IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

20929

Multiscale Gaussian Process-Driven Graph
Convolutional Neural Network for Polarimetric
SAR Image Classification

Ze-Chen Li, Heng-Chao Li
Fan Zhang

Abstract—By focusing on the structure exploration and infor-
mation propagation from non-Euclidean data space, graph convo-
lutional neural network (GCN), which can extract abundant and
discriminative features, has been a valuable topic in polarimetric
synthetic aperture radar (PolSAR) image field. However, the exist-
ing GCN-based PoISAR classification methods have high compu-
tational cost, may easily be prone to over-smoothing or over-fitting,
and inadequately learn the polarimetric property. To address these
issues, we propose a polarimetric rotation-based multiscale Gaus-
sian process-driven GCN (MGPGCN) for semi-supervised PoOISAR
image classification. First, for addressing the over-smoothing and
over-fitting problems, the Gaussian process (GP) is introduced into
GCN framework, which can fit the underlying feature distribution
rather than calculating specific values of weights in conventional
GCN. Second, we extend the multiscale layer architecture and
design the multiscale kernel for improving the representation ca-
pability and fully leveraging neighborhood information of GCN.
Third, to mitigate the effect caused by noise or imaging angle, a
superpixel-level polarimetric rotation-based feature enhancement
strategy is designed. With this strategy, the characteristic of each
terrain type is more salient, and the representation capability of
GP kernel can be further improved. Comprehensive experiments
on four PolSAR datasets firmly demonstrate that the proposed
MGPGCN can achieve better performance compared with some
widely-used GCN-based classification methods.

Index  Terms—Gaussian  process (GP)-driven  graph
convolutional network (GCN), polarimetric rotation (PR) domain,
polarimetric synthetic aperture radar (PolSAR), semi-supervised
classification.
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1. INTRODUCTION

S one of the most advanced remote sensing technologies,

polarimetric synthetic aperture radar (PolISAR) has many
advantages, such as long-range, strong penetrating ability, and
working in all-weather and multiclimate conditions. By acquir-
ing specific scattering echoes, PoOISAR has ability to effectively
describe the physical properties and scattering mechanism of
diverse land covers. Meanwhile, instead of utilizing only a
single mode by SAR, the matrix-variate PolSAR data points
are generally acquired in combination with different polariza-
tion modes, thus yielding more polarimetric information to be
included. Hence, the observed PolSAR data has provided wide
applications for both military and civilian fields, such as ship
detection [1], land cover classification [2], [3], [4], [5], disaster
management [6], and vegetation monitoring [7].

As animportant role in PoOISAR image interpretation, POISAR
image classification not only assigns various category labels
to pixels according to the backscattering information, but also
provides the discriminative information for many downstream
tasks [8]. For example, high-resolution classification maps can
facilitate precise target detection, and temporal classification
results support the change detection task for disaster assessment
and other tasks. Moreover, category-specific scattering features
can enhance parameter inversion accuracy in environmental
monitoring. Hence, PoISAR image classification methods have
been intensively developed in recent years, which can be clas-
sified as the unsupervised, supervised, and semi-supervised
methods.

The unsupervised methods, which can be regarded as
the cornerstone throughout the whole development of Pol-
SAR image classification, primarily encompass polarimetric
decomposition-based methods, and statistical modeling-based
methods. Concretely, the polarimetric decomposition aims to
factorize the polarimetric coherence or covariance matrices
into fundamental components representing distinct geometric
structures and scattering mechanisms, typically expressed as
linear combinations [9], [10], [11], [12]. Based on phase sta-
bility requirements, they are categorized into: coherent (e.g.,
Pauli, Krogager, and Cameron decompositions) or incoherent
(e.g., Freeman, Yamaguchi, and Cloude-Pottier decompositions)
techniques [13], [14], [15]. For the statistical modeling-based
methods, they leverage the unique statistical properties to model
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PolSAR backscattering data, and assume each data point is
sampled from a certain distribution (e.g., complex Wishart or
complex Gaussian). After estimating the distribution’s parame-
ters, the classification is fulfilled by evaluating the probability of
a data point belonging to a specific cluster [16]). Although man-
ual annotation of samples is not required, these unsupervised
methods cannot obtain very accurate results, and are difficult to
deploy on the large-scale dataset.

