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 A B S T R A C T

Multi-view clustering (MVC) has received extensive attention by exploiting the consistent and complementary 
information among views. To improve the robustness of MVC, most MVC methods assume that the noise 
implicit in the data follows a predefined distribution. However, due to equipment limitations and transmission 
environment, the collected multi-view data often contains mixed noise. The predefined distribution assumption 
may not be able to effectively suppress complex mixed noise, resulting in a decrease in clustering performance. 
For solving the above problem, we propose a novel mixed-noise robust tensor multi-view clustering method 
(MRTMC) via adaptive dictionary learning. To accurately characterize the mixed noise, we consider mixed 
noise as a combination of structural noise and Gaussian noise and characterize both respectively. Specially, 
we design adaptive dictionary learning to accurately model structural noise containing semantic information 
and use Frobenius norm to constrain Gaussian noise. To fully mine the consistency among multiple views, 
we introduce a nonconvex tensor nuclear norm on the self-representation tensor to explore the high-order 
correlation among multiple views. Moreover, the weight of each view is learned through an adaptive weighting 
strategy. For solving the model, we develop an effective algorithm based on the alternating direction method of 
multipliers (ADMM) framework and provide the convergence guarantee of the algorithm under mild conditions. 
Extensive experimental results on simulated and real-world datasets indicate the clustering performance of the 
proposed MRTMC method is superior to the compared methods.
. Introduction

In reality, a sample is usually represented by multiple features or 
odalities, which is called multi-view data. For instance, websites 
an be characterized by text and pictures, and news stories can be 
eported in several languages. Multi-view data offers more extensive 
nformation than single-view data to reveal the inherent structure, and 
ften represents an object more comprehensively [1–6]. In practical 
pplication, multi-view data is inevitably polluted by noise due to 
quipment limitations or transmission environment. Multi-view clus-
ering (MVC) [7–10] aims to mine potential information in multi-view 
ata by exploiting both the consensus and complementary information 
mong multiple views, which has been widely used in fields such as 
ocial network analysis, medical diagnosis, and image and video analy-
is [11–14]. Over the past two decades, numerous MVC methods have 
een developed and have shown encouraging results. The mainstream 
VC methods can generally be classified into two categories: (1) graph 
earning-based methods; (2) subspace-based methods.
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ihengchao_78@163.com (H.-C. Li).

The graph learning-based MVC methods can adaptively learn the 
similarity graphs from each view and then use spectral clustering on 
constructed graph to obtain clustering results. Therefore, efficiently 
utilizing the information from multiple views to construct similarity 
graphs is crucial for graph learning-based MVC methods [15–24]. For 
obtaining a better constructed graph, Huang et al. [15] proposed a 
method similar to multiple kernel learning to identify the optimal 
combination of similarity graphs. Xia et al. [18] proposed a robust spec-
tral clustering algorithm that recovered a shared transition probability 
matrix via low-rank and sparse decomposition to obtain a reliable con-
structed graph, where noise was constrained by 𝓁1 norm. Nie et al. [19] 
proposed a self-weighted MVC method that can consider the difference 
of each view to obtain a reliable constructed graph, where noise was 
constrained by Frobenius norm. The above methods got a reliable 
similarity graph and achieved impressive clustering results. However, 
they used a fixed norm constraint on noise, which may not be sufficient 
to handle complex and mixed noise in multi-view data.
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Fig. 1. Framework of MRTMC. Our model consists of three parts, i.e., (a) mixed noise learning based on adaptive dictionary, (b) nonconvex low-rank tensor approximation, and 
(c) adaptive weighting strategy. Specially, the raw multi-view data is decomposed into latent clean multi-view data, structural noise and Gaussian noise. We use self-representation 
subspace learning on latent feature to explore the correlation of samples of each view. And the adaptive dictionary learning is designed to describe the view-specific structural 
noise. Then, the nonconvex low-rank tensor approximation is introduced to characterize the low-rank property of representation tensor 𝑐 . In addition, the adaptive weighting 
strategy learns the weight of each view while jointly optimizing similarity matrix 𝑆 and representation matrix 𝑍(𝑣)

𝑐 . Finally, the spectral clustering algorithm is applied on the 
learned affinity matrix to obtain the clustering results.
The subspace-based MVC methods are committed to dividing multi-
view data into multiple low-dimensional subspaces. The majority of 
current multi-view subspace clustering (MVSC) methods typically fol-
low two steps: (1) find the optimal low-dimensional subspace for each 
view, (2) apply spectral clustering algorithm on affinity matrix which 
is fused by subspace representations to obtain clustering results. The 
classic methods of learning affinity matrix are sparse representation and 
low-rank representation. Base on both, some MVSC methods have been 
proposed [25–31]. In work [25], Cheng et al. proposed a method which 
explored low-rank similarity matrices through a joint decomposition of 
multiple feature matrices. To capture the complementary information 
among views, Zhang et al. [27] proposed a method which aimed to 
discover the latent representation of multi-view data. In work [31], 
Tang et al. proposed a last fusion alignment MVSC method that in-
tegrated complementary information at the partition level to reduce 
the impact of noise. Considering the spatial structure of representation 
tensor, tensor representation have been widely used in MVSC [32–39]. 
Tensor-based MVSC methods utilize tensor low-rank representation to 
exploit the high-order correlation embedded in multiple views. For 
example, Zhang et al. [32] proposed the tensor unfolding-based method 
to explore complementary information among multiple views. Different 
from the work [32], Xie et al. [33] imposed a tensor constraint based 
on tensor-singular value decomposition (t-SVD) to mine the consensus 
among multiple views. To explore the application of MVSC in nonlin-
ear space, [34] imposed hyper-Laplacian regularization on subspace 
coefficient. Chen et al. [35] handled nonlinear data structure through 
kernel trick. Most of the above models applied t-SVD based tensor 
nuclear norm (TNN) to approximate representation tensor rank, which 
is not a reliable approximation of tensor rank. For solving this problem, 
some methods based on nonconvex tensor rank approximation were 
proposed [40–46]. In [40,46], the weighted tensor nuclear norm is 
introduced to explore the high-order correlation of views and the prior 
information of singular values and achieved promising results. In [44], 
Pan et al. designed a nonconvex TNN by introducing kernel function 
to approximate tensor rank. The methods based on nonconvex TNN 
promote the low-rank property of representation tensor through the 
nonconvex relaxation, which benefits the affinity matrix.

Most of the above MVSC methods consider the influence of noise 
on the affinity matrix, and they specified a predefined norm loss in the 
method, implying that the noise in multi-view data follows a predefined 
distribution. Specially, 𝓁2,1 norm or 𝓁1 norm is used to handle sample-
specific corruptions and outliers [29,32,33,40]. However, the noise 
2 
in real application is usually mixed and complex, and the noise in 
multi-view data probably contains semantic features, such as masks 
and glasses in facial pictures, lighting and angles in object pictures. 
Therefore, a predefined norm constrain may not be suitable for complex 
noise situation. To address this problem, we focus on improving the 
robustness of MVC methods in real-world scene.

In our work, a new mixed-noise robust tensor multi-view clustering 
method (MRTMC) via adaptive dictionary learning is proposed. The 
framework is shown in Fig.  1. Firstly, we decompose the raw multi-view 
data into three parts: latent clean multi-view data, structural noise, 
and Gaussian noise in Fig.  1(a). Specially, self-representation subspace 
learning is used on latent clean multi-view data to capture the similarity 
within each view. Next, we design an adaptive dictionary for each 
view to learn structural noise which contains semantic information. 
Meanwhile, Gaussian noise is constrained by Frobenius norm. Secondly, 
specific-view representation matrices are stacked into a third-order 
representation tensor. To explore the consistency among views, we 
introduce nonconvex TNN to characterize the low-rank property of 
representation tensor, as shown in Fig.  1(b). Subsequently, MRTMC 
jointly optimizes the representation tensor and affinity matrix through 
the adaptive weighting strategy, as shown in Fig.  1(c). Finally, the 
spectral clustering algorithm is applied on the learned affinity matrix 
to obtain the clustering results. The main contributions of our work are 
as follows:

(1) We propose a new mixed-noise robust tensor multi-view clus-
tering method (MRTMC) via adaptive dictionary learning, which can 
not only explore the specific information of each view but also fully 
mine the consensus information among views. The proposed method 
can flexibly and effectively solve the mixed noise problem in MVC, 
which is a challenging task in real-world applications.

(2) To fully mine the consistency among views, we introduce a 
nonconvex tensor nuclear norm on the self-representation tensor to 
explore the high-order correlation among multiple views. Moreover, the 
weight of each view is learned through an adaptive weighting strategy. 
In addition, mixed noise learning based on adaptive dictionary, non-
convex low-rank tensor approximation, and affinity matrix learning are 
optimized in a unified framework and promote each other.

(3) An efficient algorithm based on alternating direction method 
of multipliers (ADMM) framework is developed to solve the proposed 
nonconvex model. Theoretically, we show the convergence guarantee 
of the algorithm under mild conditions. Experimental results on sim-
ulated and real-world datasets demonstrate the proposed method has 
better clustering performance than the compared methods.
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Table 1
Basic notations and their meanings.
 Notation Meaning  
  , 𝑋, x, 𝑥 Tensor, matrix, vector, and scalar 
  (𝑘) The 𝑘th frontal slice of tensor   
 𝑋(𝑗) The 𝑗th column of matrix 𝑋  
 𝑉 , 𝑛 The number of views, instances  
 𝑑𝑣 Dimension of the 𝑣th feature  
 ̂ = fft( ,[],3) FFT along tube fiber  
 𝑇 , 𝑋𝑇 The transpose of tensor, matrix  
 ‖ ⋅ ‖∗ Matrix nuclear norm  
 ‖ ⋅ ‖⊛ Tensor norm based on t-SVD  
 ‖ ⋅ ‖1 , ‖ ⋅ ‖𝐹 𝓁1 norm, Frobenius norm  
 R The real space  

The remainder of this paper is structured as follows: Section 2 
provides the required notations and preliminaries. Section 3 describes 
the proposed method in detail. Section 4 presents the experimental 
results and some discussions, with the conclusion in Section 5.

2. Notations and preliminaries

In this section, some notations and preliminaries needed throughout 
this paper are introduced. The basic notations and their corresponding 
meanings are summarized in Table  1.

Before introducing t-SVD, some operators need to be introduced. For 
a tensor  ∈ R𝑛1×𝑛2×𝑛3 , its block diagonal matrix bdiag() and block 
circular matrix bcirc() are defined as

𝐛𝐝𝐢𝐚𝐠() =

⎡

⎢

⎢

⎢

⎢

⎣

 (1)

 (2)

⋱
 (𝑛3)

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐛𝐜𝐢𝐫𝐜() =

⎡

⎢

⎢

⎢

⎢

⎣

 (1)  (𝑛3) ⋯  (2)

 (2)  (1) ⋯  (3)

⋮ ⋮ ⋱ ⋮
 (𝑛3)  (𝑛3−1) ⋯  (1)

⎤

⎥

⎥

⎥

⎥

⎦

.

The block vectorization is defined as bvec() = [ (1);⋯ ;  (𝑛3)], 
and the inverse operations of bdiag and bvec are defined as bv-
fold(bdiag()) =  and bdfold(bvec()) =  , respectively.

