.8803 0.8991 0.9744 0.9784 0.9808

Salesman PSNR 26.42 28.97 29.03 36.37 38.20 39.74
SSIM 0.7822 0.8468 0.8868 0.9692 0.9763 0.9816

Suzie PSNR 27.02 30.89 27.62 32.95 34.91 35.59
SSIM 0.8263 0.8799 0.8587 0.9287 0.9385 0.9414

Foreman PSNR 23.72 25.66 25.65 30.27 32.23 33.10
SSIM 0.7156 0.7787 0.8355 0.9184 0.9157 0.9220

News PSNR 21.70 25.33 23.04 31.39 33.56 34.83
SSIM 0.7864 0.8438 0.8463 0.9584 0.9679 0.9732

videos. One can see that all methods work to a certain extent, outputting less noise images
compared to the observed ones. Nevertheless, one can see that the method LatLRR has
noise in the recovered videos. The methods RPCA and HoRPCA oversmooth the recovered
images. The methods TRPCA and TLRR obtain the smooth regions. In comparison, the
proposed BTLRR seems to perform better in preserving the sharp edges and smoothness of
the recovered videos.

5.5. Discussions.

5.5.1. Parameter analysis. In Figure 14, we show the sensitivity of the proposed method
w.r.t. two parameters \lambda and \mu for data recovery on two sets of data cd (NR = 0.3) and hall
(NR = 0.2). One can see that our method can achieve similar high metrics in a relatively wide
range of two parameters. Hence, the proposed method is robust to the change of parameters
\lambda and \mu .

5.5.2. Numerical convergence. In Theorem 4.2, we analysis the convergence behavior
of the proposed algorithm. In Figure 15, we present the error values of Error = max(\| \scrX  - 
\scrA \ast \scrZ \flat ,t  - \scrL \flat ,t \ast \scrB  - \scrE t\| \infty ,\| \scrZ \flat ,t  - \scrF t\| \infty ,\| \scrL \flat ,t  - \scrP t\| \infty ) on tensor data clustering (NR = 0.1)
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Figure 12. PSNR and SSIM values of each frame of recovered videos by different methods under NR = 0.2.

(a) Noisy (b) RPCA (c) LatLRR (d) HoRPCA (e) TRPCA (f) TLRR (g) BTLRR (h) Original

Figure 13. Denoising results on three videos under NR = 0.2. From top to bottom: hall (the 115th frame),
news (the 77th frame), and salesman (the 4th frame), respectively.
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Figure 14. PSNR (dB) and SSIM values of recovered images under different data, \lambda , and \mu .
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Figure 15. Numerical convergence performance of our algorithm.

and recovery (NR = 0.3). One can see that the error curves rapidly reach a low value, which
demonstrates the numerical convergence performance of the proposed method.

6. Conclusion. In this work, by introducing the hidden tensor data, we propose the
BTLRR method for handling the problem of insufficient data. Under mild conditions, we
provide the closed-form solutions of the proposed model under both noisy/noiseless cases.
Meanwhile, we recover the hidden tensor data effects by optimizing a convex TNN problem,
which can be solved efficiently. The proposed BTLRR takes into account the bilateral infor-
mation, i.e., the similarity between samples and the relationship among features. Experiments
on two important multidimensional image analysis tasks (including clustering and recovery)
and various datasets demonstrate the superior performance improvements of our BTLRR.

Appendix A. Proof of Theorem 3.1. We first give the following lemma introduced in
[62].

Lemma A.1 (see [62]). Assume that \scrX O = \scrA \ast \scrZ with \scrA \not = 0 has feasible solutions, then
problem (1.1) admits the unique minimizer as follows,

\scrZ  \star =\scrA \dagger \ast \scrX O,

where \scrA \dagger is the pseudoinverse of \scrA .

Based on Lemma A.1, we detail the proof of Theorem 3.1.

Proof. Based on the definition of the skinny TSVD, one can calculate that the equation
\scrX O = [\scrX O,\scrX H ] \ast \scrZ O,H is equal to \scrU \ast \scrS \ast \scrV \top 

O = \scrU \ast \scrS \ast \scrV \top \ast \scrZ O,H , which can also be calculated
as \scrV \top 

O = \scrV \top \ast \scrZ O,H , where \scrV = [\scrV O;\scrV H ] and \scrV O and \scrV H , respectively, correspond to \scrX O and
\scrX H . So problem (1.3) can be equally reformulated as the following optimization problem:

min
\scrZ O,H

\| \scrZ O,H\| \ast s.t. \scrV \top 
O = \scrV \top \ast \scrZ O,H .

By Lemma A.1, problem (1.3) admits a unique minimizer

\scrZ  \star 
O,H = \scrV \ast \scrV \top 

O = [\scrV O \ast \scrV \top 
O ;\scrV H \ast \scrV \top 

O ].

According to \scrZ  \star 
O,H = [\scrZ  \star 

O;\scrZ  \star 
H ], we have the conclusions.
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Appendix B. Proof of Theorem 3.2. We first present one lemma from [62].

Lemma B.1. For any four tensors \scrG i, i = 1, . . . ,4 of compatible dimensions, the following
inequality holds: \bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \scrG 1 \scrG 2

\scrG 3 \scrG 4

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
\ast 
\geq \| \scrG 1\| \ast + \| \scrG 4\| \ast .

We further obtain the following property.

Proposition B.2. For any four tensors \scrG i, i= 1, . . . ,4 of compatible dimensions, the follow-
ing inequality holds, \bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \scrG 1 \scrG 2

\scrG 3 \scrG 4

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
\ast 
\geq \| \scrG 1\| \ast ,

where the equality holds if and only if \scrG i = 0, i= 2,3,4.

Proof. According to the definition of TNN for any two tensors \scrH 1 and \scrH 2, we have

\| [\scrH 1,\scrH 2]\| \ast =
1

n3

n3\sum 
k=1

\| [ \=\scrH (k)
1 , \=\scrH (k)

2 ]\| \ast 

\geq 1

n3

n3\sum 
k=1

\| \=\scrH (k)
1 \| \ast 

= \| \scrH 1\| \ast 

and/or

\| [\scrH 1;\scrH 2]\| \ast =
1

n3

n3\sum 
k=1

\| [ \=\scrH (k)
1 ; \=\scrH (k)

2 ]\| \ast 

\geq 1

n3

n3\sum 
k=1

\| \=\scrH (k)
1 \| \ast 

= \| \scrH 1\| \ast ,

where the equality holds if and only if \scrH 2 = 0. Then we can simply complete the proof.

Then we provide the following lemma.

Lemma B.3. For any tensor \scrY \in \BbbR n\times n\times n3, we have \| \scrY \| \ast \geq 1
n3
tr( \=\bfitY ), where the equality

holds if and only if \=\bfitY is positive semidefinite and symmetric.

Proof. The proof is simply based on the definition of TNN, Lemma B.1, Proposition B.2,
and [57, Lemma 4], so we omit it.

