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ABSTRACT

Multi-view clustering (MVC) has received extensive attention by exploiting the consistent and complementary
information among views. To improve the robustness of MVC, most MVC methods assume that the noise
implicit in the data follows a predefined distribution. However, due to equipment limitations and transmission
environment, the collected multi-view data often contains mixed noise. The predefined distribution assumption
may not be able to effectively suppress complex mixed noise, resulting in a decrease in clustering performance.
For solving the above problem, we propose a novel mixed-noise robust tensor multi-view clustering method
(MRTMC) via adaptive dictionary learning. To accurately characterize the mixed noise, we consider mixed
noise as a combination of structural noise and Gaussian noise and characterize both respectively. Specially,
we design adaptive dictionary learning to accurately model structural noise containing semantic information
and use Frobenius norm to constrain Gaussian noise. To fully mine the consistency among multiple views,
we introduce a nonconvex tensor nuclear norm on the self-representation tensor to explore the high-order
correlation among multiple views. Moreover, the weight of each view is learned through an adaptive weighting
strategy. For solving the model, we develop an effective algorithm based on the alternating direction method of
multipliers (ADMM) framework and provide the convergence guarantee of the algorithm under mild conditions.
Extensive experimental results on simulated and real-world datasets indicate the clustering performance of the
proposed MRTMC method is superior to the compared methods.

1. Introduction

In reality, a sample is usually represented by multiple features or
modalities, which is called multi-view data. For instance, websites
can be characterized by text and pictures, and news stories can be
reported in several languages. Multi-view data offers more extensive
information than single-view data to reveal the inherent structure, and
often represents an object more comprehensively [1-6]. In practical
application, multi-view data is inevitably polluted by noise due to
equipment limitations or transmission environment. Multi-view clus-
tering (MVC) [7-10] aims to mine potential information in multi-view
data by exploiting both the consensus and complementary information
among multiple views, which has been widely used in fields such as
social network analysis, medical diagnosis, and image and video analy-
sis [11-14]. Over the past two decades, numerous MVC methods have
been developed and have shown encouraging results. The mainstream
MVC methods can generally be classified into two categories: (1) graph
learning-based methods; (2) subspace-based methods.

* Corresponding author.

The graph learning-based MVC methods can adaptively learn the
similarity graphs from each view and then use spectral clustering on
constructed graph to obtain clustering results. Therefore, efficiently
utilizing the information from multiple views to construct similarity
graphs is crucial for graph learning-based MVC methods [15-24]. For
obtaining a better constructed graph, Huang et al. [15] proposed a
method similar to multiple kernel learning to identify the optimal
combination of similarity graphs. Xia et al. [18] proposed a robust spec-
tral clustering algorithm that recovered a shared transition probability
matrix via low-rank and sparse decomposition to obtain a reliable con-
structed graph, where noise was constrained by #, norm. Nie et al. [19]
proposed a self-weighted MVC method that can consider the difference
of each view to obtain a reliable constructed graph, where noise was
constrained by Frobenius norm. The above methods got a reliable
similarity graph and achieved impressive clustering results. However,
they used a fixed norm constraint on noise, which may not be sufficient
to handle complex and mixed noise in multi-view data.
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Fig. 1. Framework of MRTMC. Our model consists of three parts, i.e., (a) mixed noise learning based on adaptive dictionary, (b) nonconvex low-rank tensor approximation, and
(c) adaptive weighting strategy. Specially, the raw multi-view data is decomposed into latent clean multi-view data, structural noise and Gaussian noise. We use self-representation
subspace learning on latent feature to explore the correlation of samples of each view. And the adaptive dictionary learning is designed to describe the view-specific structural
noise. Then, the nonconvex low-rank tensor approximation is introduced to characterize the low-rank property of representation tensor Z.. In addition, the adaptive weighting
strategy learns the weight of each view while jointly optimizing similarity matrix S and representation matrix Z{". Finally, the spectral clustering algorithm is applied on the

learned affinity matrix to obtain the clustering results.

The subspace-based MVC methods are committed to dividing multi-
view data into multiple low-dimensional subspaces. The majority of
current multi-view subspace clustering (MVSC) methods typically fol-
low two steps: (1) find the optimal low-dimensional subspace for each
view, (2) apply spectral clustering algorithm on affinity matrix which
is fused by subspace representations to obtain clustering results. The
classic methods of learning affinity matrix are sparse representation and
low-rank representation. Base on both, some MVSC methods have been
proposed [25-31]. In work [25], Cheng et al. proposed a method which
explored low-rank similarity matrices through a joint decomposition of
multiple feature matrices. To capture the complementary information
among views, Zhang et al. [27] proposed a method which aimed to
discover the latent representation of multi-view data. In work [31],
Tang et al. proposed a last fusion alignment MVSC method that in-
tegrated complementary information at the partition level to reduce
the impact of noise. Considering the spatial structure of representation
tensor, tensor representation have been widely used in MVSC [32-39].
Tensor-based MVSC methods utilize tensor low-rank representation to
exploit the high-order correlation embedded in multiple views. For
example, Zhang et al. [32] proposed the tensor unfolding-based method
to explore complementary information among multiple views. Different
from the work [32], Xie et al. [33] imposed a tensor constraint based
on tensor-singular value decomposition (t-SVD) to mine the consensus
among multiple views. To explore the application of MVSC in nonlin-
ear space, [34] imposed hyper-Laplacian regularization on subspace
coefficient. Chen et al. [35] handled nonlinear data structure through
kernel trick. Most of the above models applied t-SVD based tensor
nuclear norm (TNN) to approximate representation tensor rank, which
is not a reliable approximation of tensor rank. For solving this problem,
some methods based on nonconvex tensor rank approximation were
proposed [40-46]. In [40,46], the weighted tensor nuclear norm is
introduced to explore the high-order correlation of views and the prior
information of singular values and achieved promising results. In [44],
Pan et al. designed a nonconvex TNN by introducing kernel function
to approximate tensor rank. The methods based on nonconvex TNN
promote the low-rank property of representation tensor through the
nonconvex relaxation, which benefits the affinity matrix.

Most of the above MVSC methods consider the influence of noise
on the affinity matrix, and they specified a predefined norm loss in the
method, implying that the noise in multi-view data follows a predefined
distribution. Specially, £, ; norm or #; norm is used to handle sample-
specific corruptions and outliers [29,32,33,40]. However, the noise

in real application is usually mixed and complex, and the noise in
multi-view data probably contains semantic features, such as masks
and glasses in facial pictures, lighting and angles in object pictures.
Therefore, a predefined norm constrain may not be suitable for complex
noise situation. To address this problem, we focus on improving the
robustness of MVC methods in real-world scene.

In our work, a new mixed-noise robust tensor multi-view clustering
method (MRTMC) via adaptive dictionary learning is proposed. The
framework is shown in Fig. 1. Firstly, we decompose the raw multi-view
data into three parts: latent clean multi-view data, structural noise,
and Gaussian noise in Fig. 1(a). Specially, self-representation subspace
learning is used on latent clean multi-view data to capture the similarity
within each view. Next, we design an adaptive dictionary for each
view to learn structural noise which contains semantic information.
Meanwhile, Gaussian noise is constrained by Frobenius norm. Secondly,
specific-view representation matrices are stacked into a third-order
representation tensor. To explore the consistency among views, we
introduce nonconvex TNN to characterize the low-rank property of
representation tensor, as shown in Fig. 1(b). Subsequently, MRTMC
jointly optimizes the representation tensor and affinity matrix through
the adaptive weighting strategy, as shown in Fig. 1(c). Finally, the
spectral clustering algorithm is applied on the learned affinity matrix
to obtain the clustering results. The main contributions of our work are
as follows:

(1) We propose a new mixed-noise robust tensor multi-view clus-
tering method (MRTMC) via adaptive dictionary learning, which can
not only explore the specific information of each view but also fully
mine the consensus information among views. The proposed method
can flexibly and effectively solve the mixed noise problem in MVC,
which is a challenging task in real-world applications.

(2) To fully mine the consistency among views, we introduce a
nonconvex tensor nuclear norm on the self-representation tensor to
explore the high-order correlation among multiple views. Moreover, the
weight of each view is learned through an adaptive weighting strategy.
In addition, mixed noise learning based on adaptive dictionary, non-
convex low-rank tensor approximation, and affinity matrix learning are
optimized in a unified framework and promote each other.