Definition 1 (t-Product [47]). For two tensors  ∈ R𝑛1×𝑛2×𝑛3  and  ∈
R𝑛2×𝑛4×𝑛3 , the t-product  ∗  is a tensor of size 𝑛1 × 𝑛4 × 𝑛3

 =  ∗  = 𝐛𝐯𝐟𝐨𝐥𝐝(𝐛𝐜𝐢𝐫𝐜()𝐛𝐯𝐞𝐜()).

Definition 2 (f-Diagonal Tensor [47]). A tensor  ∈ R𝑛1×𝑛2×𝑛3  is called 
f-diagonal if all of its frontal slices are diagonal matrices.

Definition 3 (Orthogonal Tensor [47]). A tensor  ∈ R𝑛1×𝑛2×𝑛3  is 
orthogonal if
𝑇 ∗  =  ∗ 𝑇 = ,

where  ∈ R𝑛1×𝑛1×𝑛3  is the identity tensor, with its first frontal slice 
being the 𝑛 × 𝑛 identify matrix and all other frontal slices being zero.

Definition 4 (Tensor Singular Value Decomposition (t-SVD) [47]). A 
tensor  ∈ R𝑛1×𝑛2×𝑛3  can be decomposed by t-SVD as

 =  ∗  ∗ 𝑇 ,

where  ∈ R𝑛1×𝑛1×𝑛3  and  ∈ R𝑛2×𝑛2×𝑛3are orthogonal tensors.  ∈
R𝑛1×𝑛2×𝑛3  is a f-diagonal tensor.
3 
Definition 5 (t-SVD Based Tensor Nuclear Norm (TNN) [48]). The tensor 
nuclear norm based on t-SVD of a tensor  ∈ R𝑛1×𝑛2×𝑛3  is defined as the 
sum of singular values from all frontal slices of ̂ :

‖‖⊛ =
min

{

𝑛1 ,𝑛2
}

∑

𝑖=1

𝑛3
∑

𝑘=1
|̂(𝑖, 𝑖, 𝑘)|,

where ̂ means the fast Fourier transformation (FFT) of  along tube 
fiber, ̂ (𝑘) = ̂ (𝑘)̂ (𝑘)̂ (𝑘)𝑇 .

3. The proposed method

In this section, we show the proposed model and present the op-
timization algorithm. Then, we provide convergence guarantee of the 
algorithm and analyze the computational complexity.

3.1. Problem formulation

Given a multi-view dataset with 𝑛 samples and 𝑉  views {𝑋(𝑣)}𝑉𝑣=1, 
𝑋(𝑣) = [𝐱(𝑣)1 ,… , 𝐱(𝑣)𝑛 ] ∈ R𝑑𝑣×𝑛 denotes the 𝑣th view feature, 𝑑𝑣 is the 
dimension of the 𝑣th view feature. In real application, the noise in 
multi-view data is typically mixed and complex, and may contain se-
mantic information. For enhancing the robustness of the MVC methods, 
the raw multi-view data is decomposed into three parts: latent multi-
view clean data 𝑋(𝑣)

𝑐 , structural noise 𝑋(𝑣)
𝑠 , and Gaussian noise 𝐸(𝑣) as 

shown in Fig.  1(a), which can be denoted as 
𝑋(𝑣) = 𝑋(𝑣)

𝑐 +𝑋(𝑣)
𝑠 + 𝐸(𝑣), 𝑣 = 1,… , 𝑉 . (1)

Since the latent multi-view clean data is usually distributed in 
several subspaces, we explore the multiple low-dimensional subspaces 
to preserve the global structure of the latent clean data. Inspired by 
the self-representation based subspace clustering, which is based on the 
idea that samples within a specific subspace can be linearly represented 
by other samples from the same subspace, latent multi-view clean 
data can be presented as 𝑋(𝑣)

𝑐 = 𝑋(𝑣)
𝑐 𝑍(𝑣)

𝑐 . Simultaneously, due to the 
semantic characteristics of structural noise, we design a structural noise 
dictionary 𝐷(𝑣)

𝑠 ∈ R𝑑𝑣×𝑘𝑠  and use the atoms to adaptively represent 
the structural noise for each view (𝑘𝑠 is the dictionary atom number), 
namely, 𝑋(𝑣)

𝑠 = 𝐷(𝑣)
𝑠 𝑍(𝑣)

𝑠 . Thus, Eq. (1) can be written as follows: 
𝑋(𝑣) = 𝑋(𝑣)

𝑐 𝑍(𝑣)
𝑐 +𝐷(𝑣)

𝑠 𝑍(𝑣)
𝑠 + 𝐸(𝑣), (2)

where 𝑋(𝑣)
𝑐 ∈ R𝑑𝑣×𝑛 is the latent multi-view data, 𝑍(𝑣)

𝑐 ∈ R𝑛×𝑛 is the 
representation matrix, 𝑍(𝑣)

𝑠 ∈ R𝑘𝑠×𝑛 is the dictionary coefficient matrix.
Since structural noise is usually sparse, we apply 𝓁1 norm to con-

strain dictionary coefficient matrix 𝑍(𝑣)
𝑠  and apply the Frobenius norm 

to depict Gaussian noise 𝐸(𝑣). So the optimization problem can be 
formulated as: 

min
𝑍(𝑣)
𝑐 ,𝐷(𝑣)

𝑠 ,𝑍(𝑣)
𝑠

𝑉
∑

𝑣=1
‖𝑋(𝑣) −𝑋(𝑣)

𝑐 𝑍(𝑣)
𝑐 −𝐷(𝑣)

𝑠 𝑍(𝑣)
𝑠 ‖

2
𝐹 + ‖𝑍(𝑣)

𝑠 ‖1,

s.t. 𝐷(𝑣)
𝑠 =

{

𝐷(𝑣)
𝑠 ∶ ‖𝐷(𝑣)

𝑠(𝑗)‖
2
𝐹 ⩽ 1, 𝑗 = 1, 2,… , 𝑘𝑠

}

, 𝑣 = 1,… , 𝑉 ,

(3)

where 𝐷(𝑣)
𝑠  and 𝑍(𝑣)

𝑠  are iteratively optimized with the model, the 
dictionary of structural noise can be adaptively learned to describe 
different structural noise of each view. For simplicity, we represent the 
𝐷(𝑣)

𝑠  constraint as 𝐷(𝑣)
𝑠 ∈ 𝛩, 𝑣 = 1,… , 𝑉 .

To explore the consistency among the views, some MVSC meth-
ods [33–36] introduced t-SVD based TNN (see Definition  5) to mine 
the high-order correlation among multiple views. However, as a convex 
approximation of tensor rank, t-SVD based TNN measures the 𝓁1 norm 
of nonzero singular values, which leads to rank deviation. Moreover, it 
cannot retain the main information well because of the same shrinkage 
to each singular value. The large singular value usually represents the 
main information in the object, so it would be better to give the large 
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Fig. 2. The rank approximation and singular value shrinkage of the nonconvex tensor nuclear norm.
singular value a small shrinkage. In work [44], a nonconvex tensor 
nuclear norm which can flexibly adjust shrinkage of singular value was 
proposed: 
‖𝑐‖𝜂,𝜃 =

∑

𝑗

∑

𝑖
𝜂 ∗ 𝑡𝑎𝑛ℎ

(

𝜃 ∗ 𝜎𝑖(̂𝑐
(𝑗))

)

, (4)

where ̂𝑐 = 𝐟 𝐟 𝐭 (𝑐 , [ ], 3), 𝜎𝑖(̂𝑐
(𝑗)) denotes the 𝑖th largest singular 

value of ̂𝑐
(𝑗), tanh(x) = (ex − e−x)∕(ex + e−x). 𝜂 and 𝜃 are two positive 

parameters to balance shrinkage.
As shown in Fig.  2(a), the nonconvex tensor nuclear norm has a 

more accurate rank approximation. Besides, each singular value has a 
more reasonable shrinkage from Fig.  2(b). Inspired by this, we stack 
the representation matrices {𝑍(𝑣)

𝑐 }𝑉𝑣=1 into a third-order representation 
tensor 𝑐 and introduce the nonconvex TNN [44] on 𝑐 to characterize 
its low-rank property. Therefore, Eq. (3) can be formulated as: 

min
𝑐 ,𝐷

(𝑣)
𝑠 ,𝑍(𝑣)

𝑠

‖𝑐‖𝜂,𝜃 +
𝑉
∑

𝑣=1
(‖𝑋(𝑣) −𝑋(𝑣)

𝑐 𝑍(𝑣)
𝑐 −𝐷(𝑣)

𝑠 𝑍(𝑣)
𝑠 ‖

2
𝐹

+ ‖𝑍(𝑣)
𝑠 ‖1),

s.t.𝑐 = 𝛷(𝑍(1)
𝑐 , 𝑍(2)

𝑐 ,… , 𝑍(𝑉 )
𝑐 ), 𝐷(𝑣)

𝑠 ∈ 𝛩, 𝑣 = 1,… , 𝑉 ,

(5)

where 𝛷(⋅) represents the construction of tensor 𝑐 ∈ R𝑛×𝑉 ×𝑛.
Moreover, due to the different contributions of each view to cluster-

ing performance, an adaptive weighting strategy is used to distinguish 
the difference of each view and the affinity matrix and representation 
tensor are jointly optimized. Finally, our model can be formulated as: 

min
𝑐 ,𝑆,𝑤𝑣
𝐷(𝑣)
𝑠 ,𝑍(𝑣)

𝑠

𝜆1‖𝑐‖𝜂,𝜃 +
𝑉
∑

𝑣=1
(‖𝑋(𝑣) −𝑋(𝑣)

𝑐 𝑍(𝑣)
𝑐 −𝐷(𝑣)

𝑠 𝑍(𝑣)
𝑠 ‖

2
𝐹

+ 𝜆2‖𝑍
(𝑣)
𝑠 ‖1 +𝑤𝑣‖𝑆 −𝑍(𝑣)

𝑐 ‖

2
𝐹 ),

s.t.𝑐 = 𝛷(𝑍(1)
𝑐 , 𝑍(2)

𝑐 ,… , 𝑍(𝑉 )
𝑐 ), 𝐷(𝑣)

𝑠 ∈ 𝛩, 𝑣 = 1,… , 𝑉 ,

(6)

where 𝑐 is the representation tensor, 𝑆 ∈ R𝑛×𝑛 is the affinity matrix 
and 𝑤𝑣 is the weight of 𝑣th view. The parameters 𝜆1 and 𝜆2 are used to 
balance the contributions of all terms in the Eq. (6). 𝑋(𝑣)

𝑐  and 𝐷(𝑣)
𝑠  re-

spectively denote latent clean data and the structural noise dictionary, 
and 𝑍(𝑣)

𝑐  and 𝑍(𝑣)
𝑠  are two corresponding coefficient matrices.

Our model consists of four terms. The first term is adopted to fully 
explore the consistency among views by depicting low-rank property 
of representation tensor 𝑐 . The second and third terms denote the 
mixed noise learning by adaptive dictionary for characterizing the 
view-specific information. The last term can obtain the unified affinity 
matrix by adaptive weighting strategy.