Transforming from (3.4) by eliminating \scrL therein, according to Lemma A.1, we may
consider the following unconstrained problem:

min
\scrZ 

f(\scrZ )\triangleq \| \scrZ \| \ast + \| \scrX \ast (\scrI  - \scrZ ) \ast \scrX \dagger \| \ast .(B.1)

Then we have the following result.
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Lemma B.4. Assume that \scrU \scrX \ast \scrS \scrX \ast \scrV \top 
\scrX is the skinny TSVD of \scrX , and \=\bfitS \scrX = bdiag( \=\scrS \scrX ) has

full rank. The optimization problem (B.1) has a minimum objective function value rank(\scrX ).

Proof. From [31], the set of subgradients of the TNN of a tensor \scrZ is

\partial \scrZ \| \scrZ \| \ast = \{ \scrU \scrZ \ast \scrV \top 
\scrZ +\scrM | \scrU \top 

\scrZ \ast \scrM = \bfzero ,\scrM \ast \scrV \scrZ = \bfzero ,\| \scrM \| \leq 1\} ,

where \bfzero denotes the zero tensor, \| \scrM \| is the tensor spectral norm [31], and \scrU \scrZ \ast \scrS \scrZ \ast \scrV \top 
\scrZ is

the skinny TSVD of the tensor \scrZ . Next, we prove that \scrZ  \star = 1/2\scrX \dagger \ast \scrX is a minimizer to
(B.1). One needs to show that

\bfzero \in \partial \scrZ f(\scrZ  \star )

= \partial \scrZ \| \scrZ  \star \| \ast + \partial \scrZ \| \scrX \ast (\scrI  - \scrZ  \star ) \ast \scrX \dagger \| \ast 
= \partial \scrZ \| \scrZ  \star \| \ast  - \scrX \top \ast \partial \scrX \ast (\scrI  - \scrZ )\ast \scrX \dagger \| \scrX \ast (\scrI  - \scrZ  \star ) \ast \scrX \dagger \| \ast \ast (\scrX \dagger )\top .

Note that \scrU \scrX \ast (1/2\scrI ) \ast \scrU \top 
\scrX =\scrX \ast (\scrI  - \scrZ  \star ) \ast \scrX \dagger is the skinny TSVD of \scrX \ast (\scrI  - \scrZ  \star ) \ast \scrX \dagger , and

\scrV \scrX \ast (1/2\scrI ) \ast \scrV \top 
\scrX =\scrZ  \star is the skinny TSVD of \scrZ  \star , where \scrU \scrX \ast \scrS \scrX \ast \scrV \top 

\scrX is the skinny TSVD of
\scrX . Therefore, \partial \scrZ f(\scrZ  \star ) contains

\scrV \scrX \ast \scrV \top 
\scrX  - \scrX \top \ast \scrU \scrX \ast \scrU \top 

\scrX \ast (\scrX \dagger )\top 

= \scrV \scrX \ast \scrV \top 
\scrX  - \scrV \scrX \ast \scrS \scrX \ast \scrU \top 

\scrX \ast \scrU \scrX \ast \scrU \top 
\scrX \ast \scrU \scrX \ast \scrS \dagger 

\scrX \ast \scrV \top 
\scrX 

= \bfzero .

Substituting \scrZ  \star = 1/2\scrX \dagger \ast \scrX into (B.1), we can get the minimum objective function value
rank(\scrX ).

Next, we provide the form of the optimal solution to (B.1).

Lemma B.5. Assume that \scrU \scrX \ast \scrS \scrX \ast \scrV \top 
\scrX is the skinny TSVD of \scrX , and \=\bfitS \scrX = bdiag( \=\scrS \scrX )

has full rank. The optimal solutions to the unconstrained optimization problem (B.1) can be
written as \scrZ  \star = \scrV \scrX \ast \scrW \ast \scrV \top 

\scrX .

Proof. Let (\scrV \scrX )\bot be the orthogonal complement of \scrV \scrX . According to Lemma B.4, rank(\scrX )
is the minimum objective function value of (B.1). Thus we get

rank(\scrX )

= \| \scrZ  \star \| \ast + \| \scrX \ast (\scrI  - \scrZ  \star ) \ast \scrX \dagger \| \ast 

=

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \scrV \top 
\scrX 

(\scrV \scrX )
\top 
\bot 

\biggr] 
\ast \scrZ  \star \ast 

\bigl[ 
\scrV \scrX , (\scrV \scrX )\bot 

\bigr] \bigm\| \bigm\| \bigm\| \bigm\| 
\ast 
+ \| \scrX \ast (\scrI  - \scrZ  \star ) \ast \scrX \dagger \| \ast 

=

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \scrV \top 
\scrX \ast \scrZ  \star \ast \scrV \scrX \scrV \top 

\scrX \ast \scrZ  \star \ast (\scrV \scrX )\bot 
(\scrV \scrX )

\top 
\bot \ast \scrZ  \star \ast \scrV \scrX (\scrV \scrX )

\top 
\bot \ast \scrZ  \star \ast (\scrV \scrX )\bot 

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
\ast 
+ \| \scrX \ast (\scrI  - \scrZ  \star ) \ast \scrX \dagger \| \ast 

\geq \| \scrV \top 
\scrX \ast \scrZ  \star \ast \scrV \scrX \| \ast + \| \scrU \scrX \ast \scrS \scrX \ast \scrV \top 

\scrX \ast (\scrI  - \scrZ  \star ) \ast \scrV \scrX \ast \scrS \dagger 
\scrX \ast \scrU \top 

\scrX \| \ast 
= \| \scrV \scrX \ast \scrV \top 

\scrX \ast \scrZ  \star \ast \scrV \scrX \ast \scrV \top 
\scrX \| \ast 

+ \| \scrU \scrX \ast \scrS \scrX \ast \scrV \top 
\scrX \ast (\scrI  - \scrV \scrX \ast \scrV \top 

\scrX \ast \scrZ  \star \ast \scrV \scrX \ast \scrV \top 
\scrX ) \ast \scrV \scrX \ast \scrS \dagger 

\scrX \ast \scrU \top 
\scrX \| \ast 

= \| \scrV \scrX \ast \scrV \top 
\scrX \ast \scrZ  \star \ast \scrV \scrX \ast \scrV \top 

\scrX \| \ast + \| \scrX \ast (\scrI  - \scrV \scrX \ast \scrV \top 
\scrX \ast \scrZ  \star \ast \scrV \scrX \ast \scrV \top 

\scrX ) \ast \scrX \dagger \| \ast 
\geq rank(\scrX ),
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where the last inequality holds by viewing \scrZ = \scrV \scrX \ast \scrV \top 
\scrX \ast \scrZ  \star \ast \scrV \scrX \ast \scrV \top 

\scrX as a feasible solution
to (B.1). Then all inequalities must be equalities. By Proposition B.2, we have

\scrV \top 
\scrX \ast \scrZ  \star \ast (\scrV \scrX )\bot = (\scrV \scrX )

\top 
\bot \ast \scrZ  \star \ast \scrV \scrX = (\scrV \scrX )

\top 
\bot \ast \scrZ  \star \ast (\scrV \scrX )\bot = \bfzero .