Inspired by the success of supervised convolutional neural
network (CNN) in optical image field to automatically extract
abstract and discriminative features, many efforts have been
made to develop CNNs in the PolSAR field and subsequently
design various modules for adapting to data format or capturing
more scattering properties, such as 2D-CNN [17], 3D-CVNN
[18], and residual network (ResNet) [19]. Furthermore, some
studies also consider to integrate more characteristics of data,
e.g., POICNN [20], manifold CNN [21], and graph-based CNN
[22], which leverage multiregion windows, manifold represen-
tation, and graph representation for exploring the local/global
spatial and structural information. By combining the above
model-driven or data-driven strategies, many supervised meth-
ods are proposed to break the feature representation bottlenecks,
thus improving the classification accuracy and deploying for
large-scale PoISAR datasets [23], [24], [25], [26], [27], [28].
However, numerous manually annotated samples are needed in
above methods and the collection of labels is a complicated
process, thus limiting their application potentials. To address the
problem of annotation-throughput tradeoff, the semi-supervised
methods represented by graph neural network [29] and graph
convolutional network (GCN) [30], have obtained rapid devel-
opment and improved applicability in recent years. Hence, we
focus on the GCN-based semi-supervised classification.

Specifically, since the convolution operations in CNN and
its variants are only imposed on the fixed-size and regular
square patches, the surrounding pixels are implicitly assumed
to have the same labels of center pixel, yielding the boundary
information of PoISAR image not being considered. Hence,
the CNN-based methods mentioned above may fail to guar-
antee the classification performance on heterogeneous areas
and result in poor generalization ability. To improve classi-
fication performance on the heterogeneous area, Chen et al.
[31] introduced the GCN in PolSAR field, with which the
pixel-level classification is developed to the superpixel-level for
leveraging the boundary information in heterogeneous areas.
Simultaneously, since GCN can flexibly convolve over regions
with arbitrary shapes, i.e., capturing the graph inductive bias, the
spatial topology of PoISAR land covers can be further explored
and the correlations between long-range data points with the
same scattering characteristics can be further leveraged. Bene-
fiting from these advantages, many researchers designed various
GCNes to classify PolSAR images. For example, Liu et al. [32]
proposed an adaptive GCN, in which each obtained superpixel is
corrected by a constructed subgraph, such that the classification
performance can be improved by the better superpixel nodes.
Similarly, the fuzzy GCNs developed by [33] and [34] also
focused on improving the accuracy of superpixel segmentation
results, such that the physical property or distance measurement
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of those undetermined superpixels is utilized to construct a fuzzy
graph for extracting more intuitive features. On the other side,
some researchers were expected to make GCN applicative on
various scenes with limited sample information or data form,
e.g., the authors in [35] and [36] designed tensor-GCN and
meta-GCN, respectively. By introducing more structural prior
information, the PolSAR observations can be further learned.
Besides, there are also some studies devoted to improving the
representation ability of constructed adjacency matrix in GCN,
such as weighted GCN [37] and dual-branch GCN [38].

Although the above GCNs and their extended versions achieve
good PolSAR classification performance by improving the rep-
resentation ability of constructed superpixel/graph or by lever-
aging more priors, there are still some issues. For instance,
since the graph convolutional operations of these GCNs and
their extended visions have the same form as that of tradi-
tional GCNss, their graph convolutional layers are easily to be
over-smoothing in view of utilizing the same nodes in different
connection subgraphs. In such case, the latent representation
of each node will be imposed to the same value (i.e., the same
location in the feature space), and the classification performance
may decay with an increasing number of iterations. Meanwhile,
considering the influence of imaging angle and environment,
the same terrain types in a POISAR image may show different
scattering characteristics (or different terrain types show very
similar scattering characteristics). However, these GCN-based
methods do not design the corresponding modules for improving
the identification accuracy of these “variant” targets.