Remark 1.  The robust weighted low-rank tensor approximation
(RWLTA) [41] method also handles the mixed noise problem and in-
troduces three norms (𝑙𝐶𝑎𝑢𝑐ℎ𝑦,1, 𝑙1, 𝑙𝐹 ) to respectively constrain outliers, 
random corruptions, and slight perturbations, then achieves the promis-
ing results. Compared with the method RWLTA, the main differences of 
4 
the proposed method are as follows: First, the proposed method applies 
the adaptive dictionary learning strategy to flexibly adjust to varying 
noise characteristics across different datasets, therefore resulting in the 
better clustering performance. Second, in addition to the numerical 
convergence of the algorithm, we theoretically prove the convergence 
guarantee of the proposed algorithm under mild conditions.

3.2. Optimization algorithm

To better apply the optimization framework to solve the proposed 
model, we rewrite the proposed model as follows: 

min
𝑐 ,𝑆,𝑤𝑣
𝐷(𝑣)
𝑠 ,𝑍(𝑣)

𝑠

𝜆1‖𝑐‖𝜂,𝜃 +
𝑉
∑

𝑣=1

(

‖𝑋(𝑣) −𝑋(𝑣)
𝑐 𝑍(𝑣)

𝑐 −𝐷(𝑣)
𝑠 𝑍(𝑣)

𝑠 ‖

2
𝐹

+ 𝜆2‖𝑍
(𝑣)
𝑠 ‖1 +𝑤𝑣‖𝑆 −𝑍(𝑣)

𝑐 ‖

2
𝐹 + 𝛹 (𝐷(𝑣)

𝑠 )
)

,

s.t. 𝑐 = 𝛷(𝑍(1)
𝑐 , 𝑍(2)

𝑐 ,… , 𝑍(𝑉 )
𝑐 ),

(7)

where 𝛹 (𝐷(𝑣)
𝑠 ) is indicator function defined as (𝑞 is a large value): 

𝛹 (𝐷(𝑣)
𝑠 ) =

{

0, if ‖𝐷(𝑣)
𝑠(𝑗)‖

2
𝐹 ⩽ 1,

𝑞, otherwise.
(8)

The solution to Eq. (7) is difficult because objective function is not 
joint convex. Following the idea of ADMM, we introduce three auxiliary 
variables to decouple this equation, we define  = 𝑐 , 𝑌 (𝑣) = 𝑍(𝑣)

𝑠 , 𝐵(𝑣) =
𝐷(𝑣)

𝑠 , 𝑣 = 1,… , 𝑉 . Eq. (7) can be reformulated as: 

min
,𝑐 ,𝑆,𝑤𝑣
𝑠,𝑠, ,

𝜆1‖‖𝜂,𝜃 +
𝑉
∑

𝑣=1

(

‖𝑋(𝑣) −𝑋(𝑣)
𝑐 𝑍(𝑣)

𝑐 −𝐷(𝑣)
𝑠 𝑍(𝑣)

𝑠 ‖

2
𝐹

+ 𝜆2‖𝑌
(𝑣)
‖1 +𝑤𝑣‖𝑆 −𝑍(𝑣)

𝑐 ‖

2
𝐹 + 𝛹 (𝐵(𝑣))

)

,

s.t.𝑐 = 𝛷(𝑍(1)
𝑐 , 𝑍(2)

𝑐 ,… , 𝑍(𝑉 )
𝑐 ),

 = 𝑐 , 𝑌
(𝑣) = 𝑍(𝑣)

𝑠 , 𝐵(𝑣) = 𝐷(𝑣)
𝑠 , 𝑣 = 1,… , 𝑉 .

(9)

The augmented Lagrangian function of Eq. (9) is: 
𝜌(𝑐 ,,𝑠, ,𝑠,, 𝑆,𝑤𝑣; ,,)

= 𝜆1‖‖𝜂,𝜃 +
𝑉
∑

𝑣=1

(

‖𝑋(𝑣) −𝑋𝑐
(𝑣)𝑍(𝑣)

𝑐 −𝐷(𝑣)
𝑠 𝑍(𝑣)

𝑠 ‖

2
𝐹

+ 𝜆2‖𝑌
(𝑣)
‖1 +𝑤𝑣‖𝑆 −𝑍(𝑣)

𝑐 ‖

2
𝐹 + 𝛹 (𝐵(𝑣))

)

+ ⟨ ,𝑐 − ⟩ + 𝜌
2
‖𝑐 − ‖2𝐹 + ⟨ ,𝑠 − ⟩

+
𝜌
2
‖𝑠 − ‖2𝐹 + ⟨,𝑠 − ⟩ +

𝜌
2
‖𝑠 − ‖

2
𝐹 ,

(10)

where  , , and  are the Lagrangian multipliers, 𝜌 is the penalty 
parameter, ⟨⋅, ⋅⟩ is the inner product. Within the ADMM framework [49–
51], we can update the remaining variable by keeping the other vari-
ables fixed at their latest values. The overall iterative procedure of the 
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algorithm is as follows: 

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑘+1
𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑐

𝜌(𝑘
𝑐 ,

𝑘,𝑘
𝑠 ,

𝑘,𝑘
𝑠 ,

𝑘, 𝑆𝑘, 𝑤𝑘
𝑣 ;

𝑘,𝑘,𝑘),

𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛


𝜌(𝑘+1
𝑐 ,𝑘,𝑘

𝑠 ,
𝑘,𝑘

𝑠 ,
𝑘, 𝑆𝑘, 𝑤𝑘

𝑣 ;
𝑘,𝑘,𝑘),

𝑘+1
𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑠

𝜌(𝑘+1
𝑐 ,𝑘+1,𝑘

𝑠 ,
𝑘,𝑘

𝑠 ,
𝑘, 𝑆𝑘, 𝑤𝑘

𝑣 ;
𝑘,𝑘,𝑘),

𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛


𝜌(𝑘+1
𝑐 ,𝑘+1,𝑘+1

𝑠 ,𝑘,𝑘
𝑠 ,

𝑘, 𝑆𝑘, 𝑤𝑘
𝑣 ;

𝑘,𝑘,𝑘),

𝑘+1
𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑠

𝜌(𝑘+1
𝑐 ,𝑘+1,𝑘+1

𝑠 ,𝑘+1,𝑘
𝑠 ,

𝑘, 𝑆𝑘, 𝑤𝑘
𝑣 ;

𝑘,𝑘,𝑘),

𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛


𝜌(𝑘+1
𝑐 ,𝑘+1,𝑘+1

𝑠 ,𝑘+1,𝑘+1
𝑠 ,𝑘, 𝑆𝑘, 𝑤𝑘

𝑣 ;
𝑘,𝑘,𝑘),

𝑆𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑆

𝜌(𝑘+1
𝑐 ,𝑘+1,𝑘+1

𝑠 ,𝑘+1,𝑘+1
𝑠 ,𝑘+1, 𝑆𝑘, 𝑤𝑘

𝑣 ;
𝑘,𝑘,𝑘),

𝑤𝑘+1
𝑣 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑤𝑣

𝜌(𝑘+1
𝑐 ,𝑘+1,𝑘+1

𝑠 ,𝑘+1,𝑘+1
𝑠 ,𝑘+1, 𝑆𝑘+1, 𝑤𝑘

𝑣 ;
𝑘,𝑘,𝑘),

𝑘+1 = 𝑘 + 𝜌𝑘(𝑘+1
𝑐 − 𝑘+1),

𝑘+1 = 𝑘 + 𝜌𝑘(𝑘+1
𝑠 − 𝑘+1),

𝑘+1 = 𝑘 + 𝜌𝑘(𝑘+1
𝑠 − 𝑘+1).

(11)

The above sub-problems are solved alternately and iteratively until the 
algorithm converges. Next, we show the details of each subproblem.

Step 1: Updating of 𝑐 . With other variables fixed, 𝑐 can be 
updated by: 

min
𝑐

𝑉
∑

𝑣=1

(

‖𝑋(𝑣) −𝑋(𝑣)
𝑐 𝑍(𝑣)

𝑐 −𝐷(𝑣)𝑘
𝑠 𝑍(𝑣)𝑘

𝑠 ‖

2
𝐹

+ 𝑤𝑘
𝑣‖𝑆

𝑘 −𝑍(𝑣)
𝑐 ‖

2
𝐹
)

+
𝜌𝑘

2
‖𝑘

𝑐 − 𝑘 + 1
𝜌
𝑘

‖

2
𝐹 .

(12)

Since the updating for each 𝑍(𝑣)
𝑐  is independent, we can separate 

Eq. (12) into 𝑉  sub-problems. By setting the derivative of each sub-
problem to zero, we can derive the closed-form solution for 𝑍(𝑣)

𝑐 : 

𝑍(𝑣)𝑘+1
𝑐 =

(

(𝜌𝑘 + 2𝑤𝑘
𝑣)𝐼 + 2𝑋(𝑣)𝑇

𝑐 𝑋(𝑣)
𝑐

)−1

(

𝜌𝑘𝐺(𝑣)𝑘 −𝑊 (𝑣)𝑘 + 2𝑋(𝑣)𝑇
𝑐 𝐻 (𝑣)𝑘 + 2𝑤𝑘

𝑣𝑆
𝑘),

(13)

where 𝐼 is identity matrix and 𝐻 (𝑣)𝑘 = 𝑋(𝑣) −𝐷(𝑣)𝑘
𝑠 𝑍(𝑣)𝑘

𝑠 .
Step 2: Updating of . With other variables fixed, Eq. (10) becomes: 

min 


𝜆1‖‖𝜂,𝜃 +
𝜌𝑘

2
‖ − (𝑘+1

𝑐 + 1
𝜌𝑘

𝑘)‖2𝐹 , (14)

It is challenging to directly achieve the closed-form solution for 
above sub-problem. We apply Fourier transform to convert Eq. (14) 
into frequency domain [45] and split it into 𝑛 sub-problems, the 𝑗th 
problem is 

(𝑗)𝑘+1 = argmin
̂(𝑗)

𝜆1
𝜌𝑘

𝑉
∑

𝑖=1
𝛺
(

𝜎𝑖
(

̂(𝑗)
)

, 𝜃
)

+ 1
2
‖̂(𝑗) − ̂ (𝑗)𝑘

‖

2
𝐹 ,

(15)

where ̂ = 𝐟𝐟 𝐭 (, [ ], 3) and ̂𝑘 = 𝐟 𝐟 𝐭(𝑘+1
𝑐 + 1

𝜌𝑘 
𝑘, [ ], 3). ̂(𝑗) is the 𝑗th 

frontal slice of ̂, 𝛺(𝑥, 𝜃) = 𝜂 𝑡𝑎𝑛ℎ(𝜃 ∗ 𝑥).
Based on the antimonotone characteristic of gradient of the non-

convex function in Eq. (4) and the definition of the supergradient for 
concave functions, we obtain: 

0 ≤ ∇𝛺(𝜎𝑘1 , 𝜃) ≤ ∇𝛺(𝜎𝑘2 , 𝜃) ≤ ⋯ ≤ ∇𝛺(𝜎𝑘𝑉 , 𝜃), (16)

𝛺(𝜎𝑖(̂(𝑗)), 𝜃) ≤ 𝛺(𝜎𝑘𝑖 , 𝜃) + ∇𝛺(𝜎𝑘𝑖 , 𝜃)(𝜎𝑖(̂
(𝑗)) − 𝜎𝑘𝑖 ), (17)

where 𝜎𝑘𝑖  denotes the 𝑖th singular value of ̂(𝑗)𝑘, 𝜎𝑘1 ≥ 𝜎𝑘2 ≥ ⋯ ≥ 𝜎𝑘𝑉 , 
∇𝛺(𝜎𝑘, 𝜃) is the gradient of 𝛺(𝜎 (̂(𝑗)), 𝜃) at 𝜎𝑘. Based on Eq. (17), 
𝑖 𝑖 𝑖

5 
Eq. (15) can be relaxed into: 

(𝑗)𝑘+1 = argmin
̂(𝑗)

𝜆1
𝜌𝑘

𝑉
∑

𝑖=1
𝜙(𝜎𝑘𝑖 , 𝜃)

+ ∇𝛺(𝜎𝑘𝑖 , 𝜃)(𝜎𝑖(̂
(𝑗)) − 𝜎𝑘𝑖 ) +

1
2
‖̂(𝑗) − ̂ (𝑗)𝑘

‖

2
𝐹 ,

= argmin
̂(𝑗)

𝜆1
𝜌𝑘

𝑉
∑

𝑖=1
∇𝛺(𝜎𝑘𝑖 , 𝜃)𝜎𝑖(̂

(𝑗)) + 1
2
‖̂(𝑗) − ̂ (𝑗)𝑘

‖

2
𝐹 .