That is \biggl[ 
\scrV \top 
\scrX 

(\scrV \scrX )
\top 
\bot 

\biggr] 
\ast \scrZ  \star \ast 

\bigl[ 
\scrV \scrX , (\scrV \scrX )\bot 

\bigr] 
=

\biggl[ 
\scrW \bfzero 
\bfzero \bfzero 

\biggr] 
,

where \scrW = \scrV \top 
\scrX \ast \scrZ  \star \ast \scrV \scrX . Hence the following equality,

\scrZ  \star =
\bigl[ 
\scrV \scrX , (\scrV \scrX )\bot 

\bigr] 
\ast 
\biggl[ 
\scrW \bfzero 
\bfzero \bfzero 

\biggr] 
\ast 
\biggl[ 

\scrV \top 
\scrX 

(\scrV \scrX )
\top 
\bot 

\biggr] 
= \scrV \scrX \ast \scrW \ast \scrV \top 

\scrX ,

holds.

Based on the above lemmas and proposition, we present the following lemma that gives
the whole closed-form solutions to the unconstrained optimization problem (B.1).

Lemma B.6. Assuming that \scrU \scrX \ast \scrS \scrX \ast \scrV \top 
\scrX is the skinny TSVD of the tensor \scrX and \=\bfitS \scrX =

bdiag( \=\scrS \scrX ) has full rank, the solutions to the unconstrained optimization problem (B.1) are
\scrZ  \star = \scrV \scrX \ast \scrW \ast \scrV \top 

\scrX , where the tensor \scrW satisfies (1) \scrW is compatible with \scrS \scrX , i.e., [ \=\bfitW ]i,j = 0
if [ \=\bfitS \scrX ]i,i \not = [\=\bfitS \scrX ]j,j, where \=\bfitW = bdiag( \=\scrW ); (2) both \=\bfitW and \=\bfitI  - \=\bfitW are positive semidefinite.

Proof. First, we prove the necessity. Suppose \scrZ  \star is a minimizer. By Lemma B.5, \scrZ  \star can
be written as \scrZ  \star = \scrV \scrX \ast \scrW \ast \scrV \top 

\scrX . We show that \=\bfitW satisfies the stated conditions. According
to Lemma B.3, we have

rank(\scrX )

= \| \scrZ  \star \| \ast + \| \scrX \ast (\scrI  - \scrZ  \star ) \ast \scrX \dagger \| \ast 
= \| \scrW \| \ast + \| \scrS \scrX \ast (\scrI  - \scrW ) \ast \scrS \dagger 

\scrX \| \ast 
\geq \| \scrW \| \ast + 1/n3tr(\=\bfitS \scrX (\=\bfitI  - \=\bfitW )\=\bfitS 

\dagger 
\scrX )

= \| \scrW \| \ast + 1/n3tr(\=\bfitI  - \=\bfitW )

= \| \scrW \| \ast + rank(\scrX ) - 1/n3tr( \=\bfitW )

\geq rank(\scrX ).

Then the all inequalities must be equalities. From \| \scrW \| \ast = 1/n3tr( \=\bfitW ) and Lemma B.3, we
get that \=\bfitW is positive semidefinite. By the first inequality and Lemma B.3 and [57, Lemma

4], we get that \=\bfitS \scrX (\=\bfitI  - \=\bfitW )\=\bfitS 
\dagger 
\scrX is positive semidefinite and symmetric, i.e.,

[ \=\bfitS \scrX ]i,i
[ \=\bfitS \scrX ]j,j

[\=\bfitI  - \=\bfitW ]i,j =
[\=\bfitS \scrX ]j,j
[ \=\bfitS \scrX ]i,i

[\=\bfitI  - \=\bfitW ]i,j ,

then \=\bfitW i,j = 0 if [\=\bfitS \scrX ]i,i \not = [\=\bfitS \scrX ]j,j . Notice that \=\bfitI  - \=\bfitW = \=\bfitS \scrX (\=\bfitI  - \=\bfitW )\=\bfitS 
\dagger 
\scrX , then

\=\bfitI  - \=\bfitW is also
positive semidefinite.
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48 DING, ZHAO, YANG, ZHOU, AND NG

Next, we prove the sufficiency. Suppose that \scrZ  \star = \scrV \scrX \ast \scrW \ast \scrV \top 
\scrX satisfies all conditions in

the theorem. Substituting \scrZ  \star into the objective function, we have

\| \scrZ  \star \| \ast + \| \scrX \ast (\scrI  - \scrZ  \star ) \ast \scrX \dagger \| \ast 
= \| \scrW \| \ast + \| \scrS \scrX \ast (\scrI  - \scrW ) \ast \scrS \dagger 

\scrX \| \ast 
= \| \scrW \| \ast + 1/n3tr(\=\bfitS \scrX (\=\bfitI  - \=\bfitW )\=\bfitS 

\dagger 
\scrX )

= \| \scrW \| \ast + 1/n3tr(\=\bfitI  - \=\bfitW )

= \| \scrW \| \ast + rank(\scrX ) - 1/n3tr( \=\bfitW )

= rank(\scrX )

=min
\scrZ 

\| \scrZ \| \ast + \| \scrX \ast (\scrI  - \scrZ ) \ast \scrX \dagger \| \ast .

Based on Lemma B.3, since \=\bfitI  - \=\bfitW = \=\bfitS \scrX (\=\bfitI  - \=\bfitW )\=\bfitS 
\dagger 
\scrX , and both \=\bfitW and \=\bfitI  - \=\bfitW are positive

semidefinite, the second and fifth equalities hold. This completes the proof.

Next, we prove Theorem 3.2.

Proof. Let \scrW satisfy all the conditions in the theorem. Since the row space of \scrZ  \star =
\scrV \scrX \ast \scrW \ast \scrV \top 

\scrX belongs to that of \scrX , one can get that (\scrZ  \star ,\scrX \ast (\scrI  - \scrZ  \star ) \ast \scrX \dagger ) is feasible to
problem (3.4) according to Lemma B.5. Assume that there exists another solution (\scrZ \prime ,\scrL \prime )
which satisfies

\scrX =\scrX \ast \scrZ \prime +\scrL \prime \ast \scrX ,

\| \scrZ \prime \| \ast + \| \scrL \prime \| \ast < \| \scrZ  \star \| \ast + \| \scrL  \star \| \ast .

Fixing \scrZ in problem (3.4) and by Lemma A.1, we get

\| \scrZ \prime \| \ast + \| (\scrX  - \scrX \ast \scrZ \prime ) \ast \scrX \dagger \| \ast \leq \| \scrZ \prime \| \ast + \| \scrL \prime \| \ast .

Thus

\| \scrZ \prime \| \ast + \| (\scrX  - \scrX \ast \scrZ \prime ) \ast \scrX \dagger \| \ast < \| \scrZ  \star \| \ast + \| (\scrX  - \scrX \ast \scrZ  \star ) \ast \scrX \dagger \| \ast ,

which is a contradiction w.r.t. the optimality of \scrZ  \star in Lemma B.6. Hence the proof is
completed.