In fact, some works have illustrated that integrating the fi-
nite mixture models, stochastic processes, or other Bayesian
probability techniques into deep networks is an effective way
to mitigate the over-smoothness and over-fitting phenomenons
[39], [40], [41]. Inspired by them, we introduce the Gaussian
Process (GP) into GCN for constructing and extending the
GP-driven GCN (GPGCN), which is suitable for dealing with
over-smoothness and over-fitting problems. By modeling the
GCN layer and its variants with GPs, the latent units of the
network layers can be assumed to be infinite (i.e., the layer
widths tend to infinity), and accordingly, under the central limit
theorem, the GP over Gaussian distributions is appropriate for
fitting the infinite neural units [42], [43], [44]. Therefore, the
calculation of graph convolutional operation in each GCN layer
can be transmitted to the estimation of the GP kernel, and the
network will fit the underlying feature distribution rather than
learning specific values of weights like conventional GCNs.
With this strategy, the effectiveness of nodes/subgraphs can be
guaranteed and the layer architecture becomes programmable
and scalable. However, due to the limitation of the GP kernel,
GPGCN is difficult to directly deal with the large-scale dataset.
Hence, we employ the superpixel-level classification strategy to
ensure the effectiveness on large-scale datasets. Simultaneously,
for processing the above “variant problem,” a superpixel-level
polarimetric rotation (PR)-based strategy is designed to enhance
the input feature of the network. By measuring the polarimetric
similarity under different angles, the enhanced features could
include more polarimetric information and rotation invariant
information, thus yielding the variant targets being correctly
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recognized. The experimental results also validate the effec-
tiveness of introducing GP and designing the superpixel-level
feature enhancement strategy. In conclusion, the main contribu-
tions of this article are three-fold as follows.

1) A novel PR-based multiscale GPGCN (MGPGCN) is de-
veloped for semi-supervised PolSAR classification. Com-
pared with the existing GCNs-based PolSAR classifi-
cation methods, MGPGCN models graph convolutional
layers by GPs for obtaining the effective kernel, such that
the latent feature distribution is learned rather than the
specific values of weights. As such, the proposed method
can consider the uncertainty, address the over-smoothness,
and improve the representation ability.

2) To further explore the contextual information of PoISAR
image, we design a multiscale layer architecture to im-
prove the learning capability and robustness of MGPGCN.
Meanwhile, for better applying the proposed method on
large-scale datasets, the superpixel technique is also intro-
duced to significantly reduce the computational burden of
GP kernel and constructed graph.

3) For improving the feature discriminant of MGPGCN
layer and mitigating the effect of noise, a PR-based fea-
ture enhancement strategy is proposed. In this way, the
superpixel-level samples are mapped into the PR domain,
and the similarity degrees of the input sample and its
projection are determined by leveraging various scattering
measurement techniques. With the enhanced features, the
characteristic of each terrain type is more salient, and the
representation capability of the GP kernel can be further
improved, thus obtaining better classification results.

The rest of this article is organized as follows. Section II

presents the preliminaries of PoOISAR data. In addition, GCN and
GP are briefly introduced. In Sections III, the proposed method
with PR-based feature enhancement strategy and multiscale
strategy will be described in detail. Comprehensive quantitative
analysis and evaluation of the proposed methods are imple-
mented in Section I'V. Finally, Section V concludes this article.

II. PRELIMINARIES
A. PolSAR Data Representation

PolSAR system measures the back scattering signal of land
covers by different combinations of polarimetric modes, gener-
ally including horizontal polarization (h) and vertical polariza-
tion (v). For the full polarization observation, an arbitrary pixel
in POISAR image can be represented as a polarimetric coherency
matrix T, which is given as

T T T3
T= (k. ki')= |To1 Too Tos (D
T31 T33 133

where k7, = [Shn, V/2Shy, Suo] ¥ is the polarimetric target vec-
tor under the assumption of monostatic reciprocity, and S,
contains the complex-valued backscattering coefficient of the
terrain target transmitted (received) in a(b) polarization. ()
represents the multilook averaging, and the superscript H is
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the conjugate transpose operation. Polarimetric coherency ma-
trix T, which is a Hermitian symmetric positive semidefi-
nite matrix, contains the real-valued diagonal elements and
complex-valued nondiagonal elements. As a general choice
in the most deep-learning methods, the upper triangular ele-
ments of T are selected as the input feature vector, i.e., z =
[Th1, Ri2, Fi2, Riz, Fi3, Ta2, Ros, Fas, T3], where 7., and
'R are the imaginary and real parts of 7', respectively. More-
over, due to the effect of polarimetric orientation angles, same
terrain types may show different scattering characteristics. For
fully extracting features of these variant targets, some efforts
in [45], [46], [47] have been made to map the polarimetric
coherency matrix T into the PR domain for capturing the
PR-invariant features, which is defined as follows:

TR = RTRY )

where rotation matrix R with the rotation angle o €
[—7/2,7/2) has the form as follows:

1 0 0
R= |0 cos(2a) sin(2a)| . 3)
0 —sin(2a) cos(2a)

Hence, by selecting various rotation angle «, the correspond-
ing T(") including abundant polarimetric information can be
obtained, which can effectively help to distinguish these variant
targets.