(3) An efficient algorithm based on alternating direction method
of multipliers (ADMM) framework is developed to solve the proposed
nonconvex model. Theoretically, we show the convergence guarantee
of the algorithm under mild conditions. Experimental results on sim-
ulated and real-world datasets demonstrate the proposed method has
better clustering performance than the compared methods.
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Table 1

Basic notations and their meanings.
Notation Meaning
X, X, X, x Tensor, matrix, vector, and scalar
x® The kth frontal slice of tensor X
X, The jth column of matrix X
V,n The number of views, instances
d, Dimension of the vth feature
X = fft(x,[1,3) FFT along tube fiber
X7, xT The transpose of tensor, matrix
Il Matrix nuclear norm
Il Tensor norm based on t-SVD
[ ¢, norm, Frobenius norm
R The real space

The remainder of this paper is structured as follows: Section 2
provides the required notations and preliminaries. Section 3 describes
the proposed method in detail. Section 4 presents the experimental
results and some discussions, with the conclusion in Section 5.

2. Notations and preliminaries

In this section, some notations and preliminaries needed throughout
this paper are introduced. The basic notations and their corresponding
meanings are summarized in Table 1.

Before introducing t-SVD, some operators need to be introduced. For
a tensor X € R"*"2%"  jts block diagonal matrix bdiag(X’) and block
circular matrix bcirc(X) are defined as

pre)
(2)
bdiag(X) = x . )
X(n3)
xM x”3) . X@
@ 20 L x®
beire(X) =| . . . -
X xpm-n L p)
The block vectorization is defined as bvec(X) = [X(1);...; X))

and the inverse operations of bdiag and bvec are defined as bv-
fold(bdiag(Xx)) = X and bdfold(bvec(X)) = X, respectively.

Definition 1 (t-Product [47]). For two tensors X € R"*X"2X"3 and Y €
R"2*n4Xn3 the t-product & * Y is a tensor of size n; X ny X ny

C = X % Y = bvfold(bcirc(X)bvec())).

Definition 2 (f-Diagonal Tensor [47]). A tensor X € R"*"2X" g called
f-diagonal if all of its frontal slices are diagonal matrices.

Definition 3 (Orthogonal Tensor [47]). A tensor X € R">nX" jg
orthogonal if

XTwx=xxxT=1,

where 7 € R"™"1*"3 js the identity tensor, with its first frontal slice
being the n x n identify matrix and all other frontal slices being zero.

Definition 4 (Tensor Singular Value Decomposition (t-SVD) [47]). A
tensor X € R"1*"X" can be decomposed by t-SVD as

X=U ST,

where U" € R"*"M*" and VY € R"*"2*"33are orthogonal tensors. S €
RM>m>n3 s a f-diagonal tensor.
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Definition 5 (t-SVD Based Tensor Nuclear Norm (TNN) [48]). The tensor
nuclear norm based on t-SVD of a tensor X € R"1*"2%"3 is defined as the
sum of singular values from all frontal slices of X:

min{nym} ny

Il =Y X 186Gkl
i=1 k=1

where X means the fast Fourier transformation (FFT) of X along tube
fiber, 2% = 7r® SOPET

3. The proposed method

In this section, we show the proposed model and present the op-
timization algorithm. Then, we provide convergence guarantee of the
algorithm and analyze the computational complexity.

3.1. Problem formulation

Given a multi-view dataset with n samples and V' views {X (”)}l‘); iy
X0 = [x(lu), ,xf,”)] € R%*" denotes the vth view feature, d, is the
dimension of the vth view feature. In real application, the noise in
multi-view data is typically mixed and complex, and may contain se-
mantic information. For enhancing the robustness of the MVC methods,
the raw multi-view data is decomposed into three parts: latent multi-
view clean data X, E”), structural noise X §”), and Gaussian noise E® as
shown in Fig. 1(a), which can be denoted as

XD =xD 4 X4 EO p=1,...,V. )

Since the latent multi-view clean data is usually distributed in
several subspaces, we explore the multiple low-dimensional subspaces
to preserve the global structure of the latent clean data. Inspired by
the self-representation based subspace clustering, which is based on the
idea that samples within a specific subspace can be linearly represented
by other samples from the same subspace, latent multi-view clean
data can be presented as X = Xz, Simultaneously, due to the
semantic characteristics of structural noise, we design a structural noise
dictionary D e R?%*ks and use the atoms to adaptively represent
the structural noise for each view (k, is the dictionary atom number),
namely, X = Dz, Thus, Eq. (1) can be written as follows:

X0 =xWz0 4 pWZzO 4 g0, @

where X € R%*" is the latent multi-view data, Z"’ € R"™" is the
representation matrix, Zi”) € RKs*" is the dictionary coefficient matrix.

Since structural noise is usually sparse, we apply £, norm to con-
strain dictionary coefficient matrix Z'” and apply the Frobenius norm
to depict Gaussian noise E. So the optimization problem can be
formulated as:

4
min 1 X® — xW z© _ p®) 7@ 2 4| Zz@)
Zf.”),Dﬁ.U),Zév) ugl c c s s F s
st. DY ={DY DY < 1) =12k fo =1V,
3

where D and Z are iteratively optimized with the model, the
dictionary of structural noise can be adaptively learned to describe
different structural noise of each view. For simplicity, we represent the
DY constraint as D € @,v=1,...,V.

To explore the consistency among the views, some MVSC meth-
ods [33-36] introduced t-SVD based TNN (see Definition 5) to mine
the high-order correlation among multiple views. However, as a convex
approximation of tensor rank, t-SVD based TNN measures the #; norm
of nonzero singular values, which leads to rank deviation. Moreover, it
cannot retain the main information well because of the same shrinkage
to each singular value. The large singular value usually represents the
main information in the object, so it would be better to give the large
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Fig. 2. The rank approximation and singular value shrinkage of the nonconvex tensor nuclear norm.

singular value a small shrinkage. In work [44], a nonconvex tensor
nuclear norm which can flexibly adjust shrinkage of singular value was
proposed:

1Zcllyo =Y, 3 0 tanh (9 % gi(g;(n))’ @
J i

where Z, = fft (Z,.[ 1.3), o-,-(fc(j)) denotes the ith largest singular
value of 2c ? tanh(x) = (e* — e™X)/(e* +e7*). n and 0 are two positive
parameters to balance shrinkage.

As shown in Fig. 2(a), the nonconvex tensor nuclear norm has a
more accurate rank approximation. Besides, each singular value has a
more reasonable shrinkage from Fig. 2(b). Inspired by this, we stack
the representation matrices {Zﬁ”)};’:l into a third-order representation
tensor Z. and introduce the nonconvex TNN [44] on Z, to characterize
its low-rank property. Therefore, Eq. (3) can be formulated as:

14
min X® _ x© 70 _ p©) 70)2
o IZell,0 + ;(n Wz — pWzW|2
+1Z90).
stZ,=oz0,z?,..., 2", D e0o,0=1,..,V,

)

where @(-) represents the construction of tensor Z, € R"™V>*",
Moreover, due to the different contributions of each view to cluster-
ing performance, an adaptive weighting strategy is used to distinguish
the difference of each view and the affinity matrix and representation
tensor are jointly optimized. Finally, our model can be formulated as:
4
Jmin Al Zellyg + Y AXC = XP 20 = DO ZP|

S y v=1
P Z® ®)

+ Il ZP M+ w, S = ZE ),
st.Z, =oz". 22, z"), D"V eov=1,...V,

where Z, is the representation tensor, S € R™" is the affinity matrix
and w,, is the weight of vth view. The parameters 4, and A, are used to
balance the contributions of all terms in the Eq. (6). X S”) and Dg”) re-
spectively denote latent clean data and the structural noise dictionary,
and Z and Z! are two corresponding coefficient matrices.

Our model consists of four terms. The first term is adopted to fully
explore the consistency among views by depicting low-rank property
of representation tensor Z,. The second and third terms denote the
mixed noise learning by adaptive dictionary for characterizing the
view-specific information. The last term can obtain the unified affinity
matrix by adaptive weighting strategy.

Remark 1. The robust weighted low-rank tensor approximation
(RWLTA) [41] method also handles the mixed noise problem and in-
troduces three norms (/¢ ycpy,15 11> /) to respectively constrain outliers,
random corruptions, and slight perturbations, then achieves the promis-
ing results. Compared with the method RWLTA, the main differences of

the proposed method are as follows: First, the proposed method applies
the adaptive dictionary learning strategy to flexibly adjust to varying
noise characteristics across different datasets, therefore resulting in the
better clustering performance. Second, in addition to the numerical
convergence of the algorithm, we theoretically prove the convergence
guarantee of the proposed algorithm under mild conditions.

3.2. Optimization algorithm

To better apply the optimization framework to solve the proposed
model, we rewrite the proposed model as follows:

14
: (v) ) 7(v) () 7(v) |12
min AlZellye+ Y (IX© = X0z - DO ZO)2

) v=1
ngv).zy’) @

+ LI ZO N + w, 1S = ZON5 +P(DY) ),
st. Z,=0(zM, 22, ..., zW),

where ‘I’(Dﬁ”)) is indicator function defined as (g is a large value):
it 1D 1% <1,

0, .
T(DEU)) - { ()

q, otherwise.