(18)

Then, we use the generalized weighted singular value threshold 
from [52,53] to solve Eq. (18), the optimal solution for Eq. (18) is: 

̂(𝑗)𝑘+1 = 𝑈 𝜆1
𝜌𝑘

∇𝛺
(𝛴)𝑉 𝑇 , (19)

where  𝜆1
𝜌𝑘

∇𝛺
(𝛴) = diag

{

max
(

∑

𝑖𝑖 −
𝜆1∇𝛺

(

𝜎𝑘𝑖
)

𝜌𝑘 , 0
)}

 and the singular 
value decomposition (SVD) of ̂ (𝑗)𝑘 is denoted as ̂ (𝑗)𝑘 = 𝑈𝛴𝑉 𝑇 .

Step 3: Updating of 𝑠. With other variables fixed, 𝑠 can be 
updated by: 

min
𝑠

𝑉
∑

𝑣=1
‖𝑋(𝑣) −𝑋(𝑣)

𝑐 𝑍(𝑣)𝑘+1
𝑐 −𝐷(𝑣)𝑘

𝑠 𝑍(𝑣)
𝑠 ‖

2
𝐹

+
𝜌𝑘

2
‖𝑍(𝑣)

𝑠 − 𝑌 (𝑣)𝑘 + 1
𝜌𝑘

𝑀 (𝑣)𝑘
‖

2
𝐹 .

(20)

Similar to Eq. (12), we divide Eq. (20) into 𝑉  sub-problems and set 
the derivative of each sub-problem to zero, the closed-form solution of 
𝑍(𝑣)

𝑠 can be derived: 
𝑍(𝑣)𝑘+1

𝑠 =(𝜌𝑘𝐼 + 2𝐷(𝑣)𝑘𝑇
𝑠 𝐷(𝑣)𝑘

𝑠 )−1
(

𝜌𝑘𝑌 (𝑣)𝑘 −𝑀 (𝑣)𝑘 + 2𝐷(𝑣)𝑘𝑇
𝑠 𝐶 (𝑣)𝑘),

(21)

where 𝐶 (𝑣)𝑘 = 𝑋(𝑣) −𝑋(𝑣)
𝑐 𝑍(𝑣)𝑘+1

𝑐 .
Step 4: Updating of  . With other variables fixed,  can be 

updated by: 

min
𝑌 (𝑣)

𝑉
∑

𝑣=1
𝜆2‖𝑌

(𝑣)
‖1 +

𝜌𝑘

2
‖𝑌 (𝑣) − (𝑍(𝑣)𝑘+1

𝑠 + 1
𝜌𝑘

𝑀 (𝑣)𝑘)‖2𝐹 . (22)

Similar to Eq. (12), updating of 𝑌 (𝑣) for each view is independent 
and has the following closed-form solution applying the soft shrinkage 
operator: 

𝑌 (𝑣)𝑘+1 = max(|𝐴(𝑣)𝑘
| −

𝜆2
𝜌𝑘

, 0)◦ 𝐴(𝑣)𝑘

|𝐴(𝑣)𝑘
|

, (23)

where 𝐴(𝑣)𝑘 = 𝑍(𝑣)𝑘+1
𝑠 + 1

𝜌𝑘 𝑀
(𝑣)𝑘, ◦ presents component-wise multiplica-

tion and a convention is assumed: 0◦ 0
0 = 0.

Step 5: Updating of 𝑠. With other variables fixed, 𝑠 can be 
updated by: 

min
𝑠

𝑉
∑

𝑣=1
‖𝑋(𝑣) −𝑋(𝑣)

𝑐 𝑍(𝑣)𝑘+1
𝑐 −𝐷(𝑣)

𝑠 𝑍(𝑣)𝑘+1
𝑠 ‖

2
𝐹

+
𝜌𝑘

2
‖𝐷(𝑣)

𝑠 − 𝐵(𝑣)𝑘 + 1
𝜌𝑘

𝑃 (𝑣)
‖

2
𝐹 .

(24)

Similar to Eq. (12), updating of 𝐷(𝑣)
𝑠  for each view is independent 

and has the following closed-form solution by derivation: 
𝐷(𝑣)𝑘+1

𝑠 =(𝜌𝑘𝐵(𝑣)𝑘 − 𝑃 (𝑣)𝑘 + 2𝐶 (𝑣)𝑘𝑍(𝑣)𝑘+1𝑇
𝑠 )

(𝜌𝑘𝐼 + 2𝑍(𝑣)𝑘+1
𝑠 𝑍(𝑣)𝑘+1𝑇

𝑠 )−1.
(25)

Step 6: Updating of . With other variables fixed,  can be updated 
by: 

min


𝑉
∑

𝑣=1
𝛹 (𝐵(𝑣)) +

𝜌𝑘

2
‖𝐵(𝑣) −𝐷(𝑣)𝑘+1

𝑠 − 1
𝜌𝑘

𝑃 (𝑣)𝑘
‖

2
𝐹 , (26)

where updating of 𝐵(𝑣) for each view is independent and has the 
closed-form solution: 

𝐵(𝑣)𝑘+1
(𝑗1)

=
𝑄𝑘

(𝑗1)

max
{

1, ‖𝑄𝑘
‖

2
} , 𝑗1 = 1, 2,… , 𝑘𝑠, (27)
(𝑗1) 2
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Algorithm 1 Mixed-Noise Robust Tensor Multi-View Clustering via 
Adaptive Dictionary Learning.
Input: multi-view data 𝑋(𝑣); parameters:𝜆1, 𝜆2, 𝜂, 𝜃 , 𝜇, 𝜌𝑚𝑎𝑥 and 𝑘𝑠.
Initialize: 𝜌 = 10−3, 𝑡𝑜𝑙 = 10−6, , 𝑆, 𝑍(𝑣)

𝑐 , 𝐷(𝑣)
𝑠 , 𝑍(𝑣)

𝑠 , 𝑌 (𝑣), 𝐵(𝑣), 𝑊 (𝑣), 
𝑀 (𝑣), 𝑃 (𝑣), 𝑤𝑣, 𝑣 = 1,… , 𝑉 .
1: while not converged do
2:  Update {𝑍(𝑣)

𝑐 }𝑉𝑣=1 by Eq.  (13);
3:  Update  by Eq.  (19);
4:  Update {𝑍(𝑣)

𝑠 }𝑉𝑣=1 by Eq.  (21);
5:  Update {𝑌 (𝑣)}𝑉𝑣=1 by Eq.  (23);
6:  Update {𝐷(𝑣)

𝑠 }𝑉𝑣=1 by Eq.  (25);
7:  Update {𝐵(𝑣)}𝑉𝑣=1 by Eq.  (27);
8:  Update {𝑤𝑣}𝑉𝑣=1 by 𝑤𝑣 = 1∕(2‖𝑆 −𝑍(𝑣)

𝑐 ‖𝐹 );
9:  Update 𝑆 by Eq.  (29);
10:  Update  ,, by Eq.  (30);
11:  Update 𝜌 by Eq.  (31);
12:  Check the convergence condition∶

max

⎧

⎪

⎨

⎪

⎩

‖𝑘+1
𝑠 − 𝑘+1

‖∞,
‖𝑘+1

𝑠 − 𝑘+1
‖∞,

‖𝑘+1
𝑐 − 𝑘+1‖∞.

⎫

⎪

⎬

⎪

⎭

≤ 𝑡𝑜𝑙.

13: end while
Output: Output matrix 𝑆𝑘+1 ∈ R𝑛×𝑛 and perform spectral clustering on 
𝑆𝑘+1. 

where 𝑄𝑘
(𝑗1)

= 𝐷(𝑣)𝑘+1
𝑠(𝑗1)

+ 𝑃 (𝑣)𝑘
(𝑗1)

∕𝜌𝑘.
Step 7: Updating of 𝑆. With other variables fixed, Eq. (9) simplifies 

to: 

min
𝑆

𝑉
∑

𝑣
𝑤𝑣‖𝑆 −𝑍(𝑣)𝑘+1

𝑐 ‖

2
𝐹 . (28)

Inspired by the work of [19], adaptive weight 𝑤𝑣 can be updated 
by1 𝑤𝑘+1

𝑣 = 1∕(2‖𝑆𝑘 − 𝑍(𝑣)𝑘+1
𝑐 ‖𝐹 ). If the 𝑣th view significantly impacts 

the clustering effect, then ‖𝑆 − 𝑍(𝑣)
𝑐 ‖𝐹  should be small, so 𝑤𝑣 will be 

large, that is, the view is given a larger weight. 𝑆 can be updated as 
follows: 

𝑆𝑘+1 =

( 𝑉
∑

𝑣=1
𝑤𝑘+1

𝑣 𝑍𝑐
(𝑣)𝑘+1

)

/ 𝑉
∑

𝑣=1
𝑤𝑘+1

𝑣 . (29)

Furthermore, the Lagrange multipliers  ,  and  are updated by 
following rules: 
𝑘+1 = 𝑘 + 𝜌𝑘(𝑘+1

𝑐 − 𝑘+1),

𝑘+1 = 𝑘 + 𝜌𝑘(𝑘+1
𝑠 − 𝑘+1),

𝑘+1 = 𝑘 + 𝜌𝑘(𝑘+1
𝑠 − 𝑘+1).

(30)

Finally, the penalty parameter 𝜌 is changed as follows: 

𝜌𝑘+1 = 𝑚𝑖𝑛(𝜇𝜌𝑘, 𝜌𝑚𝑎𝑥), (31)

where 𝜇 is a positive parameter used to enhance the convergence rate.
In summary, Algorithm 1 shows the pseudocode of the proposed 

algorithm.

3.3. Convergence analysis

Due to the non-convexity of the proposed model, the theoretical 
convergence remains a challenge. It is difficult to guarantee the global 
optimal solution of the proposed Algorithm 1. Theorem  1 is provided 
as follows, which demonstrates the proposed Algorithm 1 converges to 
the stationary point.

1 To avoid the denominator being zero, in practice we perform the fol-
lowing operation: 𝑤𝑣 = 1∕(2‖𝑆 − 𝑍 (𝑣)

𝑐 ‖𝐹 + 𝛿), where 𝛿 is a very small 
value.
6 
Fig. 3. Some examples of the test datasets: (a) ORL, (b) COIL-20, (c) AR, and (d) 
Caltech-20.