B. Graph Convolutional Network

GCN s apowerful semi-supervised learning method, which is
developed from the CNN and can leverage the graph-structured
data. The input of GCN is an undirected graph, which is denoted
as G =(V,&, A), where V and & are the sets of nodes and
edges with N = |V| and M = |&|, respectively. A € RV*N g
the adjacency matrix of G. The spectral convolution on graphs
can be represented as the multiplication of the data = with a filter
go = diag(6), i.e.,

go * T = UggUTJC. 4)

Here, eigenvector matrix U is derived from the normalized
graph Laplacian L=1—D"Y2AD~Y2=UAU", D is the di-
agonal matrix D;; = ) y A;j, I represents the identity matrix,
diagonal matrix A includes the eigenvalues of L, and UTg
is the graph Fourier transform. Based on the above spectral
convolution, the architecture of a GCN layer is presented as

XO = fAxEOw® 4 p0) 5)

where [ denotes the /th layer in the GCN, and X *~) and X®
are the input and output features, respectively. W) and b() are
the weight matrix and bias vector, respectively. f represents the
nonlinear activation function, such as ReLU. The representation
of each node is given as

1
= )
je/\%{i} Vg /A

20 =

(O m;—l) (6)
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where deg(i) is the degree of ith node, and © is set of the
trainable weights. By constructing the PolSAR feature to the
graph-structured data, the correlations of long-range pixels that
may have similar scattering mechanisms in the image can be
further learned. Hence, developing the GCN-based PolSAR
classification methods have become a valuable topic.

C. Gaussian Process

GP is defined as an infinite collection of random variables,
whose arbitrary finite subset is jointly Gaussian distributed. By
determining the mean function m(x) and covariance function
(kernel) K = ka(x,2'), the GP can be completely specified,
where x and 2’ are two possible inputs, and A is the hyper-
parameter set for parameterizing the kernel. Hence, the GP is
denoted as follows:

fop(x) ~ GP(m(z), K). @)

Due to the posterior consistency, tractable posterior and wide
support, GP is one of the most widely used Bayesian statisti-
cal modeling techniques. By applying GP into GCN, the over
smoothness problem can be effectively mitigated. Generally, we
let mean function m(2) = 0 for reducing the complexity. Hence,
after obtaining the appropriate kernel, the classification label of
a test point can be calculated with the known data and the joint
probability density according to Bayesian principle.

III. METHODOLOGY

In this section, we elaborate our MGPGCN model and derive
the corresponding multiscale GP kernel. And then, the PR-based
feature enhancement strategy will be discuss in detail, which can
effectively extract more discriminative information to fulfill the
classification task.

A. Multiscale Gaussian Process-Driven GCN

As a powerful semi-supervised method, GCN can effectively
learn the graph-structured data and capture the graph inductive
bias, which has been developed in recent years. However, it
also has some disadvantages. For example, the labels of few
training samples under semi-supervised strategy cannot be fully
transmitted on the whole graph, and particularly, within a deep
structure, the adjacent nodes will be much similar to the center
node due to the convolutional operation, which is the over
smoothing phenomenon. Meanwhile, for the large-scale dataset,
its training process has a high time overhead.

To address the above issues, some researchers introduce GP
as well as other statistical-modeling techniques to deal with
these problems. By modeling the GCN layer from statistical
perspective, GPGCN learns the distribution of weights rather
than specific values, and the uncertainty can be considered.
Inspired by them, we construct the PR-based MGPGCN. Instead
of directly modeling GCN layers, we introduce the GCN via
Initial residual and Identity mapping (GCNII) [48] architec-
ture for improving the representation capability, and design
corresponding multiscale kernel for exploring the contextual
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information. In such cases, the model becomes more robust and
more neighborhood correlations can be captured.

Specifically, instead of using traditional GCN layer, GCNII
architecture is introduced to reserve more polarimetric charac-
teristics of original input, whose layer is shown as follows:

x

—f ([(1 — ) AX (D +WX<0>} [(1 - 51)1n+5lw<l>})
®)

where v; and ¢§; are two hyperparameters. I,, and A are the
n x n identity matrix and adjacency matrix, respectively. X(©)
is the original input of network. It can be observed that there
are two terms on the right-hand side of (8). The first term is an
initial residual connection like the skip connection in ResNet,
which allows the features in each layer to preserve some input
information for avoiding the over-fitting. By empirically fixing
its hyperparameter 7; (generally let ; = 0.1 or 0.2), each
node’s final representation can retain at least a fraction of ~;
from the input feature even if many layers are stacked, thus
keeping the balance of model generalization and feature fusion.
The second term denotes the identity mapping, which ensures
that GCNII obtains at least the same performance as GCN. Its
hyperparameter §; imposes the regularization on weight matrix
‘W. By choosing GCNII rather than the layer architecture of
GCN, the network could obtain better extensibility and feature
extraction ability.