The solution to Eq. (7) is difficult because objective function is not
joint convex. Following the idea of ADMM, we introduce three auxiliary
variables to decouple this equation, we define g = Z,,Y®) = Zi”), BW =
DE”), v=1,...,V.Eq. (7) can be reformulated as:

®

,
: v) ) 7(v) () 7(v))12
G.2eSuw, AillGllyo + Z (1x® = X272 = D ZOIl;
Dy.Z5.V.B v=1
+ LYl +w, IS - 293 +P(BY) ), C))

st.Z, =o(z0,z?, ..., zW),
G=2Z,YW=2z" B =pW p=1,..,V.
The augmented Lagrangian function of Eq. (9) is:

L,(2:.G.24,Y,Dy, B, S, w,; W, M, P)
14

= 4ilGl o+ D, (1XY =X, 02~ DV 2|
v=1

+ BIY Ol +w, S = ZO1% +¥(BY) ) (10)
+ W2 -0+ LIz -Gl + (P.D, - B)

+ 21D, = B + (M. 2, = ¥) + 212, - VI

where W, M, and P are the Lagrangian multipliers, p is the penalty
parameter, (-, -) is the inner product. Within the ADMM framework [49—

51], we can update the remaining variable by keeping the other vari-
ables fixed at their latest values. The overall iterative procedure of the
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algorithm is as follows:

ZH = argmin L2k, 65 28, YF, Dk, BY, S*, wh; wE, MF, P,

¢ = argmin L8 G, 2, Y8, DY BY S5, whs W, ME, P,

M = argmin L, (2, ¢ 28 Y5 DF, B, S5, wh wF, ME, PY),

yk+l = arg;m-n E,,(Zf“,gk“,Zf“,yk,Df,B",S",wﬁ;Wk,M",Pk),

DIS(+1 — argDmin £ﬂ(2§+1,Qk+1,Z’;H,ka,D,;,Bk,Sk,w‘;;Wk,Mk,Pk),
Bk+l = argBmin £p(zlc<+l,gk+l,Zf+l,yk+],Dl;+l,Bk’Sk,wﬁ;wk’Mk,pk),
Skl — arg;nin £‘,(Zﬁ“,§k“,Zf“,yk“,D’S‘“,Bk*’,Sk,wﬁ;Wk,Mk,Pk),

wk+l
v

argmin £,(Z51, Gk, ZhH1, kel Dlel glel gkt ks kb ph),
Wy

WL = Wk 4l (ZkH gkt

MEFD = ME 4 ph (2R - ket

Pl = ph g R (DI - By,

1)

The above sub-problems are solved alternately and iteratively until the
algorithm converges. Next, we show the details of each subproblem.

Step 1: Updating of Z.. With other variables fixed, Z, can be
updated by:

14
Hzlin Z ( ”X(U) _ XEU)ZEU) _ Dgu)kzgv)k”%7
¢ p=1 12)
k
p 1
+ wh|sk - z@)12) +7||z’; -Gk + —WH2.

Since the updating for each Zf.“) is independent, we can separate
Eq. (12) into V sub-problems. By setting the derivative of each sub-
problem to zero, we can derive the closed-form solution for Zi”):

ZORT Z((pF + 20k T +2x07 x )7

., as)
(pk(;(u)k —_Wwwk ¢ ZXSU) HOk 4 ZWﬁSk),

where T is identity matrix and HWk = x© — pWk zWk,
Step 2: Updating of G. With other variables fixed, Eq. (10) becomes:

k
. 1
min Al[Cll,0 + —”2 IG = (ZE + = WhIIE, a4

It is challenging to directly achieve the closed-form solution for
above sub-problem. We apply Fourier transform to convert Eq. (14)
into frequency domain [45] and split it into n sub-problems, the jth
problem is

14

Uk = arg mm }“_ Z o g(])) 0)
1s)

+ ZIG = POKE,

where § = fft (C.[ 1.3) and F = ffe(Z5*! + 2 WK [ 1.3). 60 is the jth
frontal slice of G, Q(x, 8) = ntanh(0 * x).

Based on the antimonotone characteristic of gradient of the non-
convex function in Eq. (4) and the definition of the supergradient for
concave functions, we obtain:

0 < VQ(ok,0) < VQ(ok,0) < - < VQ(ck,0), (16)

Q(0,(89),0) < ¥, 6) + VA, 0)(,(CP) - o¥), a7

where ¢¥ denotes the ith singular value of é(f)"
vQ(ck 0) is the gradient of Q(c,(CY),0) at ¥

of 205 > >0}
. Based on Eq. (17)
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Eq. (15) can be relaxed into:
L

(Dk+1 _ A k g

g argrg&p o g] ¢(o;,0)

+ V2@, 0)(0,(CV) - 6F) + = ||g<” FOk|2, 18)

=arg m1n 2 Z VQ(ck,0)0,(C7) + = ||g<f> FOk|2.
G
Then, we use the generalized welghted singular value threshold
from [52,53] to solve Eq. (18), the optimal solution for Eq. (18) is:

GOk UJL}(vQ v, 19)
/

2 k
—M,O)} and the singular

where Jﬂl o2 = diag{max (ZH -
value decomposmon (SVD) of FUk is denoted as FWk = UV T.
Step 3: Updating of Z,. With other variables fixed, Z; can be
updated by:
4
H%i_n Z ”X(v) _ XE(;)Ziu)kH _ Dgu)k Ziv) ”37
’ (20)

+ ﬁuz(v) —yk 4 L pper2
2% 2 F
Similar to Eq. (12), we divide Eq. (20) into V' sub-problems and set
the derivative of each sub-problem to zero, the closed-form solution of
ZWcan be derived:
ZA(_z:)k+1 :(pkl + 2D§v)kT Diu)k)—l

kv (0)k Nk KT k @D
(/) YWk _ pr) +2D§U) c® )’

where CWk = x®) —
Step 4: Updating of Y. With other variables fixed, Y can be
updated by:

X‘(.U) Z£u>k+1 ]

1

(Z(v)k+1 p_ M(v)k)”2 (22)

k
min Z AllY @, + ||Y<”) -

Slmllar to Eq. (1 2), updating of Y® for each view is independent
and has the following closed-form solution applying the soft shrinkage
operator:

A AWk
Ok+1 _ ., Wk _ 22 I
Y = max(|A""| e 0)o AR (23)

where AWk = Zz®k+! +x L M©k, o presents component-wise multiplica-

tion and a convention 1s assumed: 002 = 0.

Step 5: Updating of D,. With other variables fixed, D, can be
updated by:

v
%in 2 Ix© - X£u>Z§u)k+1 _ D§u>Z§Lv>k+1 ”%
o=l (24)
P po _ gok . L pwy2

+ SIDY — B + — PO

Similar to Eq. (12), updating of DE”) for each view is independent
and has the following closed-form solution by derivation:

DWkHL —(pk gk _ pk 4 ZC(U)kZ(U)kHT)
N

(p I+ 22(u)k+1 Z(L)k+lT)
Step 6: Updatmg of 5. With other variables fixed, BB can be updated
by:

(25)

4 k
. N 4 P p) _ pk+l _ L pwik2
ngnZ}?’(B )+ S IIBY — D % PO (26)
=
where updating of B® for each view is independent and has the
closed-form solution:

ok
k+1 U1) .
B s —— i = L2k, @7)

max { 1,110%, I3}
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Algorithm 1 Mixed-Noise Robust Tensor Multi-View Clustering via
Adaptive Dictionary Learning.

Input: multi-view data X(); parameters:A,, Ay, 7, 0 , U, Py and k.
Initialize: p = 1073, 1ol = 1075, G, 5, Zz, DV, zW, y©, B w®),
MO, PO w v=1,..,V.

1: while not converged do

2: Update {Zﬁ”)}L;l by Eq. (13);

3: Update G by Eq. (19);

4 Update {Zﬁl’)}vV=l by Eq. (21);

5. Update {Y®}"_ by Eq. (23);

6:  Update {D§”)}l’=1 by Eq. (25);

7:  Update {B™}"_ by Eq. (27);

8  Update {w,}"_ by w, =1/QIIS - Z"|Ip)
9: Update S by Eq. (29);

10: Update W, M, P by Eq. (30);

11: Update p by Eq. (31);

12: Check the convergence condition:
125+ = Y+,
max3 ||[DM - BRHL| & <ol
s
N2 = ¢l

13: end while

Output: Output matrix S¥*! € R™" and perform spectral clustering on
Sk+] .

where Qk = D(U)kJrl + P(”)k/p
Uyp)
Step 71 Updatllng of S Wlth other variables fixed, Eq. (9) simplifies
to:

14
: k+112
min 37w, ||S ~ ZFH (28)

v
Inspired by the work of [19], adaptive weight w, can be updated
by' wk! = 1/Q|IS* = ZI*!|| ). If the vth view significantly impacts
the clustering effect, then ||.S — Zi”)ll r should be small, so w, will be
large, that is, the view is given a larger weight. S can be updated as
follows:

14 14
Sk+l — <Z wﬁ+lzc(v)k+l> /Z wﬁ“. (29)
v=1 v=1

Furthe;more, the Lagrange ;nultipliers W, M and P are updated by
following rules:

WAL = Wk 4 gk (ZR+1 _ gy
¢ )
Mk+1 — Mk +pk(Z’;+' _yk+1)’ (30)
PR = Pk pk(DFH — B
s .
Finally, the penalty parameter p is changed as follows:

P = min(up®, ppugs)s 3D
where u is a positive parameter used to enhance the convergence rate.