Appendix C. Proof of Theorem 3.3. Equipped with Theorem 3.2, we prove Theorem 3.3.

Proof. We first prove the first part of the theorem. Suppose that (\scrZ \prime ,\scrL \prime ,\scrE \prime ) is a better
solution than (\scrZ  \star ,\scrL  \star ,\scrE  \star ) to the relaxed problem (3.6), i.e.,

\| \scrZ \prime \| \ast + \| \scrL \prime \| \ast + \lambda \| \scrE \prime \| 1 < \| \scrZ  \star \| \ast + \| \scrL  \star \| \ast + \lambda \| \scrE  \star \| 1.(C.1)

Without loss of generality, we assume that (\scrZ \prime ,\scrL \prime ,\scrE \prime ) is the optimal solution to problem (3.6).
According to the form (3.5) in Theorem 3.2, (\scrZ \prime ,\scrL \prime ,\scrE \prime ) can be reformulated as follows,

\scrZ \prime = \scrV \^\scrX \ast \scrW \ast \scrV \top 
\^\scrX and\scrL \prime = \scrU \^\scrX \ast (\scrI  - \scrW ) \ast \scrU \top 

\^\scrX ,(C.2)
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BTLRR FOR INSUFFICIENT OBSERVED SAMPLES 49

where \^\scrX =\scrX  - \scrE \prime , and \scrW satisfies the conditions in Theorem 3.2. Substituting (C.2) into the
objective function of problem (3.6), we have

\| \scrZ \prime \| \ast + \| \scrL \prime \| \ast + \lambda \| \scrE \prime \| 1 = rank(\scrX  - \scrE \prime ) + \lambda \| \scrE \prime \| 1,(C.3)

where the equality \| \scrZ \prime \| \ast + \| \scrL \prime \| \ast = rank( \^\scrX ) = rank(\scrX  - \scrE \prime ) is guaranteed by the conditions
in Theorem 3.2. On the other hand, taking the equation in (3.7) into the objective function
of problem (3.6) and using the conditions in the theorem, we have

\| \scrZ  \star \| \ast + \| \scrL  \star \| \ast + \lambda \| \scrE  \star \| 1 = rank(\scrX  - \scrE  \star ) + \lambda \| \scrE  \star \| 1.(C.4)

From (C.1), (C.3), and (C.4), we obtain

rank(\scrX  - \scrE \prime ) + \lambda \| \scrE \prime \| 1 < rank(\scrX  - \scrE  \star ) + \lambda \| \scrE  \star \| 1,(C.5)

which results in a contradiction to the assumption that ( \^\scrX  \star ,\scrE  \star ) is optimal to TRPCA.
We then prove the second part. Suppose the TRPCA problem (2.1) has a better solution

( \^\scrX \prime ,\scrE \prime ) than (\scrX  - \scrE  \star ,\scrE  \star ):

rank( \^\scrX \prime ) + \lambda \| \scrE \prime \| 1 < rank(\scrX  - \scrE  \star ) + \lambda \| \scrE  \star \| 1.

On one hand, we have

rank( \^\scrX \prime ) + \lambda \| \scrE \prime \| 1 = \| ( \^\scrX \prime )
\dagger \ast \^\scrX \prime \| \ast + \| \bfzero \| \ast + \lambda \| \scrE  \star \| 1.

On the other hand, since (\scrZ  \star ,\scrL  \star ,\scrE  \star ) is optimal to the relaxed BTLRR (3.6), with conditions
in Theorem 3.2 satisfied, it can be written as

\scrZ  \star = \scrV \^\scrX \ast \scrW \ast \scrV \top 
\^\scrX and\scrL  \star = \scrU \^\scrX \ast (\scrI  - \scrW ) \ast \scrU \top 

\^\scrX ,(C.6)

where \^\scrX =\scrX  - \scrE  \star . Taking (C.6) into the objective function of problem (3.6), we have

rank(\scrX  - \scrE  \star ) + \lambda \| \scrE  \star \| 1 = \| \scrZ  \star \| \ast + \| \scrL  \star \| \ast + \lambda \| \scrE  \star \| 1.(C.7)

The above equality is guaranteed by the conditions in Theorem 3.2. So we get the following
inequality:

\| ( \^\scrX \prime )
\dagger \ast \^\scrX \prime \| \ast + \| \bfzero \| \ast + \lambda \| \scrE  \star \| 1 < \| \scrZ  \star \| \ast + \| \scrL  \star \| \ast + \lambda \| \scrE  \star \| 1.

Since (( \^\scrX \prime )
\dagger \ast \^\scrX \prime ,\bfzero ,\scrE  \star ) is feasible for (3.6), the above inequality is contradictory to the fact

that (\scrZ  \star ,\scrL  \star ,\scrE  \star ) is any optimal solution to the problem (3.6). This completes the proof.
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Appendix D. Proof of Theorem 4.1.

Proof. Assume that (\scrZ  \star ,\scrL  \star ,\scrE  \star ) is a minimizer to problem (3.8). Then we have \scrZ  \star =\widetilde \scrX \dagger \ast (\scrX  - \scrL  \star \ast \widetilde \scrX  - \scrE  \star ) and \scrL  \star = (\scrX  - \widetilde \scrX \ast \scrZ  \star  - \scrE  \star ) \ast \widetilde \scrX \dagger . So there exists \scrZ  \star 
\flat such that

\scrZ  \star = \scrV \widetilde \scrX \ast \scrZ  \star 
\flat and \scrL  \star 

\flat such that \scrL  \star =\scrL  \star 
\flat \ast \scrU 

\top \widetilde \scrX , where \scrU \widetilde \scrX \ast \scrS \widetilde \scrX \ast \scrV \top \widetilde \scrX is the skinny TSVD of \widetilde \scrX .
In addition, we have

\| \scrZ  \star \| \ast = \| \scrV \widetilde \scrX \ast \scrZ  \star 
\flat \| \ast 

=
1

n3

n3\sum 
k=1

\| \=\scrV (k)\widetilde \scrX ( \=\scrZ  \star 
\flat )

(k)\| \ast 

=
1

n3

n3\sum 
k=1

tr

\biggl( \sqrt{} 
(( \=\scrZ  \star 

\flat )
(k))\top (\=\scrV (k)\widetilde \scrX )\top \=\scrV (k)\widetilde \scrX ( \=\scrZ  \star 

\flat )
(k)

\biggr) 
(a)
=

1

n3

n3\sum 
k=1

tr

\biggl( \sqrt{} 
(( \=\scrZ  \star 

\flat )
(k))\top ( \=\scrZ  \star 

\flat )
(k)

\biggr) 

=
1

n3

n3\sum 
k=1

\| ( \=\scrZ  \star 
\flat )

(k)\| \ast 

= \| \scrZ  \star 
\flat \| \ast 

and

\| \scrL  \star \| \ast = \| \scrL  \star 
\flat \ast \scrU 

\top \widetilde \scrX \| \ast 

=
1

n3

n3\sum 
k=1

\| ( \=\scrL  \star 
\flat )