Theorem 1.  The sequence {𝑘
𝑐 ,

𝑘,𝑘
𝑠 ,

𝑘,𝑘
𝑠 ,

𝑘, 𝑆𝑘, 𝑤𝑘
𝑣 ,

𝑘,𝑘,𝑘}
by Algorithm 1 has at least one accumulation point
{

∗
𝑐 ,

∗,∗
𝑠 ,

∗,∗
𝑠 ,

∗, 𝑆∗, 𝑤∗
𝑣 ,

∗,∗,∗}. Then, {∗
𝑐 ,

∗,∗
𝑠 ,

∗,∗
𝑠 ,

∗, 𝑆∗, 𝑤∗
𝑣
} is the stationary point of Eq. (7) as long as lim𝑘→∞ 𝜌𝑘(𝑘+1 −

𝑘) = 0, lim𝑘→∞ 𝜌𝑘(𝑘+1 − 𝑘) = 0, lim𝑘→∞ 𝜌𝑘(𝑘+1 − 𝑘) = 0, and
∑∞

𝑗=1(𝜌
𝑗 + 𝜌𝑗−1)∕(𝜌𝑗−1)2 < ∞.

For the detailed proof, please refer to the supplementary material.

3.4. Complexity analysis

The main factors affecting the computational complexity of Algo-
rithm 1 are the update of , 𝑐 , 𝑠 and 𝑠. The update of  requires 
the calculation of fast Fourier transform, inverse Fourier transform and 
singular value decomposition, which will cost (𝑉 𝑛2𝑙𝑜𝑔(𝑛) + 𝑉 2𝑛2). 
The update of 𝐷(𝑣)

𝑠  requires inversion of (𝜌𝐼 + 2𝑍(𝑣)
𝑠 𝑍(𝑣)𝑇

𝑠 ), while the 
update of 𝑍(𝑣)

𝑠  requires inversion of (𝜌𝐼 + 2𝐷(𝑣)𝑇
𝑠 𝐷(𝑣)

𝑠 ), both costing 

(

𝑉 𝑘3𝑠
)

. Finally, the update of 𝑍(𝑣)
𝑐  requires inversion of ((𝜌+ 2𝑤𝑣)𝐼 +

2𝑋(𝑣)𝑇
𝑐 𝑋(𝑣)

𝑐
)

, costing (𝑉 𝑛3). So the overall computational complexity 
is: 

(

𝑡𝑉 (𝑛2𝑙𝑜𝑔(𝑛) + 𝑉 𝑛2 + 2𝑘3𝑠 + 𝑛3)
)

, where 𝑡 represents the number of 
iterations.

4. Experiments

In this section, we evaluate the clustering performance of MRTMC 
through the simulated experiments and real-world experiments.

4.1. Experimental settings

The experiment selects nine classical datasets for MVC tasks, some 
example of the datasets are shown in Fig.  3. The detailed information 
of the datasets are introduced as Table  2, including their sample size, 
multi-view features and number of features, and number of clusters. 
In the experiments, the test data are normalized to the range of [0, 1]. 
All experiments are implemented on the platform of Windows 11 and 
MATLAB R2022b with an Intel(R) Core(TM) i9-13980HX and 32 GB 
RAM.

Dataset descriptions:MSRC-V12: It consists of 210 object pictures, 
each image has 5 types of features and can be divided into 7 categories.

2 https://www.microsoft.com/en-us/msrc.

https://www.microsoft.com/en-us/msrc
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Table 2
Detailed information of all multi-view datasets.
 Datasets Samples Clusters View1 View2 View3 View4 View5 View6  
 MSRC-V1 210 7 CM(24) HOG(576) GIST(512) LBP(256) GENTRIST(254) –  
 ORL 400 40 Intensity(4096) LBP(3304) Gabor(6750) – – –  
 Yale 165 15 Intensity(4096) LBP(3304) Gabor(6750) – – –  
 COIL-20 1440 20 Intensity(1024) LBP(4096) – – – –  
 AR 1300 100 Intensity(792) LBP(472) Gabor(792) – – –  
 FERET 1400 200 Intensity(1024) LBP(708) Gabor(1024) – – –  
 ALOI 1080 10 Color Similarity(77) Haralick(13) HSV(64) RGB(125) – –  
 Caltech-20 2386 20 Gabor(48) Wavelet Monments(40) CENTRIST(254) HOG(1984) GIST(512) LBP(928) 
 Scene-15 4485 15 PHOG(20) GIST(59) LBP(40) – – –  
Table 3
The settings of parameters (𝜆1, 𝜆2) for all datasets.
 Datasets MSRC-V1 ORL Yale COIL-20 AR ALOI FERET Caltech-20 Scene-15 
 𝜆1, 𝜆2 𝜆1, 𝜆2 𝜆1, 𝜆2 𝜆1, 𝜆2 𝜆1, 𝜆2 𝜆1, 𝜆2 𝜆1, 𝜆2 𝜆1, 𝜆2 𝜆1, 𝜆2  
 𝐶𝑎𝑠𝑒1 10,10 5,5 5,50 50,50

10,50 40,10 10,20 40,50 50,10

 
 𝐶𝑎𝑠𝑒2 10,30 5,20 10,1 40,40  
 𝐶𝑎𝑠𝑒3 10,10 5,10 20,10 50,30  
 𝐶𝑎𝑠𝑒4 30,10 5,1 5,40 50,1  
ORL3: The dataset consists of 400 face images with variations in illumi-
nation, facial expressions, and details. These images have three types of 
features and can be divided into 40 categories. Yale4: It consists of 165 
face images under different facial expressions and configurations. COIL-
205: It consists of 1440 object images under different angles. These 
images have two view features and can be divided into 10 categories.
AR: The dataset comes from [54] and consists of 1300 face images. 
The illumination and facial expressions of these images are different 
and some of these images are severely obstructed. FERET: The dataset 
comes from [55] and consists of 1400 face images. These images have 
different expressions, lighting, posture and age changes. For the above 
two datasets, the LBP features are obtained with a sampling density of 8 
and a blocking number of 8 × 9. The Gabor features are extracted using 
a wavelength of 4 at four orientations (𝜃 = {0◦, 45◦, 90◦, 135◦}). ALOI6:
It contains 110250 object images which can be divided into 1000 
categories. We select the 10 types of objects from them, with a total of 
1080 samples. Caltech-207: It consists of 2386 object pictures. These 
images have 6 view features and can be divided into 20 categories.
Scene-158: It contains 4485 scene pictures with 15 categories.

Compared methods: We compare MRTMC with sixteen related 
MVC methods to verify the clustering performance of MRTMC, includ-
ing Co-Regularized Spectral Clustering (CoReg) [56], Affinity Aggre-
gation for Spectral Clustering (AASC) [15], Robust Multi-view Spec-
tral Clustering (RMSC) [18], Adaptively Weighted Procrustes MVC
(AWP) [57], Weighted Multi-view Spectral Clustering based on Spec-
tral Perturbation (WMSC) [58], Multi-view Consensus Graph Clus-
tering (MCGC) [20], Graph-based MVC (GMC) [21], Low-rank Ten-
sor Constrained Multi-view Subspace Clustering (LTMSC) [32], La-
tent Multi-view Subspace Clustering (LMSC) [27], MVC via Tensor 
Multi-rank Minimization (t-SVD-MSC) [33], Hyper-Laplacian Regular-
ized MVC (HLR-M2VS) [34], Weighted Tensor-Nuclear Norm Mini-
mization (WTNNM) [40], Generalized Nonconvex Low-rank Tensor 
Approximation (GNLTA) [45], MVSC via Adaptive Graph Learning
(AGLLFA) [31], Robust Weighted Low-rank Tensor Approximation
(RWLTA) [41], and Multi-view and Multi-order Graph Clustering
(MoMvGC) [22].

Initialization and parameters setting: For all datasets, we apply 
the robust principal component analysis (PCA) [59] technique to divide 

3 http://www.uk.research.att.com/facedatabase.html.
4 http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
5 http://www.cs.columbia.edu/CAVE/software/softlib/.
6 https://aloi.science.uva.nl/.
7 http://www.vision.caltech.edu/ImageDatasets/Caltech101/.
8 http://www-cvr.ai.uiuc.edu/ponce_grp/data/.
7 
the raw multi-view data into the latent clean multi-view data 𝑋(𝑣)
𝑐

and noise data 𝑋(𝑣)
𝑛 . Then we use K-means based on singular value 

decomposition (KSVD) [60] for 𝑋(𝑣)
𝑛  to obtain a reasonable initial value 

of the structural noise dictionary 𝐷(𝑣)
𝑠 ∈ R𝑑𝑣×𝑘𝑠  and the coefficient 

𝑍(𝑣)
𝑠 ∈ R𝑘𝑠×𝑛, where 𝑘𝑠 = 𝛼 × 𝑐, 𝑐 is the number of clusters. And we 

set the initial value of the Gaussian noise as 𝐸(𝑣) = 0. For parameter 
settings, the proposed method contains regularization parameters 𝜆1
and 𝜆2, the penalty parameter 𝜌, the atom number of dictionary for 
each class 𝛼, and the nonconvex tensor nuclear norm parameters 𝜂 and 
𝜃. In our experiments, we set the initial values of 𝜆1, 𝜆2, and 𝜌 as 10−3, 
which increase at a rate of 1.5 after each iteration. The maximum value 
of 𝜌 is set to 1012, and the maximum value of 𝜆1 and 𝜆2 are selected 
from the set of {1, 5, 10, 15, 20, 30, 40, 50}. Specifically, the values 
of parameters 𝜆1 and 𝜆2 in all test datasets are shown in Table  3. 𝜂, 
𝜃 and 𝛼 are empirically set to 4, 0.1, and 5, respectively. Moreover, a 
detailed analysis of these parameters can be found in Section 4.4. For 
the compared methods, all parameters are carefully tuned as suggested 
in the reference papers to achieve the highest ACC values.

Evaluation metrics: Clustering accuracy (ACC), normalized mutual 
information (NMI), and purity (PUR) are used to measure the clustering 
effect. The range of the three indicators is from 0 to 1, with higher 
values indicating better performance.

4.2. Clustering performance on simulated data

In the subsection, MSRC-V1, ORL, Yale and COIL-20 are used to test 
the clustering performance of the proposed method. The mixed noise 
is simulated by the following rules:

Case1 (Gaussian noise): The Gaussian noise with zero-mean and 
0.1 variance is added.

Case2 (Gaussian noise + salt-and-pepper noise): On the basis of 
Case1, the salt and pepper noise with 0.1 intensity is added.

Case3 (Gaussian noise + salt-and-pepper noise + block noise): 
On the basis of Case2, several 5 × 5 or 8 × 8 black blocks are added to 
a view of 50% samples.

Case4 (Gaussian noise + salt-and-pepper noise with different 
intensities): All samples are corrupted by a combination of Gaus-
sian noise and salt-and-pepper noise, with Gaussian noise variance 
and salt-and-pepper noise intensity randomly sampled from a uniform 
distribution 𝑈 (0.20, 0.30).