In summary, Algorithm 1 shows the pseudocode of the proposed
algorithm.

3.3. Convergence analysis

Due to the non-convexity of the proposed model, the theoretical
convergence remains a challenge. It is difficult to guarantee the global
optimal solution of the proposed Algorithm 1. Theorem 1 is provided
as follows, which demonstrates the proposed Algorithm 1 converges to
the stationary point.

! To avoid the denominator being zero, in practice we perform the fol-
lowing operation: w, = 1/Q2|IS — Z”||; + &), where 5 is a very small
value.
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Fig. 3. Some examples of the test datasets: (a) ORL, (b) COIL-20, (c) AR, and (d)
Caltech-20.

Theorem 1. The sequence {Z¥, Gk, ZK, Yk, Dk, Bk, Sk, wk Wk, Mk, Pk}
by Algorithm 1 has at least one accumulation point
{Zr,6*, 25, Y%, DF, B, S*, w*, W, M*, P*}. Then, {Z},G*, 2%, V*,DF,
B*,S*,w*} is the stationary point of Eq. (7) as long as llmk_,oo pR(CkH! —
b = 0, lim_, o, p*QV** — Yk) = 0, lim,_, pF(B+! — B¥) = 0, and
T2+ /() < oo

For the detailed proof, please refer to the supplementary material.
3.4. Complexity analysis

The main factors affecting the computational complexity of Algo-
rithm 1 are the update of G, Z., D, and Z,. The update of G requires
the calculation of fast Fourier transform, inverse Fourier transform and
singular value decomposition, which will cost OV n2log(n) + V?2n?).

The update of D) requires inversion of (pI + ZZ§")Z§”)T), while the
update of Z“) requires inversion of (pI + 2D§”)T DY), both costing
O(VK3). Finally, the update of Z{”’ requires inversion of ((p +2w,)I +
ZXEU)TX ), costing @(V'n?). So the overall computational complexity
is: O(IV(nzlog(n) +Vn+2i3 + n3)), where ¢ represents the number of

iterations.
4. Experiments

In this section, we evaluate the clustering performance of MRTMC
through the simulated experiments and real-world experiments.

4.1. Experimental settings

The experiment selects nine classical datasets for MVC tasks, some
example of the datasets are shown in Fig. 3. The detailed information
of the datasets are introduced as Table 2, including their sample size,
multi-view features and number of features, and number of clusters.
In the experiments, the test data are normalized to the range of [0, 1].
All experiments are implemented on the platform of Windows 11 and
MATLAB R2022b with an Intel(R) Core(TM) i9-13980HX and 32 GB
RAM.

Dataset descriptions:MSRC-V1?: It consists of 210 object pictures,
each image has 5 types of features and can be divided into 7 categories.

2 https://www.microsoft.com/en-us/msrc.


https://www.microsoft.com/en-us/msrc
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Table 2
Detailed information of all multi-view datasets.
Datasets Samples Clusters Viewl View2 View3 View4 View5 View6
MSRC-V1 210 7 CM(24) HOG(576) GIST(512) LBP(256) GENTRIST(254) -
ORL 400 40 Intensity(4096) LBP(3304) Gabor(6750) - - -
Yale 165 15 Intensity(4096) LBP(3304) Gabor(6750) - - -
COIL-20 1440 20 Intensity(1024) LBP(4096) - - - -
AR 1300 100 Intensity(792) LBP(472) Gabor(792) - - -
FERET 1400 200 Intensity(1024) LBP(708) Gabor(1024) - - -
ALOI 1080 10 Color Similarity(77) Haralick(13) HSV(64) RGB(125) - -
Caltech-20 2386 20 Gabor(48) Wavelet Monments(40) CENTRIST(254) HOG(1984) GIST(512) LBP(928)
Scene-15 4485 15 PHOG(20) GIST(59) LBP(40) - - -
Table 3
The settings of parameters (4,, 4,) for all datasets.
Datasets MSRC-V1 ORL Yale COIL-20 AR ALOI FERET Caltech-20 Scene-15
Qs Ay Is A I A i A i A Qs Ay I As s I h

Casel 10,10 5,5 5,50 50,50

Case2 10,30 5,20 10,1 40,40

Case3 1010 510 20.10 50.30 10,50 40,10 10,20 40,50 50,10

Case4 30,10 5,1 5,40 50,1

ORL?: The dataset consists of 400 face images with variations in illumi-
nation, facial expressions, and details. These images have three types of
features and can be divided into 40 categories. Yale*: It consists of 165
face images under different facial expressions and configurations. COIL-
20°: It consists of 1440 object images under different angles. These
images have two view features and can be divided into 10 categories.
AR: The dataset comes from [54] and consists of 1300 face images.
The illumination and facial expressions of these images are different
and some of these images are severely obstructed. FERET: The dataset
comes from [55] and consists of 1400 face images. These images have
different expressions, lighting, posture and age changes. For the above
two datasets, the LBP features are obtained with a sampling density of 8
and a blocking number of 8 x 9. The Gabor features are extracted using
a wavelength of 4 at four orientations (6 = {0°,45°,90°,135°}). ALOI°:
It contains 110250 object images which can be divided into 1000
categories. We select the 10 types of objects from them, with a total of
1080 samples. Caltech-207: It consists of 2386 object pictures. These
images have 6 view features and can be divided into 20 categories.
Scene-15°: It contains 4485 scene pictures with 15 categories.

Compared methods: We compare MRTMC with sixteen related
MVC methods to verify the clustering performance of MRTMC, includ-
ing Co-Regularized Spectral Clustering (CoReg) [56], Affinity Aggre-
gation for Spectral Clustering (AASC) [15], Robust Multi-view Spec-
tral Clustering (RMSC) [18], Adaptively Weighted Procrustes MVC
(AWP) [57], Weighted Multi-view Spectral Clustering based on Spec-
tral Perturbation (WMSC) [58], Multi-view Consensus Graph Clus-
tering (MCGC) [20], Graph-based MVC (GMC) [21], Low-rank Ten-
sor Constrained Multi-view Subspace Clustering (LTMSC) [32], La-
tent Multi-view Subspace Clustering (LMSC) [27], MVC via Tensor
Multi-rank Minimization (t-SVD-MSC) [33], Hyper-Laplacian Regular-
ized MVC (HLR-M?VS) [34], Weighted Tensor-Nuclear Norm Mini-
mization (WTNNM) [40], Generalized Nonconvex Low-rank Tensor
Approximation (GNLTA) [45], MVSC via Adaptive Graph Learning
(AGLLFA) [31], Robust Weighted Low-rank Tensor Approximation
(RWLTA) [41], and Multi-view and Multi-order Graph Clustering
(MoMvGCQ) [22].

Initialization and parameters setting: For all datasets, we apply
the robust principal component analysis (PCA) [59] technique to divide

http://www.uk.research.att.com/facedatabase.html.
http://cve.yale.edu/projects/yalefaces/yalefaces.html.
http://www.cs.columbia.edu/CAVE/software/softlib/.
https://aloi.science.uva.nl/.
http://www.vision.caltech.edu/ImageDatasets/Caltech101/.
http://www-cvr.ai.uiuc.edu/ponce_grp/data/.
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the raw multi-view data into the latent clean multi-view data X, 5")
and noise data X'). Then we use K-means based on singular value
decomposition (KSVD) [60] for X, ,(,”) to obtain a reasonable initial value
of the structural noise dictionary Dﬁ”) € R%*ks and the coefficient
Z" e Rk where k; = a X ¢, ¢ is the number of clusters. And we
set the initial value of the Gaussian noise as E® = 0. For parameter
settings, the proposed method contains regularization parameters A,
and 4,, the penalty parameter p, the atom number of dictionary for
each class «, and the nonconvex tensor nuclear norm parameters ; and
6. In our experiments, we set the initial values of A, 4,, and p as 1073,
which increase at a rate of 1.5 after each iteration. The maximum value
of p is set to 10'?, and the maximum value of 4, and 1, are selected
from the set of {1, 5, 10, 15, 20, 30, 40, 50}. Specifically, the values
of parameters 4, and 4, in all test datasets are shown in Table 3. #,
0 and a are empirically set to 4, 0.1, and 5, respectively. Moreover, a
detailed analysis of these parameters can be found in Section 4.4. For
the compared methods, all parameters are carefully tuned as suggested
in the reference papers to achieve the highest ACC values.