(k)( \=\scrU \top \widetilde \scrX )(k)\| \ast 

=
1

n3

n3\sum 
k=1

tr
\Bigl( \sqrt{} 

( \=\scrL  \star 
\flat )

(k)( \=\scrU \top \widetilde \scrX )(k)( \=\scrU \widetilde \scrX )(k)(( \=\scrL  \star 
\flat )

(k))\top 
\Bigr) 

(b)
=

1

n3

n3\sum 
k=1

tr

\biggl( \sqrt{} 
( \=\scrL  \star 

\flat )
(k)(( \=\scrL  \star 

\flat )
(k))\top 

\biggr) 

=
1

n3

n3\sum 
k=1

\| ( \=\scrL  \star 
\flat )

(k)\| \ast 

= \| \scrL  \star 
\flat \| \ast ,

where (a) and (b) hold since (\=\scrV (k)\widetilde \scrX )\top \=\scrV (k)\widetilde \scrX = \bfitI and ( \=\scrU (k)\widetilde \scrX )\top \=\scrU (k)
\scrX = \bfitI . Then, we substitute

\scrZ  \star = \scrV \widetilde \scrX \ast \scrZ  \star 
\flat and \scrL  \star = \scrL  \star 

\flat \ast \scrU \top \widetilde \scrX into problem (3.8) and transform it into the equivalent

problem (4.1). Therefore, we can get that if (\scrZ  \star 
\flat ,\scrL 

 \star 
\flat ,\scrE 

 \star ) is a minimizer to (4.1), problem (3.8)
admits a solution, i.e., (\scrV \widetilde \scrX \ast \scrZ  \star 

\flat ,\scrL 
 \star 
\flat \ast \scrU 

\top \widetilde \scrX ,\scrE  \star ).

Appendix E. Proof of Theorem 4.2. Before proving Theorem 4.2, we present some im-
portant lemmas.

Lemma E.1 (Theorem 4 of [28]). Assume that \bfitP \in \BbbR N\times N , and \| \cdot \| is a unitary invariant
matrix norm. Let \bfitQ \in \BbbR N\times N satisfying \bfitQ \in \partial \| \bfitP \| , where \partial \| \bfitP \| denotes the set of subdiffer-
entials of \| \cdot \| at \bfitP . Then \| \bfitQ \| \ast \leq 1, where \| \cdot \| \ast is the dual norm of \| \cdot \| .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

3/
25

 to
 2

3.
24

7.
13

6.
39

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



BTLRR FOR INSUFFICIENT OBSERVED SAMPLES 51

Lemma E.2. The sequences \{ \scrG t\} , \{ \scrQ t\} , and \{ \scrY t\} generated by Algorithm 4.1 are bounded.

Proof. To minimize \scrF at the (t+ 1)th iteration in (4.5), the optimal \scrF t+1 should satisfy
the following first-order optimality condition:

\bfzero \in \partial \| \scrF t+1\| \ast + \rho t
\bigl( 
\scrF t+1  - \scrZ \flat ,t+1  - \scrG t/\rho t

\bigr) 
.

From (4.10), i.e., \scrG t+1 = \scrG t+\rho t(\scrZ \flat ,t+1 - \scrF t+1), we get \scrG t+1 \in \partial \| \scrF t+1\| \ast . According to \| \scrF t+1\| \ast =
1
n3

\sum n3

k=1 \| \=\scrF (k)
t+1\| \ast , we have (\partial \| \scrF t+1\| \ast 

\partial \=\scrF t+1
)(k) = 1

n3

\partial \| \=\scrF (k)
t+1\| \ast 

\partial \=\scrF (k)
t+1

(k = 1, . . . , n3), where
\partial \| \=\scrF (k)

t+1\| \ast 

\partial \=\scrF (k)
t+1

=

\{ \bfitU k,t+1\bfitV 
\top 
k,t+1 +\bfitM k,t+1| \bfitU \top 

k,t+1\bfitM k,t+1 = 0,\bfitM k,t+1\bfitV k,t+1 = 0,\| \bfitM k,t+1\| \leq 1\} [50], \| \bfitM k,t+1\| 
is the spectral norm of \bfitM k,t+1, and \bfitU k,t+1\bfitS k,t+1\bfitV 

\top 
k,t+1 is the skinny SVD of \=\scrF (k)

t+1. Noting
that the dual norm of the matrix nuclear norm is the spectral norm [40], by using Lemma E.1

and setting \bfitG k,t+1 \in 
\partial \| \=\scrF (k)

t+1\| \ast 

\partial \=\scrF (k)
t+1

, we have \| \bfitG k,t+1\| \leq 1, then \| \bfitG k,t+1\| 2F \leq r\scrF t+1
, where r\scrF t+1

=

rank(\scrF t+1). From \scrG t+1 \in \partial \| \scrF t+1\| \ast 
\partial \scrF t+1

and \=\scrF t+1 =\scrF t+1 \times 3 \bfitF n3
,3 where \bfitF n3

\in \BbbR n3\times n3 is the DFT

matrix, and using the chain rule of matrix calculus, then \scrG t+1 \times 3 \bfitF n3
\in \partial \| \scrF t+1\| \ast 

\partial \scrF t+1
\times 3 \bfitF n3

,

i.e., \=\scrG t+1 \in \partial \| \scrF t+1\| \ast 

\partial \=\scrF t+1
. From \| \bfitG k,t+1\| 2F \leq r\scrF t+1

, we have
\bigm\| \bigm\| \=\scrG t+1

\bigm\| \bigm\| 2
F
\leq r\scrF t+1

n3
. Then \| \scrG t+1\| 2F =

1
n3

\bigm\| \bigm\| \=\scrG t+1

\bigm\| \bigm\| 2
F
\leq r\scrF t+1

n2
3

is bounded.

Similarly, to minimize \scrP at the (t+ 1)th iteration in (4.7), the optimal \scrP t+1 satisfies the
following optimal condition:

\bfzero \in \partial \| \scrP t+1\| \ast + \theta t(\scrP t+1  - \scrL \flat ,t+1  - \scrQ t/\theta t).

Combining with (4.11), i.e., \scrQ t+1 =\scrQ t+ \theta t
\bigl( 
\scrL \flat ,t+1  - \scrP t+1

\bigr) 
, we can get that \scrQ t+1 \in \partial \| \scrP t+1\| \ast .

Similarly to the boundedness of \{ \scrG t+1\} , we have \| \partial \| \scrP t+1\| \ast 
\partial \scrP \| 2F = \| \partial \| \scrP t+1\| \ast 

\partial \=\scrP \times 3 \bfitF 
 - 1
n3

\| 2F \leq r\scrP t+1

n2
3

is

bounded, where r\scrP t+1
= rank(\scrP t+1). Then from \scrQ t+1 \in \partial \| \scrP t+1\| \ast , the sequence \{ \scrQ t+1\} is also

bounded.
Last, to minimize \scrE at the (t+1)th iteration in (4.8), the optimal \scrE t+1 should satisfy the

first-order optimization condition

\bfzero \in \lambda 

\mu t
\partial \| \scrE t+1\| 1 + \scrE t+1  - \scrD t+1,

where \scrD t+1 =\scrX  - \scrA \ast \scrZ \flat ,t+1 - \scrL \flat ,t+1\ast \scrB +\scrY t/\mu t. Using (4.9), we can get \scrY t+1 = \mu t(\scrD t+1 - \scrE t+1).
Thus

\bfzero \in \lambda \partial \| \scrE t+1\| 1  - \scrY t+1 \Rightarrow \scrY t+1 \in \lambda \partial \| \scrE t+1\| 1.