Tables  4–5 show the clustering results of MRTMC and the compared 
methods on four simulated datasets. The best result is bold, and the 
second-best is underlined. To see the clustering performance more 
intuitively, we visualize the confusion matrix as shown in Fig.  4 for 
Case3 of Yale, and use the standardized t-SNE [61] to visualize the 

http://www.uk.research.att.com/facedatabase.html
http://cvc.yale.edu/projects/yalefaces/yalefaces.html
http://www.cs.columbia.edu/CAVE/software/softlib/
https://aloi.science.uva.nl/
http://www.vision.caltech.edu/ImageDatasets/Caltech101/
http://www-cvr.ai.uiuc.edu/ponce_grp/data/
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Table 4
The clustering performance of different methods on simulated MSRC-V1 and ORL.
 Datasets Method Case1 Case2 Case3 Case4

 ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR  
 

MSRC-V1

CoReg 0.8524 0.7440 0.8524 0.8143 0.6669 0.8143 0.7476 0.6200 0.7476 0.5810 0.3930 0.5810  
 AASC 0.8381 0.7175 0.8381 0.8238 0.6969 0.8238 0.7524 0.6360 0.7571 0.4762 0.3010 0.5048  
 RMSC 0.7571 0.6382 0.7571 0.7000 0.6274 0.7524 0.6619 0.5501 0.6667 0.5190 0.3479 0.5190  
 AWP 0.8000 0.6897 0.8000 0.7905 0.6627 0.8333 0.6571 0.5741 0.7714 0.5905 0.3727 0.5905  
 WMSC 0.8143 0.6933 0.8143 0.7429 0.6534 0.7476 0.7000 0.6207 0.7286 0.6381 0.4727 0.6381  
 MCGC 0.7143 0.6057 0.7429 0.6905 0.5754 0.7048 0.6762 0.5354 0.6810 0.4381 0.2969 0.4476  
 GMC 0.7857 0.6982 0.8286 0.7762 0.6787 0.8333 0.7476 0.6751 0.8571 0.2952 0.1958 0.3095  
 LTMSC 0.8571 0.7301 0.8571 0.7619 0.6231 0.7619 0.7429 0.5922 0.7429 0.4667 0.3168 0.4810  
 LMSC 0.6286 0.5253 0.6667 0.6095 0.4753 0.6095 0.5905 0.4429 0.7429 0.3476 0.1778 0.3524  
 t-SVD-MSC 0.9762 0.9493 0.9762 0.9048 0.8248 0.9048 0.8571 0.7376 0.8571 0.8905 0.7935 0.8905  
 HLR-M2VS 0.9952 0.9892 0.9952 0.9667 0.9330 0.9667 0.9667 0.9330 0.9667 0.9286 0.8666 0.9286  
 WTNNM 0.9667 0.9429 0.9667 0.9667 0.9349 0.9667 0.9619 0.9284 0.9619 0.9318 0.8819 0.9381  
 GNLTA 0.9905 0.9784 0.9905 0.9810 0.9567 0.9810 0.9857 0.9676 0.9857 0.9571 0.9129 0.9571  
 AGLLFA 0.8524 0.7385 0.8524 0.8429 0.7387 0.8429 0.8381 0.7052 0.6792 0.4524 0.2917 0.4524  
 RWLTA 0.9571 0.9095 0.9571 0.9329 0.8724 0.9329 0.9276 0.8574 0.9276 0.9284 0.8854 0.9284  
 MoMvGC 0.8000 0.6776 0.9000 0.7333 0.6318 0.7667 0.7190 0.6077 0.7571 0.4143 0.2462 0.4286  
 MRTMC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9810 0.9602 0.9810 
 

ORL

CoReg 0.7450 0.8417 0.7600 0.7150 0.8356 0.7325 0.6375 0.8107 0.6850 0.5925 0.7455 0.6325  
 AASC 0.6925 0.7831 0.7350 0.6575 0.7771 0.7175 0.6500 0.7804 0.7575 0.5500 0.6896 0.5900  
 RMSC 0.5650 0.7153 0.5825 0.4575 0.6432 0.4850 0.4400 0.6255 0.4875 0.4325 0.6058 0.4925  
 AWP 0.7325 0.8432 0.7675 0.6975 0.8177 0.7200 0.6625 0.8102 0.7175 0.5800 0.7420 0.6250  
 WMSC 0.7425 0.8448 0.7650 0.7300 0.8447 0.7525 0.7225 0.8351 0.7450 0.6325 0.7873 0.6775  
 MCGC 0.5850 0.7506 0.6825 0.5825 0.7155 0.7050 0.5475 0.6966 0.6375 0.4825 0.6353 0.5200  
 GMC 0.5650 0.7208 0.8200 0.5450 0.6797 0.7850 0.5275 0.6794 0.7925 0.4950 0.6262 0.5775  
 LTMSC 0.7775 0.8786 0.8225 0.7275 0.8554 0.7725 0.6950 0.8310 0.7500 0.7200 0.8470 0.7425  
 LMSC 0.7350 0.8652 0.7825 0.7300 0.8427 0.7550 0.7100 0.8356 0.7425 0.5825 0.7438 0.6125  
 t-SVD-MSC 0.9375 0.9728 0.9625 0.9000 0.9463 0.9300 0.8725 0.9422 0.9175 0.8525 0.9090 0.8625  
 HLR-M2VS 0.9700 0.9906 0.9750 0.9600 0.9883 0.9725 0.9425 0.9749 0.9525 0.9250 0.9616 0.9425  
 WTNNM 0.9600 0.9833 0.9725 0.9350 0.9812 0.9500 0.9325 0.9669 0.9475 0.8875 0.9480 0.9050  
 GNLTA 0.9550 0.9829 0.9675 0.9275 0.9779 0.9475 0.9250 0.9741 0.9450 0.9025 0.9521 0.9150  
 AGLLFA 0.7450 0.8474 0.7725 0.6800 0.7902 0.6950 0.6525 0.7851 0.6875 0.6325 0.7747 0.6625  
 RWLTA 0.9523 0.9817 0.9643 0.9425 0.9810 0.9590 0.9317 0.9713 0.9468 0.9270 0.9685 0.9430  
 MoMvGC 0.6250 0.7827 0.6950 0.6100 0.7783 0.6850 0.5825 0.7497 0.6625 0.5575 0.7253 0.6375  
 MRTMC 0.9700 0.9848 0.9875 0.9625 0.9828 0.9825 0.9525 0.9792 0.9775 0.9625 0.9872 0.9750 
Fig. 4. Visualization of confusion matrices by different methods on Yale in Case3.
embedded results as shown in Fig.  5 for Case3 of MSRC-V1. Through 
the above operations, we can obtain the following conclusions:

(1) In most cases, MRTMC outperforms baselines in terms of ACC, 
NMI, and PUR. Specifically, the ACC of the proposed model significant 
8 
improve by 5.45%, 6.67%, 6.66%, and 5.45% compared to the sub-
optimal method GNLTA in Case1, Case2, Case3, and Case4 on Yale 
dataset, respectively. Intuitively, the proposed method has clearer di-
agonal blocks than other compared methods from Fig.  4(a)–(l). It can 
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Table 5
The clustering performance of different methods on simulated Yale and COIL-20.
 Datasets Method Case1 Case2 Case3 Case4

 ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR  
 

Yale

CoReg 0.6545 0.6538 0.7152 0.6424 0.6549 0.7091 0.6242 0.6321 0.6788 0.6364 0.6587 0.6424  
 AASC 0.6000 0.5914 0.6424 0.5939 0.5948 0.6485 0.5273 0.5708 0.6061 0.5091 0.5354 0.5333  
 RMSC 0.6667 0.6603 0.7030 0.6606 0.6514 0.6909 0.6535 0.6449 0.6887 0.5879 0.6463 0.6000  
 AWP 0.6545 0.6652 0.7091 0.6121 0.6372 0.6667 0.5818 0.6141 0.6606 0.6061 0.6489 0.6364  
 WMSC 0.6545 0.6415 0.6909 0.6485 0.6504 0.7030 0.6121 0.6184 0.6545 0.5818 0.6426 0.6061  
 MCGC 0.6303 0.6268 0.6848 0.6182 0.6274 0.6727 0.6061 0.6273 0.6485 0.4970 0.5202 0.5152  
 GMC 0.6909 0.7105 0.7758 0.6000 0.6289 0.7091 0.5455 0.6115 0.5576 0.5697 0.5783 0.5939  
 LTMSC 0.6545 0.6851 0.7394 0.6242 0.6649 0.7212 0.6121 0.6361 0.6909 0.5152 0.4885 0.5152  
 LMSC 0.6485 0.6785 0.7333 0.6303 0.6651 0.7152 0.6182 0.6533 0.7030 0.5455 0.5700 0.5576  
 t-SVD-MSC 0.7212 0.7313 0.7697 0.6303 0.6673 0.7212 0.5939 0.6065 0.6182 0.6364 0.6781 0.6364  
 HLR-M2VS 0.7818 0.7733 0.7818 0.7273 0.7631 0.7273 0.6545 0.7197 0.6545 0.6182 0.6433 0.7212  
 WTNNM 0.7242 0.7544 0.7242 0.7091 0.7380 0.7091 0.6061 0.6397 0.6061 0.6788 0.7221 0.6848  
 GNLTA 0.7879 0.7988 0.7879 0.7515 0.7728 0.7515 0.7273 0.7602 0.7273 0.6970 0.6923 0.7030  
 AGLLFA 0.7273 0.7360 0.7333 0.6848 0.6849 0.6970 0.6485 0.6946 0.6667 0.6545 0.6874 0.6606  
 RWLTA 0.6891 0.7234 0.6915 0.6564 0.6824 0.6630 0.6339 0.6605 0.6370 0.6413 0.6797 0.6431  
 MoMvGC 0.6848 0.7043 0.6848 0.6424 0.6581 0.6545 0.6364 0.6310 0.6424 0.6242 0.6027 0.6303  
 MRTMC 0.8424 0.8647 0.8727 0.8182 0.8664 0.8424 0.7939 0.8439 0.8485 0.7515 0.7951 0.7697 
 