Evaluation metrics: Clustering accuracy (ACC), normalized mutual
information (NMI), and purity (PUR) are used to measure the clustering
effect. The range of the three indicators is from 0 to 1, with higher
values indicating better performance.

4.2. Clustering performance on simulated data

In the subsection, MSRC-V1, ORL, Yale and COIL-20 are used to test
the clustering performance of the proposed method. The mixed noise
is simulated by the following rules:

Casel (Gaussian noise): The Gaussian noise with zero-mean and
0.1 variance is added.

Case2 (Gaussian noise + salt-and-pepper noise): On the basis of
Casel, the salt and pepper noise with 0.1 intensity is added.

Case3 (Gaussian noise + salt-and-pepper noise + block noise):
On the basis of Case2, several 5 x 5 or 8 x 8 black blocks are added to
a view of 50% samples.

Case4 (Gaussian noise + salt-and-pepper noise with different
intensities): All samples are corrupted by a combination of Gaus-
sian noise and salt-and-pepper noise, with Gaussian noise variance
and salt-and-pepper noise intensity randomly sampled from a uniform
distribution U (0.20, 0.30).

Tables 4-5 show the clustering results of MRTMC and the compared
methods on four simulated datasets. The best result is bold, and the
second-best is underlined. To see the clustering performance more
intuitively, we visualize the confusion matrix as shown in Fig. 4 for
Case3 of Yale, and use the standardized t-SNE [61] to visualize the


http://www.uk.research.att.com/facedatabase.html
http://cvc.yale.edu/projects/yalefaces/yalefaces.html
http://www.cs.columbia.edu/CAVE/software/softlib/
https://aloi.science.uva.nl/
http://www.vision.caltech.edu/ImageDatasets/Caltech101/
http://www-cvr.ai.uiuc.edu/ponce_grp/data/
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Table 4
The clustering performance of different methods on simulated MSRC-V1 and ORL.
Datasets Method Casel Case2 Case3 Case4
ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

CoReg 0.8524 0.7440 0.8524 0.8143 0.6669 0.8143 0.7476 0.6200 0.7476 0.5810 0.3930 0.5810
AASC 0.8381 0.7175 0.8381 0.8238 0.6969 0.8238 0.7524 0.6360 0.7571 0.4762 0.3010 0.5048
RMSC 0.7571 0.6382 0.7571 0.7000 0.6274 0.7524 0.6619 0.5501 0.6667 0.5190 0.3479 0.5190
AWP 0.8000 0.6897 0.8000 0.7905 0.6627 0.8333 0.6571 0.5741 0.7714 0.5905 0.3727 0.5905
WMSC 0.8143 0.6933 0.8143 0.7429 0.6534 0.7476 0.7000 0.6207 0.7286 0.6381 0.4727 0.6381
MCGC 0.7143 0.6057 0.7429 0.6905 0.5754 0.7048 0.6762 0.5354 0.6810 0.4381 0.2969 0.4476

MSRC-V1 GMC 0.7857 0.6982 0.8286 0.7762 0.6787 0.8333 0.7476 0.6751 0.8571 0.2952 0.1958 0.3095
LTMSC 0.8571 0.7301 0.8571 0.7619 0.6231 0.7619 0.7429 0.5922 0.7429 0.4667 0.3168 0.4810
LMSC 0.6286 0.5253 0.6667 0.6095 0.4753 0.6095 0.5905 0.4429 0.7429 0.3476 0.1778 0.3524
t-SVD-MSC 0.9762 0.9493 0.9762 0.9048 0.8248 0.9048 0.8571 0.7376 0.8571 0.8905 0.7935 0.8905
HLR-M?VS 0.9952 0.9892 0.9952 0.9667 0.9330 0.9667 0.9667 0.9330 0.9667 0.9286 0.8666 0.9286
WTNNM 0.9667 0.9429 0.9667 0.9667 0.9349 0.9667 0.9619 0.9284 0.9619 0.9318 0.8819 0.9381
GNLTA 0.9905 0.9784 0.9905 0.9810 0.9567 0.9810 0.9857 0.9676 0.9857 0.9571 0.9129 0.9571
AGLLFA 0.8524 0.7385 0.8524 0.8429 0.7387 0.8429 0.8381 0.7052 0.6792 0.4524 0.2917 0.4524
RWLTA 0.9571 0.9095 0.9571 0.9329 0.8724 0.9329 0.9276 0.8574 0.9276 0.9284 0.8854 0.9284
MoMvGC 0.8000 0.6776 0.9000 0.7333 0.6318 0.7667 0.7190 0.6077 0.7571 0.4143 0.2462 0.4286
MRTMC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9810 0.9602 0.9810
CoReg 0.7450 0.8417 0.7600 0.7150 0.8356 0.7325 0.6375 0.8107 0.6850 0.5925 0.7455 0.6325
AASC 0.6925 0.7831 0.7350 0.6575 0.7771 0.7175 0.6500 0.7804 0.7575 0.5500 0.6896 0.5900
RMSC 0.5650 0.7153 0.5825 0.4575 0.6432 0.4850 0.4400 0.6255 0.4875 0.4325 0.6058 0.4925
AWP 0.7325 0.8432 0.7675 0.6975 0.8177 0.7200 0.6625 0.8102 0.7175 0.5800 0.7420 0.6250
WMSC 0.7425 0.8448 0.7650 0.7300 0.8447 0.7525 0.7225 0.8351 0.7450 0.6325 0.7873 0.6775
MCGC 0.5850 0.7506 0.6825 0.5825 0.7155 0.7050 0.5475 0.6966 0.6375 0.4825 0.6353 0.5200

ORL GMC 0.5650 0.7208 0.8200 0.5450 0.6797 0.7850 0.5275 0.6794 0.7925 0.4950 0.6262 0.5775
LTMSC 0.7775 0.8786 0.8225 0.7275 0.8554 0.7725 0.6950 0.8310 0.7500 0.7200 0.8470 0.7425
LMSC 0.7350 0.8652 0.7825 0.7300 0.8427 0.7550 0.7100 0.8356 0.7425 0.5825 0.7438 0.6125
t-SVD-MSC 0.9375 0.9728 0.9625 0.9000 0.9463 0.9300 0.8725 0.9422 0.9175 0.8525 0.9090 0.8625
HLR-M?VS 0.9700 0.9906 0.9750 0.9600 0.9883 0.9725 0.9425 0.9749 0.9525 0.9250 0.9616 0.9425
WTNNM 0.9600 0.9833 0.9725 0.9350 0.9812 0.9500 0.9325 0.9669 0.9475 0.8875 0.9480 0.9050
GNLTA 0.9550 0.9829 0.9675 0.9275 0.9779 0.9475 0.9250 0.9741 0.9450 0.9025 0.9521 0.9150
AGLLFA 0.7450 0.8474 0.7725 0.6800 0.7902 0.6950 0.6525 0.7851 0.6875 0.6325 0.7747 0.6625
RWLTA 0.9523 0.9817 0.9643 0.9425 0.9810 0.9590 0.9317 0.9713 0.9468 0.9270 0.9685 0.9430
MoMvGC 0.6250 0.7827 0.6950 0.6100 0.7783 0.6850 0.5825 0.7497 0.6625 0.5575 0.7253 0.6375
MRTMC 0.9700 0.9848 0.9875 0.9625 0.9828 0.9825 0.9525 0.9792 0.9775 0.9625 0.9872 0.9750

Predicted Label Predicted Label Predicted Label Predicted Label
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Fig. 4. Visualization of confusion matrices by different methods on Yale in Case3.

embedded results as shown in Fig. 5 for Case3 of MSRC-V1. Through improve by 5.45%, 6.67%, 6.66%, and 5.45% compared to the sub-
the above operations, we can obtain the following conclusions: optimal method GNLTA in Casel, Case2, Case3, and Case4 on Yale

(1) In most cases, MRTMC outperforms baselines in terms of ACC, dataset, respectively. Intuitively, the proposed method has clearer di-
NMI, and PUR. Specifically, the ACC of the proposed model significant agonal blocks than other compared methods from Fig. 4(a)-(1). It can
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Table 5
The clustering performance of different methods on simulated Yale and COIL-20.
Datasets Method Casel Case2 Case3 Case4
ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