According to Lemma E.1, and the fact that the dual of the \ell 1-norm is the \ell \infty -norm, we have
\| \scrY t+1\| \infty \leq \lambda , which is bounded. Then we get that the sequence \{ \scrY t+1\} is bounded.

3The notation \times 3 denotes the mode-3 product of a tensor and a matrix [22]. To be specific, the mode-n
product of \scrY \in \BbbR m1\times m2\times \cdot \cdot \cdot \times mp and \bfitA \in \BbbR l\times mn is denoted as \scrY \times n\bfitA of size m1\times \cdot \cdot \cdot \times mn - 1\times l\times mn+1\times \cdot \cdot \cdot \times mp,
each element is (\scrY \times n \bfitA )i1,...,in - 1,j,in+1,...,ip =

\sum mn
in=1[\scrY ]i1,i2,...,ip [\bfitA ]j,in , where j = 1, . . . , l, [\scrY ]i1,i2,...,ip is the

(i1, i2, . . . , ip)th element of \scrY , and [\bfitA ]j,in is the (j, in)th element of \bfitA .
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Lemma E.3. Let \{ \scrL (\scrZ \flat ,t;\scrL \flat ,t;\scrE t;\scrF t;\scrG t;\scrP t;\scrQ t;\scrY t;\rho t;\mu t;\theta t)\} (t\geq 1) be the sequence gener-
ated by Algorithm 4.1, then the sequence

\{ \scrL (\scrZ \flat ,t+1;\scrL \flat ,t+1;\scrE t+1;\scrF t+1;\scrG t+1;\scrP t+1;\scrQ t+1;\scrY t+1;\rho t;\mu t;\theta t)\} 

is bounded.

Proof. From the updating rules of the Lagrange multipliers \scrG t = \scrG t - 1 + \rho t - 1(\scrZ \flat ,t  - \scrF t),
\scrQ t =\scrQ t - 1 + \theta t - 1

\bigl( 
\scrL \flat ,t  - \scrP t

\bigr) 
, and \scrY t =\scrY t - 1 + \mu t - 1

\bigl( 
\scrX  - \scrA \ast \scrZ \flat ,t  - \scrL \flat ,t \ast \scrB  - \scrE t

\bigr) 
, we get that

\scrL (\scrZ \flat ,t;\scrL \flat ,t;\scrE t;\scrF t;\scrG t;\scrP t;\scrQ t;\scrY t;\rho t;\mu t;\theta t)

=\scrL (\scrZ \flat ,t;\scrL \flat ,t;\scrE t;\scrF t;\scrG t - 1;\scrP t;\scrQ t - 1;\scrY t - 1;\rho t - 1;\mu t - 1;\theta t - 1)

+
\rho t + \rho t - 1

2

\bigm\| \bigm\| \scrZ \flat ,t  - \scrF t

\bigm\| \bigm\| 2
F
+

\theta t + \theta t - 1

2

\bigm\| \bigm\| \scrL \flat ,t  - \scrP t

\bigm\| \bigm\| 2
F

+
\mu t + \mu t - 1

2

\bigm\| \bigm\| \scrX  - \scrA \ast \scrZ \flat ,t  - \scrL \flat ,t \ast \scrB  - \scrE t
\bigm\| \bigm\| 2
F

=\scrL (\scrZ \flat ,t;\scrL \flat ,t;\scrE t;\scrF t;\scrG t - 1;\scrP t;\scrQ t - 1;\scrY t - 1;\rho t - 1;\mu t - 1;\theta t - 1)

+
\rho t + \rho t - 1

2\rho 2t - 1

\| \scrG t  - \scrG t - 1\| 2F +
\theta t + \theta t - 1

2\theta 2t - 1

\| \scrQ t  - \scrQ t - 1\| 2F +
\mu t + \mu t - 1

2\mu 2
t - 1

\| \scrY t  - \scrY t - 1\| 2F .

Thus from Algorithm 4.1, we have

\scrL (\scrZ \flat ,t+1;\scrL \flat ,t+1;\scrE t+1;\scrF t+1;\scrG t;\scrP t+1;\scrQ t;\scrY t;\rho t;\mu t;\theta t)

\leq \scrL (\scrZ \flat ,t+1;\scrL \flat ,t+1;\scrE t+1;\scrF t+1;\scrG t;\scrP t;\scrQ t;\scrY t;\rho t;\mu t;\theta t)

\leq \scrL (\scrZ \flat ,t;\scrL \flat ,t;\scrE t;\scrF t;\scrG t;\scrP t;\scrQ t;\scrY t;\rho t;\mu t;\theta t)

\leq \scrL (\scrZ \flat ,t;\scrL \flat ,t;\scrE t;\scrF t;\scrG t - 1;\scrP t;\scrQ t - 1;\scrY t - 1;\rho t - 1;\mu t - 1;\theta t - 1)

+
\rho t + \rho t - 1

2\rho 2t - 1

\| \scrG t  - \scrG t - 1\| 2F +
\theta t + \theta t - 1

2\theta 2t - 1

\| \scrQ t  - \scrQ t - 1\| 2F +
\mu t + \mu t - 1

2\mu 2
t - 1

\| \scrY t  - \scrY t - 1\| 2F

\leq \cdot \cdot \cdot 
\leq \scrL (\scrZ \flat ,1;\scrL \flat ,1;\scrE 1;\scrF 1;\scrG 0;\scrP 1;\scrQ 0;\scrY 0;\rho 0;\mu 0;\theta 0)

+

t\sum 
p=1

\rho p + \rho p - 1

2\rho 2p - 1

\| \scrG p  - \scrG p - 1\| 2F +

t\sum 
p=1

\theta p + \theta p - 1

2\theta 2p - 1

\| \scrQ p  - \scrQ p - 1\| 2F

+

t\sum 
p=1

\mu p + \mu p - 1

2\mu 2
p - 1

\| \scrY p  - \scrY p - 1\| 2F .