COIL-20

CoReg 0.7458 0.8097 0.7688 0.7278 0.7962 0.7562 0.6813 0.7658 0.7299 0.6743 0.7802 0.7125  
 AASC 0.6140 0.7181 0.7049 0.5826 0.6985 0.7097 0.5611 0.6514 0.6868 0.5917 0.6865 0.6299  
 RMSC 0.6681 0.7817 0.7611 0.6521 0.7739 0.7319 0.6444 0.7587 0.7229 0.5181 0.5776 0.5549  
 AWP 0.7090 0.8063 0.7583 0.6597 0.7782 0.7604 0.6382 0.7306 0.6882 0.6431 0.7452 0.6785  
 WMSC 0.6750 0.7672 0.7583 0.6472 0.7606 0.7292 0.6174 0.7285 0.7278 0.6250 0.7633 0.6854  
 MCGC 0.6569 0.7611 0.8090 0.6340 0.7359 0.8042 0.5306 0.6514 0.7521 0.5653 0.6541 0.6062  
 GMC 0.7701 0.8597 0.8583 0.7271 0.8229 0.8472 0.6306 0.7869 0.7831 0.6403 0.7779 0.6903  
 LTMSC 0.6944 0.7596 0.7264 0.5986 0.6596 0.6604 0.5514 0.5800 0.5993 0.6097 0.7102 0.6333  
 LMSC 0.7028 0.7706 0.7111 0.6271 0.7438 0.6875 0.6194 0.6829 0.6458 0.6229 0.7114 0.6479  
 t-SVD-MSC 0.7528 0.8270 0.8014 0.7438 0.8103 0.7708 0.7250 0.7726 0.7424 0.6861 0.7394 0.7271  
 HLR-M2VS 0.7799 0.8390 0.8125 0.7472 0.8261 0.7479 0.7417 0.8059 0.7604 0.7153 0.8143 0.7701  
 WTNNM 0.8215 0.8876 0.8423 0.7979 0.8688 0.8174 0.7798 0.8637 0.8014 0.7646 0.8338 0.7910  
 GNLTA 0.8167 0.8934 0.8389 0.8021 0.8701 0.8208 0.7924 0.8708 0.8139 0.7417 0.8154 0.7444  
 AGLLFA 0.7424 0.8157 0.7472 0.7250 0.7902 0.7375 0.7028 0.7506 0.7132 0.6562 0.7093 0.6708  
 RWLTA 0.8890 0.9147 0.9014 0.8761 0.9161 0.8969 0.8251 0.8540 0.8403 0.7763 0.8262 0.7937  
 MoMvGC 0.8181 0.8832 0.8521 0.6743 0.7981 0.7292 0.6340 0.7140 0.6465 0.6438 0.7900 0.6889  
 MRTMC 0.8431 0.8980 0.8576 0.8222 0.8805 0.8368 0.8056 0.8825 0.8347 0.8076 0.8587 0.8090 
Fig. 5. Visualization of the embedding results by different methods on MSRC-V1 in Case3.
be concluded that MRTMC is more robust to different mixed noise than 
other methods.
9 
(2) Compared with the graph learning-based MVC methods, such as 
WMSC, MCGC and GMC, MRTMC achieves the best clustering perfor-

mance. Specifically, in Case4 of the COIL-20 dataset, MRTMC signifi-
cantly improves ACC, NMI, and PUR by 16.73%, 8.08%, and 11.87%, 
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Table 6
The clustering performance (ACC, NMI, and PUR) of different methods on the real-world datasets.
 Method AR FERET ALOI Caltech-20 Scene-15

 ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR  
 CoReg 0.2854 0.5576 0.3446 0.3921 0.7408 0.4393 0.9278 0.8708 0.9278 0.5101 0.5573 0.5784 0.4341 0.4206 0.4689  
 AASC 0.3062 0.5623 0.3700 0.3229 0.6585 0.4021 0.9250 0.8647 0.9250 0.5163 0.6157 0.6844 0.4484 0.4432 0.4923  
 RMSC 0.2154 0.5381 0.3008 0.3186 0.6851 0.3686 0.7667 0.7559 0.8407 0.5083 0.5553 0.7514 0.4305 0.4158 0.4698  
 AWP 0.2746 0.5468 0.3408 0.3786 0.7323 0.4243 0.8222 0.7895 0.9037 0.5520 0.5615 0.6316 0.3761 0.3550 0.4049  
 WMSC 0.2708 0.5610 0.3277 0.3693 0.7325 0.4129 0.8944 0.8257 0.8944 0.5025 0.5638 0.5838 0.4479 0.4521 0.4760  
 MCGC 0.2785 0.5379 0.3154 0.3714 0.7127 0.4171 0.9389 0.8789 0.9389 0.5754 0.4902 0.6686 0.3344 0.3137 0.3683  
 GMC 0.2162 0.4036 0.3069 0.2907 0.4875 0.6143 0.8537 0.7922 0.8537 0.4891 0.4234 0.6435 0.1953 0.1291 0.2089  
 LTMSC 0.6108 0.7906 0.6838 0.4329 0.7484 0.4700 0.9259 0.8642 0.9259 0.4991 0.5853 0.7791 0.3882 0.3673 0.2158  
 LMSC 0.4485 0.6781 0.4854 0.3764 0.7265 0.4200 0.8306 0.7877 0.8611 0.4594 0.5531 0.7672 0.3889 0.3598 0.4435  
 t-SVD-MSC 0.9031 0.9682 0.9278 0.6721 0.8665 0.7214 0.9231 0.8596 0.9231 0.4715 0.6472 0.5536 0.7501 0.7589 0.8147  
 HLR-M2VS 0.6900 0.8261 0.6977 0.6257 0.8576 0.6486 0.9611 0.9279 0.9611 0.6039 0.6865 0.8479 0.7249 0.7176 0.7672  
 WTNNM 0.9054 0.9728 0.9231 0.7443 0.9036 0.7728 0.9250 0.8658 0.9250 0.5645 0.7143 0.8835 0.7507 0.7472 0.8087  
 GNLTA 0.8769 0.9585 0.9015 0.7407 0.9210 0.7779 0.9852 0.9701 0.9852 0.5524 0.7207 0.8722 0.8504 0.8609 0.8778  
 AGLLFA 0.5077 0.7117 0.5231 0.3607 0.7005 0.3800 0.9352 0.8722 0.9352 0.4531 0.4536 0.6953 0.3824 0.3696 0.4100  
 RWLTA 0.8578 0.9519 0.8841 0.7314 0.9091 0.7683 0.9564 0.9306 0.9564 0.6009 0.7188 0.8639 0.9337 0.9137 0.9424 
 MoMvGC 0.2785 0.4997 0.3092 0.3486 0.6181 0.3936 0.9454 0.9030 0.9454 0.6077 0.6336 0.7460 0.4087 0.3776 0.4441  
 MRTMC 0.9292 0.9740 0.9608 0.7629 0.9245 0.8321 0.9769 0.9546 0.9769 0.6320 0.7810 0.9208 0.9344 0.8837 0.9344  
Fig. 6. Visualization of the recovered images, structural noise, and Gaussian noise on ORL with Case3 (first row) and the real-world dataset AR (second row).
respectively, compared to GMC. The graph learning-based methods 
directly construct similarity graphs from the raw multi-view data, but 
a single norm constraint cannot effectively depict the mixed noise, 
resulting in unreliable similarity graphs. In contrast, MRTMC takes into 
account both mixed noise and high-order correlation among views. 
From Fig.  5, we observe that MRTMC accurately classifies the samples 
into seven categories in Case3 of MSRC-V1 dataset.

(3) Compared with the subspace learning-based methods, such as t-
SVD-MSC, HLR-M2VS and WTNNM, MRTMC demonstrates outstanding 
capability. And one can see that the tensor-based methods achieve 
better clustering performance than the graph-based methods (such as 
WMSC, MCGC, and GMC). This may be because there is a strong 
similarity among multi-view data, and high-order correlation can better 
explore the consistency of data and obtain better clustering perfor-
mance. As a comparison, since the proposed method can not only 
capture the global correlation among views but also explore the specific 
information within each view. And the performance of the proposed 
method MRTMC is better than the graph-based and tensor-based com-
parison methods. In addition, the proposed method has clearer cluster 
than other subspace-based MVC methods from Fig.  5(e)–(j). This is 
attributed to the fact that the mixed noise within each view can 
be adaptively learned and suppressed, thereby achieving the superior 
clustering performance.

4.3. Clustering performance on real-world data

In the subsection, AR, FERET, ALOI, Caltech-20, and Scene-15 are 
used to test the clustering performance of MRTMC. The above datasets 
10 
contain complex structural noise, such as glasses, mask, and back-
ground as shown in Fig.  3(c) and (d). In Table  6, we list the clustering 
results of all methods. The best result is bold, and the second-best is 
underlined.

From Table  6, MRTMC demonstrates superior performance on the 
real datasets. Specially, in term of ACC, the proposed method shows sig-
nificant improvements of 2.38%, 1.86%, and 2.43% over sub-optimal 
method on AR, FERET, and Caltech-20, respectively. Besides, the pro-
posed method achieve promising result on ALOI and Scene-15. It is 
worth noting that graph learning-based MVC methods perform poorly 
on AR datasets. The may be attributed to the severe occlusion and 
varying illumination in AR dataset, which lead to unreliable similarity 
graphs constructed from the raw data. The reason why the proposed 
model is superior to other MVSC methods may be that mixed noise 
learning of the proposed method has better noise description ability 
than a single norm. Although the ALOI dataset is affected by envi-
ronmental interference such as light conditions and rotation angles, 
all methods have strong clustering performance. This could be due to 
certain multi-view features that alleviate the impact of environmental 
interference.

Additionally, we have visualized the mixed noise separation as 
shown in Fig.  6. From the first line, the proposed model regards the 
black blocks and salt-and-pepper noise as structural noise and restores 
the outline of the face clearly. From the second line, the proposed 
model regards glasses and hair as structural noise and restores the oc-
cluded areas clearly. In summary, the features of the potential restored 
image are well preserved, and the structural noise can be separated 
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Table 7
The results of ablation experiments for the proposed method MRTMC.
 Method AR FERET ALOI Caltech-20 Scene-15

 ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR  
 MRTMC-(w/o)𝐿1 0.8385 0.9341 0.8985 0.3486 0.7065 0.3614 0.8435 0.7591 0.8435 0.4132 0.5666 0.7590 0.9144 0.8778 0.9144  
 MRTMC-(w/o)𝐿2 0.9062 0.9653 0.9446 0.7464 0.9157 0.8093 0.9667 0.9395 0.9667 0.5830 0.7462 0.9116 0.8685 0.8787 0.9010  
 MRTMC-(w/o)𝐿3 0.8909 0.9637 0.9377 0.7386 0.9145 0.8057 0.9639 0.9342 0.9639 0.5650 0.7392 0.8998 0.9248 0.8723 0.9248  
 MRTMC 0.9292 0.9740 0.9608 0.7629 0.9245 0.8321 0.9769 0.9546 0.9769 0.6320 0.7810 0.9208 0.9344 0.8837 0.9344 
Fig. 7. The learned weights of different views for different datasets.

approximately. The proposed approach of representing the mixed noise 
brings valuable potential features, which is beneficial to clustering 
performance.

4.4. Discussions

Ablation study: To study the effectiveness of the different terms in 
proposed model, we perform experiments on three variants. For sim-
plicity, 𝐿1, 𝐿2, and 𝐿3 are used to represent adaptive dictionary learn-
ing for structural noise, nonconvex low-rank tensor approximation, 
and adaptive weighting strategy, respectively. Specifically, the model 
is degraded to MRTMC-(w/o)𝐿1 by removing the adaptive dictionary 
learning for structural noise. By replacing the nonconvex TNN with 
the traditional TNN, the model is degraded to MRTMC-(w/o)𝐿2. Giving 
each view the same weight instead of adaptive weighting learning, the 
model is degraded to MRTMC-(w/o)𝐿3. From the Table  7, MRTMC 
shows a significant improvement compared to MRTMC-(w/o)𝐿1. It 
indicates that the adaptive dictionary learning for structural noise is a 
crucial component of our method, leading to a significant enhancement 
of clustering performance. 

Compared with the same weights (MRTMC-(w/o)𝐿3), the proposed 
method with the adaptive weights can achieve the higher clustering 
results, which shows the effectiveness of adaptive weight strategy for 
improving clustering performance. Fig.  7 presents the learned weights 
of our weighting strategy, which can adaptively determine the weights 
of different views for different datasets. For example, the weights of 
each view of Scene-15 data are 0.5393 (view-1), 0.2241 (view-2), and 
0.2366 (view-3). In summary, the performance of the proposed model 
is better than all variants, which implies that each regularization term 
can enhance the performance of the model.

Effectiveness on adaptive dictionary learning: For the structural 
noise, we design the dictionary learning to adaptively adjust to varying 
structural noise characteristics across different datasets, which lies in 
two-fold:

• During the initialization phase, for different datasets, we use 
the robust PCA [59] to divide the raw multi-view data into the 
latent multi-view data and noise data. Then according to the 
11 
characteristics of noise data, we use KSVD [60] to adaptively 
represent the noise data as the structural noise dictionary and the 
coefficient, resulting in the reasonable initialization.