CoReg 0.6545 0.6538 0.7152 0.6424 0.6549 0.7091 0.6242 0.6321 0.6788 0.6364 0.6587 0.6424
AASC 0.6000 0.5914 0.6424 0.5939 0.5948 0.6485 0.5273 0.5708 0.6061 0.5091 0.5354 0.5333
RMSC 0.6667 0.6603 0.7030 0.6606 0.6514 0.6909 0.6535 0.6449 0.6887 0.5879 0.6463 0.6000
AWP 0.6545 0.6652 0.7091 0.6121 0.6372 0.6667 0.5818 0.6141 0.6606 0.6061 0.6489 0.6364
WMSC 0.6545 0.6415 0.6909 0.6485 0.6504 0.7030 0.6121 0.6184 0.6545 0.5818 0.6426 0.6061
MCGC 0.6303 0.6268 0.6848 0.6182 0.6274 0.6727 0.6061 0.6273 0.6485 0.4970 0.5202 0.5152

Yale GMC 0.6909 0.7105 0.7758 0.6000 0.6289 0.7091 0.5455 0.6115 0.5576 0.5697 0.5783 0.5939
LTMSC 0.6545 0.6851 0.7394 0.6242 0.6649 0.7212 0.6121 0.6361 0.6909 0.5152 0.4885 0.5152
LMSC 0.6485 0.6785 0.7333 0.6303 0.6651 0.7152 0.6182 0.6533 0.7030 0.5455 0.5700 0.5576
t-SVD-MSC 0.7212 0.7313 0.7697 0.6303 0.6673 0.7212 0.5939 0.6065 0.6182 0.6364 0.6781 0.6364
HLR-M?VS 0.7818 0.7733 0.7818 0.7273 0.7631 0.7273 0.6545 0.7197 0.6545 0.6182 0.6433 0.7212
WTNNM 0.7242 0.7544 0.7242 0.7091 0.7380 0.7091 0.6061 0.6397 0.6061 0.6788 0.7221 0.6848
GNLTA 0.7879 0.7988 0.7879 0.7515 0.7728 0.7515 0.7273 0.7602 0.7273 0.6970 0.6923 0.7030
AGLLFA 0.7273 0.7360 0.7333 0.6848 0.6849 0.6970 0.6485 0.6946 0.6667 0.6545 0.6874 0.6606
RWLTA 0.6891 0.7234 0.6915 0.6564 0.6824 0.6630 0.6339 0.6605 0.6370 0.6413 0.6797 0.6431
MoMvGC 0.6848 0.7043 0.6848 0.6424 0.6581 0.6545 0.6364 0.6310 0.6424 0.6242 0.6027 0.6303
MRTMC 0.8424 0.8647 0.8727 0.8182 0.8664 0.8424 0.7939 0.8439 0.8485 0.7515 0.7951 0.7697
CoReg 0.7458 0.8097 0.7688 0.7278 0.7962 0.7562 0.6813 0.7658 0.7299 0.6743 0.7802 0.7125
AASC 0.6140 0.7181 0.7049 0.5826 0.6985 0.7097 0.5611 0.6514 0.6868 0.5917 0.6865 0.6299
RMSC 0.6681 0.7817 0.7611 0.6521 0.7739 0.7319 0.6444 0.7587 0.7229 0.5181 0.5776 0.5549
AWP 0.7090 0.8063 0.7583 0.6597 0.7782 0.7604 0.6382 0.7306 0.6882 0.6431 0.7452 0.6785
WMSC 0.6750 0.7672 0.7583 0.6472 0.7606 0.7292 0.6174 0.7285 0.7278 0.6250 0.7633 0.6854
MCGC 0.6569 0.7611 0.8090 0.6340 0.7359 0.8042 0.5306 0.6514 0.7521 0.5653 0.6541 0.6062

COIL-20 GMC 0.7701 0.8597 0.8583 0.7271 0.8229 0.8472 0.6306 0.7869 0.7831 0.6403 0.7779 0.6903
LTMSC 0.6944 0.7596 0.7264 0.5986 0.6596 0.6604 0.5514 0.5800 0.5993 0.6097 0.7102 0.6333
LMSC 0.7028 0.7706 0.7111 0.6271 0.7438 0.6875 0.6194 0.6829 0.6458 0.6229 0.7114 0.6479
t-SVD-MSC 0.7528 0.8270 0.8014 0.7438 0.8103 0.7708 0.7250 0.7726 0.7424 0.6861 0.7394 0.7271
HLR-M2VS 0.7799 0.8390 0.8125 0.7472 0.8261 0.7479 0.7417 0.8059 0.7604 0.7153 0.8143 0.7701
WTNNM 0.8215 0.8876 0.8423 0.7979 0.8688 0.8174 0.7798 0.8637 0.8014 0.7646 0.8338 0.7910
GNLTA 0.8167 0.8934 0.8389 0.8021 0.8701 0.8208 0.7924 0.8708 0.8139 0.7417 0.8154 0.7444
AGLLFA 0.7424 0.8157 0.7472 0.7250 0.7902 0.7375 0.7028 0.7506 0.7132 0.6562 0.7093 0.6708
RWLTA 0.8890 0.9147 0.9014 0.8761 0.9161 0.8969 0.8251 0.8540 0.8403 0.7763 0.8262 0.7937
MoMvGC 0.8181 0.8832 0.8521 0.6743 0.7981 0.7292 0.6340 0.7140 0.6465 0.6438 0.7900 0.6889
MRTMC 0.8431 0.8980 0.8576 0.8222 0.8805 0.8368 0.8056 0.8825 0.8347 0.8076 0.8587 0.8090
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Fig. 5. Visualization of the embedding results by different methods on MSRC-V1 in Case3.

be concluded that MRTMC is more robust to different mixed noise than

other methods.

(2) Compared with the graph learning-based MVC methods, such as
WMSC, MCGC and GMC, MRTMC achieves the best clustering perfor-
mance. Specifically, in Case4 of the COIL-20 dataset, MRTMC signifi-
cantly improves ACC, NMI, and PUR by 16.73%, 8.08%, and 11.87%,
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Table 6
The clustering performance (ACC, NMI, and PUR) of different methods on the real-world datasets.
Method AR FERET ALOI Caltech-20 Scene-15
ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

CoReg 0.2854  0.5576  0.3446  0.3921 0.7408  0.4393  0.9278  0.8708  0.9278  0.5101 0.5573  0.5784  0.4341 0.4206  0.4689
AASC 0.3062  0.5623  0.3700  0.3229  0.6585  0.4021 0.9250 0.8647  0.9250 0.5163  0.6157  0.6844  0.4484  0.4432  0.4923
RMSC 0.2154  0.5381 0.3008 0.3186  0.6851 0.3686  0.7667  0.7559  0.8407 0.5083  0.5553  0.7514  0.4305 0.4158  0.4698
AWP 0.2746  0.5468  0.3408  0.3786  0.7323 0.4243  0.8222  0.7895 0.9037 0.5520 0.5615  0.6316  0.3761 0.3550  0.4049
WMSC 0.2708  0.5610  0.3277  0.3693  0.7325 0.4129  0.8944  0.8257 0.8944 0.5025 0.5638  0.5838  0.4479  0.4521 0.4760
MCGC 0.2785  0.5379  0.3154  0.3714 0.7127  0.4171 0.9389 0.8789  0.9389  0.5754  0.4902 0.6686  0.3344  0.3137  0.3683
GMC 0.2162 0.4036 0.3069 0.2907 0.4875 0.6143 0.8537 0.7922 0.8537 0.4891 0.4234 0.6435 0.1953 0.1291 0.2089
LTMSC 0.6108  0.7906  0.6838  0.4329  0.7484  0.4700  0.9259  0.8642 0.9259  0.4991 0.5853  0.7791 0.3882  0.3673  0.2158
LMSC 0.4485  0.6781 0.4854  0.3764  0.7265  0.4200 0.8306  0.7877  0.8611 0.4594  0.5531 0.7672  0.3889  0.3598  0.4435
t-SVD-MSC 0.9031 0.9682 0.9278 0.6721 0.8665 0.7214 0.9231 0.8596 0.9231 0.4715 0.6472 0.5536 0.7501 0.7589 0.8147
HLR-M?VS  0.6900  0.8261 0.6977  0.6257  0.8576  0.6486  0.9611 0.9279  0.9611 0.6039  0.6865  0.8479  0.7249  0.7176  0.7672
WTNNM 0.9054  0.9728  0.9231 0.7443  0.9036  0.7728  0.9250  0.8658  0.9250  0.5645 0.7143  0.8835 0.7507  0.7472  0.8087
GNLTA 0.8769  0.9585  0.9015  0.7407 0.9210 0.7779  0.9852 0.9701 0.9852 0.5524  0.7207 0.8722  0.8504  0.8609  0.8778
AGLLFA 0.5077  0.7117  0.5231 0.3607  0.7005 0.3800  0.9352  0.8722 0.9352  0.4531 0.4536  0.6953  0.3824  0.3696  0.4100
RWLTA 0.8578  0.9519  0.8841 0.7314  0.9091 0.7683  0.9564  0.9306  0.9564 0.6009 0.7188  0.8639  0.9337 0.9137 0.9424
MoMvGC 0.2785  0.4997  0.3092  0.3486  0.6181 0.3936  0.9454  0.9030  0.9454  0.6077 0.6336  0.7460  0.4087  0.3776  0.4441
MRTMC 0.9292 0.9740 0.9608 0.7629 0.9245 0.8321 0.9769 0.9546 0.9769 0.6320 0.7810 0.9208 0.9344 0.8837 0.9344

(a) Observed data

(b) Recovered data

(c) Structural noise (d) Gaussian noise

Fig. 6. Visualization of the recovered images, structural noise, and Gaussian noise on ORL with Case3 (first row) and the real-world dataset AR (second row).

respectively, compared to GMC. The graph learning-based methods
directly construct similarity graphs from the raw multi-view data, but
a single norm constraint cannot effectively depict the mixed noise,
resulting in unreliable similarity graphs. In contrast, MRTMC takes into
account both mixed noise and high-order correlation among views.
From Fig. 5, we observe that MRTMC accurately classifies the samples
into seven categories in Case3 of MSRC-V1 dataset.