Since \{ \scrG t\} is bounded, it holds that \| \scrG p  - \scrG p - 1\| 2F is also bounded. Similarly, \| \scrQ p  - \scrQ p - 1\| 2F
and \| \scrY p  - \scrY p - 1\| 2F are bounded due to the boundedness of \{ \scrQ t\} and \{ \scrY t\} . Note that the
following,

\infty \sum 
p=1

\rho p + \rho p - 1

2\rho 2p - 1

=

\infty \sum 
k=1

\eta + 1

2\rho 0\eta p - 1
=

\eta (\eta + 1)

2\rho 0(\eta  - 1)
, \eta > 1,
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is bounded, which can be applied for \theta p and \mu p. And \scrL (\scrZ \flat ,1;\scrL \flat ,1;\scrE 1;\scrF 1;\scrG 0;\scrP 1;\scrQ 0;\scrY 0;\rho 0;
\mu 0;\theta 0) is finite, hence

\{ \scrL (\scrZ \flat ,t+1;\scrL \flat ,t+1;\scrE t+1;\scrF t+1;\scrG t+1;\scrP t+1;\scrQ t+1;\scrY t+1;\rho t;\mu t;\theta t)\} 

is bounded.

Lemma E.4. The sequences \{ \scrZ \flat ,t\} , \{ \scrL \flat ,t\} , \{ \scrE t\} , \{ \scrF t\} , and \{ \scrP t\} are bounded.

Proof. We have the following reformulation

\scrL (\scrZ \flat ,t+1;\scrL \flat ,t+1;\scrE t+1;\scrF t+1;\scrG t;\scrP t+1;\scrQ t;\scrY t;\rho t;\mu t;\theta t) +
1

2\rho t
\| \scrG t\| 2F +

1

2\theta t
\| \scrQ t\| 2F +

1

2\mu t
\| \scrY t\| 2F

= \| \scrF t+1\| \ast + \| \scrP t+1\| \ast + \lambda \| \scrE t+1\| 1 +
\rho t
2

\bigm\| \bigm\| \bigm\| \bigm\| \scrZ t+1  - \scrF t+1 +
\scrG t

\rho t

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

+
\theta t
2

\bigm\| \bigm\| \bigm\| \bigm\| \scrL t+1  - \scrP t+1 +
\scrQ t

\theta t

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

+
\mu t

2

\bigm\| \bigm\| \bigm\| \bigm\| \scrX  - \scrA \ast \scrZ \flat ,t+1  - \scrL \flat ,t+1 \ast \scrB  - \scrE t +
\scrY t

\mu t

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

\geq \| \scrF t+1\| \ast + \| \scrP t+1\| \ast + \lambda \| \scrE t+1\| 1.

From Lemmas E.2 and E.3, we thus get that the sequences \{ \scrF t\} , \{ \scrP t\} , and \{ \scrE t\} are bounded.
Since \scrZ \flat ,t+1 =\scrF t+1+1/\rho t(\scrG t+1 - \scrG t), \scrL \flat ,t+1 =\scrP t+1+1/\theta t (\scrQ t+1  - \scrQ t) (i.e., (4.10) and (4.11))
and from Lemma E.2, we have \{ \scrZ \flat ,t\} and \{ \scrL \flat ,t\} are bounded.

Next, we give the proof of Theorem 4.2.

Proof.
1. Proof of the first part. From Lemmas E.2 and E.4, the sequence \{ \scrH t\} \infty t=1 generated

by Algorithm 4.1 is bounded. According to the Bolzano--Weierstrass theorem, there exists at
least one accumulation point of the sequence \{ \scrH t\} \infty t=1. We denote one of the points as

\scrH  \star = \{ \scrZ  \star 
\flat ,\scrL 

 \star 
\flat ,\scrE 

 \star ,\scrF  \star ,\scrG  \star ,\scrP  \star ,\scrQ  \star ,\scrY  \star \} .

Simply, we assume \{ \scrH t\} \infty t=1 converges to \scrH  \star .
By (4.10), taking the limit, we have

lim
t\rightarrow \infty 

(\scrZ \flat ,t+1  - \scrF t+1) = lim
t\rightarrow \infty 

(\scrG t+1  - \scrG t)/\rho t = 0,

thus we have \scrZ  \star 
\flat =\scrF  \star .

Similarly, according to (4.11) and (4.9), the following formulations hold:

\scrL  \star 
\flat =\scrP  \star and\scrX =\scrA \ast \scrZ  \star 

\flat +\scrL  \star 
\flat \ast \scrB + \scrE  \star .

Meanwhile, (4.3) in the \scrZ \flat -subproblem can be rewritten as

\mu t\scrA \top \ast (\scrA \ast \scrZ \flat ,t+1 +\scrL \flat ,t \ast \scrB + \scrE t  - \scrX  - \scrY t/\mu t) + \rho t(\scrZ \flat ,t+1  - \scrF t + \scrG t/\rho t) = 0

\Rightarrow \scrA \top \ast \scrY  \star  - \scrG  \star = 0.
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54 DING, ZHAO, YANG, ZHOU, AND NG

Similarly, according to (4.4), we have

\mu t(\scrA \ast \scrZ \flat ,t+1 +\scrL \flat ,t+1 \ast \scrB + \scrE t  - \scrX  - \scrY t/\mu t) \ast \scrB \top + \theta t(\scrL \flat ,t+1  - \scrP t +\scrQ t/\theta t) = 0

\Rightarrow \scrY  \star \ast \scrB \top  - \scrQ  \star = 0.

Next, in the \scrE -subproblem (4.8), we have

\bfzero \in \lambda \partial \| \scrE t+1\| 1  - \scrY t+1 \Rightarrow \scrY  \star \in \lambda \partial \| \scrE  \star \| 1.

As shown in the \scrF and \scrP -subproblems, we have

\bfzero \in \partial \| \scrF t+1\| \ast  - \scrG t+1 \Rightarrow \scrG  \star \in \partial \| \scrF  \star \| \ast ,
\bfzero \in \partial \| \scrP t+1\| \ast  - \scrQ t+1 \Rightarrow \scrQ  \star \in \partial \| \scrP  \star \| \ast .

2. Proof of the second part. First, we show that \{ \scrF t\} is a Cauchy sequence. From (4.10),
we have

\scrF t =\scrZ \flat ,t  - 
\scrG t  - \scrG t - 1

\rho t - 1
.

Thus

\| \scrF t+1  - \scrF t\| 2F

=

\bigm\| \bigm\| \bigm\| \bigm\| \scrF t+1  - 
\biggl( 
\scrZ \flat ,t +

\scrG t

\rho t

\biggr) 
+

\scrG t

\rho t
+

\scrG t  - \scrG t - 1

\rho t - 1

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

\leq 
\bigm\| \bigm\| \bigm\| \scrF t+1  - \~\scrF t

\bigm\| \bigm\| \bigm\| 2
F
+

\bigm\| \bigm\| \bigm\| \bigm\| \scrG t

\rho t
+

\scrG t  - \scrG t - 1

\rho t - 1

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

,

where \~\scrF t =\scrZ \flat ,t + \scrG t/\rho t. By (4.5), we have

\scrF t+1 = argmin
\scrF 

\| \scrF \| \ast +
\rho t
2

\bigm\| \bigm\| \bigm\| \scrF  - \~\scrF t

\bigm\| \bigm\| \bigm\| 2
F
.

Thus \scrF t+1 obeys the first-order optimality condition

 - \rho t

\Bigl( 
\scrF t+1  - \~\scrF t

\Bigr) 
\in \partial \| \scrF t+1\| \ast .