• During the optimization phase, the proposed adaptive dictionary 
learning strategy can dynamically update the dictionary and rep-
resentation coefficient of the structural noise of different datasets. 
Fig.  8 shows the process of adaptively learning the structure 
noise for different datasets. One can see that the structures of the 
learned dictionary and representation coefficient become clearer 
as the number of iterations increases, and the structural noise can 
be separated from the observed data to improve the robustness of 
clustering.

To quantitatively test the performance of dictionary learning, we 
compare the difference between the learned structural noise 𝑋̂(𝑣)

𝑠 =
𝐷𝑠

(𝑣)𝑍𝑠
(𝑣) and the real structural noise 𝑋(𝑣)

𝑠  by 

𝐸𝑟𝑟 =
𝑉
∑

𝑣=1

‖𝑋(𝑣)
𝑠 − 𝑋̂(𝑣)

𝑠 ‖𝐹

‖𝑋(𝑣)
𝑠 ‖𝐹

. (32)

A smaller Err value indicates that the proposed adaptive dictionary 
learning strategy obtains the more accurate structural noise estimation. 
In Fig.  9, we plot the Err curve of structural noise on ORL dataset 
with Case3. We can see that the Err curve drops rapidly after a certain 
number of iterations and tends to be stable, which demonstrates that 
the adaptive dictionary learning can approximately learn the structured 
noise.

The effect of the block noise with different sizes: To test the 
effect of the block noise with different sizes on the clustering perfor-
mance, taking the ORL dataset as an example, we test the following 
cases:

CaseA: On the basis of Case2, three 8 × 8 black blocks are added to 
a view of 50% samples.

CaseB: On the basis of Case2, two 20 × 20 black blocks are added 
to a view of 50% samples.

CaseC: On the basis of Case2, one 30 × 30 black block is added to 
a view of 50% samples.

Fig.  10 presents some samples contaminated by blocks of different 
sizes. Clearly, the larger the block noise, the more serious the data 
pollution. One can see that when the block noise is small, the restored 
latent image can well preserve the details and texture information 
of the image. As the block noise increases, although the quality of 
the restored image decreases, the main features of the image are 
preserved. Moreover, Table  8 lists the clustering performance of the 
proposed method and baselines in terms of different block noise cases. 
We observe that the proposed method achieves the best clustering 
performance and is robust to different block noise cases. 

The impact of the regularization parameters 𝜆1 and 𝜆2: In the 
proposed method, regularization parameters 𝜆1 and 𝜆2 are used to 
balance the contributions of all terms in Eq. (6). Fixing the 𝑘𝑠 = 5𝑐, 
Fig.  11 provides ACC values of the proposed model with varying 𝜆1 and 
𝜆2 on different datasets. The maximum value of 𝜆1 and 𝜆2 are selected 
from the set of {1, 5, 10, 15, 20, 30, 40, 50}. As the maximum value 
of 𝜆1 changes, the model performance changes significantly. We can 
conclude that 𝜆1 used to balance the contribution of low-rank term is 
sensitive to MRTMC. The change of the maximum value of 𝜆2 has little 
effect on the model performance, so it can be concluded that 𝜆  which 
2
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Fig. 8. Visualization of structural noise dictionary 𝐷(𝑣)
𝑠  (first row), coefficient matrix 𝑍 (𝑣)

𝑠  (second row), and structural noise (third row) on ORL with Case3 and real-world dataset 
AR as the number of iterations increases.
Table 8
The clustering performance of different methods in different block noise cases on ORL dataset.
 Method CaseA CaseB CaseC

 ACC NMI PUR ACC NMI PUR ACC NMI PUR  
 CoReg 0.6375 0.8107 0.6850 0.6325 0.7721 0.6725 0.6150 0.7599 0.6525  
 AASC 0.6500 0.7804 0.7575 0.5950 0.7252 0.6425 0.5050 0.6572 0.5350  
 RMSC 0.4400 0.6255 0.4875 0.4325 0.6130 0.4925 0.3875 0.5538 0.4600  
 AWP 0.6625 0.8102 0.7175 0.6075 0.7295 0.6350 0.5875 0.7337 0.6225  
 WMSC 0.7225 0.8351 0.7450 0.6475 0.7707 0.6700 0.6250 0.7682 0.6625  
 MCGC 0.5475 0.6966 0.6375 0.5150 0.6728 0.5700 0.5050 0.6683 0.5825  
 GMC 0.5275 0.6794 0.7925 0.4875 0.6363 0.5825 0.4450 0.6083 0.5525  
 LTMSC 0.6950 0.8310 0.7500 0.6525 0.8013 0.7050 0.5850 0.7469 0.6100  
 LMSC 0.7100 0.8356 0.7425 0.6325 0.7601 0.6525 0.5525 0.7133 0.5750  
 t-SVD-MSC 0.8725 0.9422 0.9175 0.8750 0.9374 0.9025 0.8100 0.8992 0.8350  
 HLR-M2VS 0.9425 0.9749 0.9525 0.9025 0.9530 0.9425 0.8725 0.9348 0.9025  
 WTNNM 0.9325 0.9669 0.9475 0.8925 0.9627 0.9175 0.8475 0.9217 0.8575  
 GNLTA 0.9250 0.9741 0.9450 0.8825 0.9364 0.8875 0.8575 0.9477 0.8925  
 AGLLFA 0.6525 0.7851 0.6875 0.6300 0.7731 0.6550 0.6075 0.7545 0.6350  
 RWLTA 0.9317 0.9713 0.9468 0.8850 0.9517 0.9075 0.8523 0.9329 0.8745  
 MoMvGC 0.5825 0.7497 0.6625 0.5925 0.7435 0.6425 0.5625 0.7370 0.6425  
 MRTMC 0.9525 0.9792 0.9775 0.9275 0.9712 0.9475 0.8950 0.9435 0.9075 
Fig. 9. The Err curve of structural noise on dataset ORL with Case3.

is used to balance the contribution of the structural noise sparsity is 
robust to MRTMC.

The impact of the atom number of dictionary 𝛼: The parameter 
𝛼 is used to balance the dictionary atoms and is selected from the set 
of {1, 5, 10, 15, 20}. Fig.  12 provides indices of the proposed model 
with varying 𝛼 on different datasets. We can see that relative stable 
clustering performance can be achieved when 𝛼 is within the set of {5, 
10, 15, 20}. Considering the computational complexity, 𝛼 is set 5 in all 
experiments.

The impact of the parameters 𝜂 and 𝜃 in the nonconvex tensor 
nuclear norm:  The nonconvex tensor nuclear norm includes param-
eters 𝜂 and 𝜃. To test their impact on the clustering results, taking 
datasets FERET and Scene-15 as examples, Fig.  13 shows the impact 
of parameters 𝜂 and 𝜃 on clustering performance (i.e., ACC, NMI, and 
12 
Fig. 10. The different block noise cases and the corresponding restored data on ORL 
dataset.

PUR values), respectively. From Fig.  13, we can see that the proposed 
method achieves the promising metrics in a relatively wide range of two 
parameters, which indicates that our methods are stable while changing 
𝜂 and 𝜃. Therefore, we set 𝜂 = 4 and 𝜃 = 0.1 in all experiments. 

Comparison of running time: To further demonstrate the compu-
tational efficiency of the proposed method, Table  9 reports the running 
time of the proposed method and the compared methods. From Tables 
4–6 and Table  9, we observe that the proposed method MRTMC can 
achieve the highest ACC, NMI, and PUR values within an acceptable 
running time in most cases. This shows that the proposed method is 
competitive in terms of computational efficiency. 
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Fig. 11. ACC values of the proposed method with different parameters 𝜆1 (axis on the right) and 𝜆2 (axis on the left) on different datasets.

Fig. 12. The clustering performance of the proposed model with varying 𝛼 on (a) MSRC-V1, (b) AR, (c) AIOL, (d) FERET, (e) Caltech-20, and (f) Scene-15 datasets.
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Table 9
Comparison of running times (seconds) on all the datasets.
 Method MSRC-V1 ORL Yale COIL-20 AR FERET ALOI Caltech-20 Scene-15 Average  
 LTMSC 3.9438 31.2144 7.7366 157.2228 125.3813 165.9597 66.4640 670.8783 1833.6899 340.2768 
 LMSC 2.4209 15.4454 6.7208 66.5998 45.6185 56.1340 26.6348 238.6877 1509.7940 218.6729 
 t-SVD-MSC 1.1904 10.8259 4.4488 29.9339 16.1389 28.6948 10.0434 117.5262 162.3185 42.3468  
 HLR-M2VS 1.4434 6.8569 2.3158 45.9249 41.8489 49.9118 39.9036 369.4876 1261.6286 202.1468 
 WTNNM 2.2146 16.7459 5.2575 50.2492 48.0626 39.2379 17.0176 233.0602 985.4711 155.2574 
 GNLTA 0.3214 0.4425 0.1199 2.7652 4.6005 3.8881 3.4018 27.5237 48.1953 10.1398  
 AGLLFA 0.4292 6.1409 1.6208 5.0536 22.3245 51.1857 2.4112 23.6487 50.7653 18.1756  
 RWLTA 0.7638 1.3053 0.3365 9.0607 14.3119 16.8936 13.4076 97.6755 117.9121 30.1852  
 MRTMC 1.0521 10.6151 4.2267 23.2636 26.0139 53.7062 19.3692 180.7157 313.9995 70.3291  
Fig. 13. Clustering performance (ACC, NMI, and PUR values) with respect to the 
parameters 𝜂 and 𝜃.
14 
Numerical convergence: Theorem  1 demonstrates the theoretical 
convergence of the proposed MRTMC algorithm, and in this section 
we investigate the numerical convergence of the proposed MRTMC 
algorithm. The error curve (Error = max{‖𝑘+1

𝑠 − 𝑘+1
‖∞, ‖𝑘+1

𝑠 −
𝑘+1

‖∞, ‖𝑘+1
𝑐 − 𝑘+1‖∞}) is illustrated in Fig.  14. The abscissa repre-

sents the number of iterations, and the ordinate represents the max-
imum relative error. It can be observed that the relative error de-
creases with the increasing number of iterations, stabilizing at a small 
value after approximately 30 iterations. We conclude that the proposed 
algorithm is convergent numerically.

5. Conclusion

In this work, a new mixed-noise robust tensor multi-view clustering 
method via adaptive dictionary learning is proposed to improve the 
robustness of multi-view clustering. In MRTMC, the multi-view data is 
decomposed into three parts: latent clean multi-view data, structural 
noise, and Gaussian noise, where the structural noise with semantic 
information is modeled by adaptive dictionary learning. Moreover, the 
nonconvex tensor nuclear norm is introduced on the self-representation 
tensor to explore the high-order correlation among multiple views. In 
addition, an adaptive weighting strategy is used to distinguish the im-
portance of different views. An efficient algorithm is developed within 
the ADMM framework to solve our model, and the theoretical con-
vergence of the optimization algorithm is established. Experiments on 
simulated and real-world data illustrate the robustness and superiority 
of the proposed method over the state-of-the-art MVC methods.
Fig. 14. Relative error versus iterations of the proposed method on different datasets.
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