(3) Compared with the subspace learning-based methods, such as t-
SVD-MSC, HLR-M?VS and WTNNM, MRTMC demonstrates outstanding
capability. And one can see that the tensor-based methods achieve
better clustering performance than the graph-based methods (such as
WMSC, MCGC, and GMC). This may be because there is a strong
similarity among multi-view data, and high-order correlation can better
explore the consistency of data and obtain better clustering perfor-
mance. As a comparison, since the proposed method can not only
capture the global correlation among views but also explore the specific
information within each view. And the performance of the proposed
method MRTMC is better than the graph-based and tensor-based com-
parison methods. In addition, the proposed method has clearer cluster
than other subspace-based MVC methods from Fig. 5(e)-(j). This is
attributed to the fact that the mixed noise within each view can
be adaptively learned and suppressed, thereby achieving the superior
clustering performance.

4.3. Clustering performance on real-world data

In the subsection, AR, FERET, ALOI, Caltech-20, and Scene-15 are
used to test the clustering performance of MRTMC. The above datasets
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contain complex structural noise, such as glasses, mask, and back-
ground as shown in Fig. 3(c) and (d). In Table 6, we list the clustering
results of all methods. The best result is bold, and the second-best is
underlined.

From Table 6, MRTMC demonstrates superior performance on the
real datasets. Specially, in term of ACC, the proposed method shows sig-
nificant improvements of 2.38%, 1.86%, and 2.43% over sub-optimal
method on AR, FERET, and Caltech-20, respectively. Besides, the pro-
posed method achieve promising result on ALOI and Scene-15. It is
worth noting that graph learning-based MVC methods perform poorly
on AR datasets. The may be attributed to the severe occlusion and
varying illumination in AR dataset, which lead to unreliable similarity
graphs constructed from the raw data. The reason why the proposed
model is superior to other MVSC methods may be that mixed noise
learning of the proposed method has better noise description ability
than a single norm. Although the ALOI dataset is affected by envi-
ronmental interference such as light conditions and rotation angles,
all methods have strong clustering performance. This could be due to
certain multi-view features that alleviate the impact of environmental
interference.

Additionally, we have visualized the mixed noise separation as
shown in Fig. 6. From the first line, the proposed model regards the
black blocks and salt-and-pepper noise as structural noise and restores
the outline of the face clearly. From the second line, the proposed
model regards glasses and hair as structural noise and restores the oc-
cluded areas clearly. In summary, the features of the potential restored
image are well preserved, and the structural noise can be separated
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Table 7
The results of ablation experiments for the proposed method MRTMC.
Method AR FERET ALOI Caltech-20 Scene-15
ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
MRTMC-(w/0)L, 0.8385 0.9341 0.8985 0.3486 0.7065 0.3614 0.8435 0.7591 0.8435 0.4132 0.5666 0.7590 0.9144 0.8778 0.9144
MRTMC-(w/0)L,  0.9062 0.9653 0.9446 0.7464 0.9157 0.8093 0.9667 0.9395 0.9667 0.5830 0.7462 0.9116 0.8685 0.8787 0.9010
MRTMC-(w/0)L;  0.8909  0.9637 0.9377 0.7386 0.9145 0.8057 0.9639 0.9342 0.9639 0.5650 0.7392 0.8998 0.9248 0.8723  0.9248
MRTMC 0.9292 0.9740 0.9608 0.7629 0.9245 0.8321 0.9769 0.9546 0.9769 0.6320 0.7810 0.9208 0.9344 0.8837 0.9344
® view-1 ® view-2 ® view-3 characteristics of noise data, we use KSVD [60] to adaptively
view-5 view-6 represent the noise data as the structural noise dictionary and the

® view-4

AR FERET ALOI Caltech-20 Scene-15

Fig. 7. The learned weights of different views for different datasets.

approximately. The proposed approach of representing the mixed noise
brings valuable potential features, which is beneficial to clustering
performance.

4.4. Discussions

Ablation study: To study the effectiveness of the different terms in
proposed model, we perform experiments on three variants. For sim-
plicity, L,, L,, and L; are used to represent adaptive dictionary learn-
ing for structural noise, nonconvex low-rank tensor approximation,
and adaptive weighting strategy, respectively. Specifically, the model
is degraded to MRTMC-(w/0)L, by removing the adaptive dictionary
learning for structural noise. By replacing the nonconvex TNN with
the traditional TNN, the model is degraded to MRTMC-(w/0)L,. Giving
each view the same weight instead of adaptive weighting learning, the
model is degraded to MRTMC-(w/0)L;. From the Table 7, MRTMC
shows a significant improvement compared to MRTMC-(w/0)L,. It
indicates that the adaptive dictionary learning for structural noise is a
crucial component of our method, leading to a significant enhancement
of clustering performance.

Compared with the same weights (MRTMC-(w/0)L;), the proposed
method with the adaptive weights can achieve the higher clustering
results, which shows the effectiveness of adaptive weight strategy for
improving clustering performance. Fig. 7 presents the learned weights
of our weighting strategy, which can adaptively determine the weights
of different views for different datasets. For example, the weights of
each view of Scene-15 data are 0.5393 (view-1), 0.2241 (view-2), and
0.2366 (view-3). In summary, the performance of the proposed model
is better than all variants, which implies that each regularization term
can enhance the performance of the model.

Effectiveness on adaptive dictionary learning: For the structural
noise, we design the dictionary learning to adaptively adjust to varying
structural noise characteristics across different datasets, which lies in
two-fold:

» During the initialization phase, for different datasets, we use
the robust PCA [59] to divide the raw multi-view data into the
latent multi-view data and noise data. Then according to the
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coefficient, resulting in the reasonable initialization.

During the optimization phase, the proposed adaptive dictionary
learning strategy can dynamically update the dictionary and rep-
resentation coefficient of the structural noise of different datasets.
Fig. 8 shows the process of adaptively learning the structure
noise for different datasets. One can see that the structures of the
learned dictionary and representation coefficient become clearer
as the number of iterations increases, and the structural noise can
be separated from the observed data to improve the robustness of
clustering.

To quantitatively test the performance of dictionary learning, we
compare the difference between the learned structural noise X =
D, Z @ and the real structural noise X'* by

v

Err=z

v=1

11X = X p
1X1

A smaller Err value indicates that the proposed adaptive dictionary
learning strategy obtains the more accurate structural noise estimation.
In Fig. 9, we plot the Err curve of structural noise on ORL dataset
with Case3. We can see that the Err curve drops rapidly after a certain
number of iterations and tends to be stable, which demonstrates that
the adaptive dictionary learning can approximately learn the structured
noise.

The effect of the block noise with different sizes: To test the
effect of the block noise with different sizes on the clustering perfor-
mance, taking the ORL dataset as an example, we test the following
cases:

CaseA: On the basis of Case2, three 8 x 8 black blocks are added to
a view of 50% samples.

CaseB: On the basis of Case2, two 20 x 20 black blocks are added
to a view of 50% samples.

CaseC: On the basis of Case2, one 30 x 30 black block is added to
a view of 50% samples.

Fig. 10 presents some samples contaminated by blocks of different
sizes. Clearly, the larger the block noise, the more serious the data
pollution. One can see that when the block noise is small, the restored
latent image can well preserve the details and texture information
of the image. As the block noise increases, although the quality of
the restored image decreases, the main features of the image are
preserved. Moreover, Table 8 lists the clustering performance of the
proposed method and baselines in terms of different block noise cases.
We observe that the proposed method achieves the best clustering
performance and is robust to different block noise cases.