Then following the proof of Lemma E.2, we have\bigm\| \bigm\| \bigm\| \scrF t+1  - \~\scrF t

\bigm\| \bigm\| \bigm\| 2
F
=

1

\rho 2t
\| \partial \| \scrF t+1\| \ast \| 2F \leq 

r\scrF t+1

n2
3\rho 

2
t

.(E.1)

In conclusion, we have

\| \scrF t+1  - \scrF t\| 2F \leq 
r\scrF t+1

n2
3\rho 

2
t

+
\| \scrG t\| 2F
\rho 2t

+
\| \scrG t\| 2F
\rho 2t - 1

+
\| \scrG t - 1\| 2F
\rho 2t - 1

.
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Noting that \{ \scrG t\} is bounded, \rho t = \eta \rho t - 1, and \eta = 1.1, then due to the triangle inequality, for
any n<m, we have

lim
m,n\rightarrow \infty 

\| \scrF m  - \scrF n\| 2F \leq lim
m,n\rightarrow \infty 

m - 1\sum 
t=n

\| \scrF t+1  - \scrF t\| 2F = 0.

We prove thus \{ \scrF t\} is a Cauchy sequence.
Second, we prove that \{ \scrP t\} is a Cauchy sequence. From (4.11), we have

\scrP t =\scrL \flat ,t  - (\scrQ t  - \scrQ t - 1)/\theta t - 1.

Thus

\| \scrP t+1  - \scrP t\| 2F

=

\bigm\| \bigm\| \bigm\| \bigm\| \scrP t+1  - 
\biggl( 
\scrL \flat ,t +

\scrQ t

\theta t

\biggr) 
+

\scrQ t

\theta t
+

\scrQ t  - \scrQ t - 1

\theta t - 1

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

\leq 
\bigm\| \bigm\| \bigm\| \scrP t+1  - \~\scrP t

\bigm\| \bigm\| \bigm\| 2
F
+

\bigm\| \bigm\| \bigm\| \bigm\| \scrQ t

\theta t
+

\scrQ t  - \scrQ t - 1

\theta t - 1

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

,

where \~\scrP t =\scrL \flat ,t +\scrQ t/\theta t. And (4.7) implies that

\scrP t+1 = argmin
\scrP 

\| \scrP \| \ast +
\theta t
2

\bigm\| \bigm\| \bigm\| \scrP  - \~\scrP t

\bigm\| \bigm\| \bigm\| 2
F
.

\scrP t+1 should obey the first-order optimality condition

 - \theta t

\Bigl( 
\scrP t+1  - \~\scrP t

\Bigr) 
\in \partial \| \scrP t+1\| \ast .

Then we have \bigm\| \bigm\| \bigm\| \scrP t+1  - \~\scrP t

\bigm\| \bigm\| \bigm\| 2
F
=

1

\theta 2t
\| \partial \| \scrP t+1\| \ast \| 

2
F \leq 

r\scrP t+1

n2
3\theta 

2
t

.

In conclusion, we get

\| \scrP t+1  - \scrP t\| 2F \leq 
r\scrP t+1

n2
3\theta 

2
t

+
\| \scrQ t\| 2F
\theta 2t

+
\| \scrQ t\| 2F
\theta 2t - 1

+
\| \scrQ t - 1\| 2F
\theta 2t - 1

.

Due to the boundedness of \{ \scrQ t\} , and the triangle inequality, we get

lim
m,n\rightarrow \infty 

\| \scrP m  - \scrP n\| 2F \leq lim
m,n\rightarrow \infty 

m - 1\sum 
t=n

\| \scrP t+1  - \scrP t\| 2F = 0

for any n<m. Hence \{ \scrP t\} is a Cauchy sequence.
Third, we show that \{ \scrE t\} is a Cauchy sequence. From (4.8), let us denote that \scrE t+1 =

\scrT \lambda /\mu t
(\scrD t), where \scrD t+1 =\scrX  - \scrA \ast \scrZ \flat ,t+1  - \scrL \flat ,t \ast \scrB +\scrY t/\mu t, then it is easy to see\bigm\| \bigm\| \scrT \lambda /\mu t

(\scrD t) - \scrD t

\bigm\| \bigm\| 2
F
\leq \lambda 2N

\mu 2
t

,(E.2)

where N = n1n2n3. Besides, (4.9) implies
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\scrE t =\scrX  - \scrA \ast \scrZ \flat ,t  - \scrL \flat ,t \ast \scrB  - \scrY t  - \scrY t - 1

\mu t - 1
.

We have

\scrE t =\scrD t  - 
2\scrY t  - \scrY t - 1

\mu t - 1
.(E.3)

Then for any n<m, from (E.2)--(E.3) and the triangle inequality, one can get that

\| \scrE m  - \scrE n\| 2F

\leq 
m - 1\sum 
t=n

\| \scrE t+1  - \scrE t\| 2F

=

m - 1\sum 
t=n

\bigm\| \bigm\| \bigm\| \bigm\| \scrT \lambda 

\mu t

(\scrD t) - \scrD t +
2\scrY t  - \scrY t - 1

\mu t

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

\leq 
m - 1\sum 
t=n

\bigm\| \bigm\| \bigm\| \scrT \lambda 

\mu t

(\scrD t) - \scrD t

\bigm\| \bigm\| \bigm\| 2
F
+

m - 1\sum 
t=n

\| 2\scrY t  - \scrY t - 1\| 2F
\mu 2
t - 1

\leq 
m - 1\sum 
t=n

\lambda 2
2N + \eta 2 \| 2\scrY t  - \scrY t - 1\| 2F

\mu 2
0\eta 

2t
,

where \eta = 1.1 in Algorithm 4.1. We have known
\bigl\{ 
1/\eta 2t

\bigr\} \infty 
t=1

is a convergent Cauchy sequence.

Notice that \| 2\scrY t  - \scrY t - 1\| 2F is bounded, and we can get that limm,n\rightarrow \infty \| \scrE m  - \scrE n\| 2F = 0, hence
\scrE t is a Cauchy sequence, which is convergent.

Forth, (4.10) implies that

\scrG t = \scrG t - 1 + \rho t - 1(\scrZ \flat ,t  - \scrF t)\Rightarrow \scrZ \flat ,t =\scrF t + (\scrG t  - \scrG t - 1)/\rho t - 1.

Due to the boundedness of \{ \scrG t  - \scrG t - 1\} , we have that \{ (\scrG t  - \scrG t - 1)/\rho 0\eta 
t - 1\} is a Cauchy se-

quence. Since \{ \scrF t\} is a Cauchy sequence, thus \{ \scrZ \flat ,t\} is a Cauchy sequence. Similarly, it
is easy to get that \{ \scrL \flat ,t\} is a Cauchy sequence as well according to (4.11). Therefore, the
sequences \{ \scrZ \flat ,t\} , \{ \scrL \flat ,t\} , \{ \scrE t\} , \{ \scrF t\} , and \{ \scrP t\} converge to the critical point of (4.2). This
completes the proof.
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