The impact of the regularization parameters A, and A,: In the
proposed method, regularization parameters 4, and A, are used to
balance the contributions of all terms in Eq. (6). Fixing the k, = 5¢,
Fig. 11 provides ACC values of the proposed model with varying 4, and
A, on different datasets. The maximum value of 4; and 4, are selected
from the set of {1, 5, 10, 15, 20, 30, 40, 50}. As the maximum value
of A, changes, the model performance changes significantly. We can
conclude that A, used to balance the contribution of low-rank term is
sensitive to MRTMC. The change of the maximum value of 1, has little
effect on the model performance, so it can be concluded that 1, which

(32)
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Initialization 10th iter 20th iter Final

‘-\'I-ﬁ-l'r ""-J
(b) real-world dataset AR

Fig. 8. Visualization of structural noise dictionary Dﬁ”) (first row), coefficient matrix Zi”) (second row), and structural noise (third row) on ORL with Case3 and real-world dataset

AR as the number of iterations increases.

Table 8
The clustering performance of different methods in different block noise cases on ORL dataset.
Method CaseA CaseB CaseC
ACC NMI PUR ACC NMI PUR ACC NMI PUR
CoReg 0.6375 0.8107 0.6850 0.6325 0.7721 0.6725 0.6150 0.7599 0.6525
AASC 0.6500 0.7804 0.7575 0.5950 0.7252 0.6425 0.5050 0.6572 0.5350
RMSC 0.4400 0.6255 0.4875 0.4325 0.6130 0.4925 0.3875 0.5538 0.4600
AWP 0.6625 0.8102 0.7175 0.6075 0.7295 0.6350 0.5875 0.7337 0.6225
WMSC 0.7225 0.8351 0.7450 0.6475 0.7707 0.6700 0.6250 0.7682 0.6625
MCGC 0.5475 0.6966 0.6375 0.5150 0.6728 0.5700 0.5050 0.6683 0.5825
GMC 0.5275 0.6794 0.7925 0.4875 0.6363 0.5825 0.4450 0.6083 0.5525
LTMSC 0.6950 0.8310 0.7500 0.6525 0.8013 0.7050 0.5850 0.7469 0.6100
LMSC 0.7100 0.8356 0.7425 0.6325 0.7601 0.6525 0.5525 0.7133 0.5750
t-SVD-MSC 0.8725 0.9422 0.9175 0.8750 0.9374 0.9025 0.8100 0.8992 0.8350
HLR-M?VS 0.9425 0.9749 0.9525 0.9025 0.9530 0.9425 0.8725 0.9348 0.9025
WTNNM 0.9325 0.9669 0.9475 0.8925 0.9627 0.9175 0.8475 0.9217 0.8575
GNLTA 0.9250 0.9741 0.9450 0.8825 0.9364 0.8875 0.8575 0.9477 0.8925
AGLLFA 0.6525 0.7851 0.6875 0.6300 0.7731 0.6550 0.6075 0.7545 0.6350
RWLTA 0.9317 0.9713 0.9468 0.8850 0.9517 0.9075 0.8523 0.9329 0.8745
MoMvGC 0.5825 0.7497 0.6625 0.5925 0.7435 0.6425 0.5625 0.7370 0.6425
MRTMC 0.9525 0.9792 0.9775 0.9275 0.9712 0.9475 0.8950 0.9435 0.9075
0.7
0.6 1 3|- e
Original &
0.5 1 e
g
3
0.4 ]
0.3 1
0.2 Restored
0 20 40 60
Iteration

Fig. 9. The Err curve of structural noise on dataset ORL with Case3.

is used to balance the contribution of the structural noise sparsity is
robust to MRTMC.

The impact of the atom number of dictionary a: The parameter
« is used to balance the dictionary atoms and is selected from the set
of {1, 5, 10, 15, 20}. Fig. 12 provides indices of the proposed model
with varying « on different datasets. We can see that relative stable
clustering performance can be achieved when « is within the set of {5,
10, 15, 20}. Considering the computational complexity, « is set 5 in all
experiments.

The impact of the parameters n and 6 in the nonconvex tensor
nuclear norm: The nonconvex tensor nuclear norm includes param-
eters n and 6. To test their impact on the clustering results, taking
datasets FERET and Scene-15 as examples, Fig. 13 shows the impact
of parameters n and 0 on clustering performance (i.e., ACC, NMI, and

12

CaseC

CaseA CaseB

Fig. 10. The different block noise cases and the corresponding restored data on ORL
dataset.

PUR values), respectively. From Fig. 13, we can see that the proposed
method achieves the promising metrics in a relatively wide range of two
parameters, which indicates that our methods are stable while changing
n and 0. Therefore, we set 7 =4 and 6 = 0.1 in all experiments.

Comparison of running time: To further demonstrate the compu-
tational efficiency of the proposed method, Table 9 reports the running
time of the proposed method and the compared methods. From Tables
4-6 and Table 9, we observe that the proposed method MRTMC can
achieve the highest ACC, NMI, and PUR values within an acceptable
running time in most cases. This shows that the proposed method is
competitive in terms of computational efficiency.
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Fig. 11. ACC values of the proposed method with different parameters A, (axis on the right) and 4, (axis on the left) on different datasets.

1
0.8
0.6 | 06 0.6
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(d) FERET (e) Caltech-20

(f) Scene-15

Fig. 12. The clustering performance of the proposed model with varying « on (a) MSRC-V1, (b) AR, (c) AIOL, (d) FERET, (e) Caltech-20, and (f) Scene-15 datasets.
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Table 9
Comparison of running times (seconds) on all the datasets.

Method MSRC-V1 ORL Yale COIL-20 AR FERET ALOI Caltech-20  Scene-15 Average

LTMSC 3.9438 31.2144 7.7366  157.2228  125.3813 1659597  66.4640  670.8783  1833.6899  340.2768

LMSC 2.4209 15.4454 67208 66.5998  45.6185  56.1340  26.6348  238.6877  1509.7940  218.6729

t-SVD-MSC ~ 1.1904 10.8259  4.4488  29.9339  16.1389  28.6948  10.0434  117.5262  162.3185  42.3468

HLR-M?VS ~ 1.4434 6.8569  2.3158 459249  41.8489 499118  39.9036  369.4876  1261.6286  202.1468

WTNNM 2.2146 16.7459  5.2575 50.2492  48.0626  39.2379  17.0176  233.0602  985.4711 155.2574

GNLTA 0.3214 0.4425 01199  2.7652 4.6005 3.8881 3.4018  27.5237 48.1953 10.1398

AGLLFA 0.4292 6.1409  1.6208  5.0536 223245  51.1857 24112 23.6487 50.7653 18.1756

RWLTA 0.7638 1.3053  0.3365  9.0607 143119  16.8936  13.4076  97.6755 117.9121 30.1852

MRTMC 1.0521 10.6151  4.2267 23.2636  26.0139  53.7062  19.3692  180.7157  313.9995  70.3291
1 1 Numerical convergence: Theorem 1 demonstrates the theoretical
/\ convergence of the proposed MRTMC algorithm, and in this section
038 0.8 we investigate the numerical convergence of the proposed MRTMC
algorithm. The error curve (Error = max{[|Z¥*! — Y*+ || ||ID*! —
0.6 e B 1254 = 6511 D) s illustrated in Fig. 14. The abscissa repre-
s . sents the number of iterations, and the ordinate represents the max-
’ ) imum relative error. It can be observed that the relative error de-
o2 02 creases with the increasing number of iterations, stabilizing at a small

0.8 0.8 ‘
|
0.6 0.6 |
04 04
| w— ACC
s NMI
PUR
02" 02
102 107! 10 107 107! 10°
0 0
(a) FERET (b) Scene-15

Fig. 13. Clustering performance (ACC, NMI, and PUR values) with respect to the
parameters » and 6.

value after approximately 30 iterations. We conclude that the proposed
algorithm is convergent numerically.

5. Conclusion

In this work, a new mixed-noise robust tensor multi-view clustering
method via adaptive dictionary learning is proposed to improve the
robustness of multi-view clustering. In MRTMC, the multi-view data is
decomposed into three parts: latent clean multi-view data, structural
noise, and Gaussian noise, where the structural noise with semantic
information is modeled by adaptive dictionary learning. Moreover, the
nonconvex tensor nuclear norm is introduced on the self-representation
tensor to explore the high-order correlation among multiple views. In
addition, an adaptive weighting strategy is used to distinguish the im-
portance of different views. An efficient algorithm is developed within
the ADMM framework to solve our model, and the theoretical con-
vergence of the optimization algorithm is established. Experiments on
simulated and real-world data illustrate the robustness and superiority
of the proposed method over the state-of-the-art MVC methods.

x10° %10
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Fig. 14. Relative error versus iterations of the proposed method on different datasets.
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