For fully exploring the local spatial context, we model (8) by
GP and extend it to the multi-scale version, where the abundant
neighborhood information can be incorporated and the over-
smoothing problem can be further avoided. By observing (5)
and (8), since the update rule in GCNII layer can be regarded as
a linear transformation of that in GCN layer, the corresponding
kernel can also be calculated by linear transformation. Hence,
we first calculate the kernel of GPGCN, based on which we
calculate the kernel of MGPGCN.

1) Constructing GPGCN: When modeling GCN by GP, the
convolutional architecture in (5) is first rewritten as the following
element-wise form:

j{: M/l) u 1)

0z b<” +3 AP w)

veY

e (z) = f(z" (). ©)

Here, :cgl) (or zi(l)) represents the postactivation (or preacti-
vation) feature corresponding to ith index in the /th GCN layer,
where 2(°)(z) (or 2(F)(z)) denotes the original input vector (or
final vector). Accordingly, the matrix notation is given as

-1 l
_ XY

()
YNXdl dl—l dl—l Xdl

O (1) o _ (1)
LNd, = 1N><1b1><dl+AN><NYN><dl’ Xnwa, = 9(ZNva,)
(10)

where d(;_) and d; denote the widths of (I — 1)th and [th layers,
respectively. When the layers are assumed to be infinitely wide,
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the output of GCN (i.e., (™)) can be treated as the multioutput
O]

GP. This is because we could let the weight w;;" and bias

bgl) follow the zero mean-Gaussian distributions with variances
02 /d;—1 and of, since columns of Z (=1 are independent
identically distributed (i.i.d.), each column of the postactivation
feature X~V is also i.i.d. In such case, for (X1, ,ZN)s
[yl(l)(xl), - ,yl(l)(a:N)] obey the joint multivariate Gaussian
distribution, and keep identically distributed for different 1.
Hence, yfl) (1), ygl) (zn) can be regarded as a GP.

2) Calculating the kernel of GPGCN: For different i and 1,
though yEl)(ac) and y;@(s?:) may share the same input X (1),
their jointly distribution has the zero covariance, i.e.,

Cov(ygl) (z), y;@ (7))

Cov (Wj(f)mg»FI) (z), Wﬁx;lfl)(i‘))
1

<o
Il

J

=0

1
(11)

® (Z) are independent. Thus, due to

i

O]
Y (® has the i.i.d. GP columns, each column in Z® follows the
i.i.d. GP with the form of N/(0, K1),

Following the decoupling algorithm in [49], since each zi(l)
obeys multivariate Gaussian N (0, K)) and are independent,
for x and x (which are from the same channel and different
nodes), their preactivations z;(z) and z;(Z) are different acti-
vated values and still follow the A'(0, KV (z, 7)), and then, ac-
cording to the laws of large numbers, when the layer widths tend
to infinity (i.e., n® — 00), the mean of nodes converge to the ex-
pectation, which has the form of K)' — E[¢(2;(x))d(z;(Z))].
After we stack the bias in convolutional operations, the GP kernel
K can be computed recursively according to the covariance
of Y as follows:

Ely )y ()] = o2,CV (2, 7)

CU (2, &) = E.oyo.c0 )82 ()9 (2 (2))]
where E[-] denotes the expectation of [-]. By selecting vari-
ous forms for C(©), the correlations between features can be
captured, such as the inner product C'°)(z,z') = xa'/dy or
the squared exponential C©)(z,2") = exp(—1/2 Z?‘J:l(xj -
';/1;))?. According to the correlations between Y® and
ZW in (10), since weight W (+1) is independent and follows
N (0,02 /d;), the preactivation covariance is factorized as

which means y,; ’ () and y

(12)

K® = 6215, n + A Cov(Y, ) AT (13)

where Cov(Yi(l)) is denoted as the following form, which is
rewritten with the matrix form, i.e.,

)T

Cov(y\")) = 2EX VXV ) =020t 14

By substituting the (14) into (13), we can determine the recursive
formula, and the kernel & () can be estimated by

KO =6l 1y.y +02ACTDAT, (15)
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Fig. 1(a) shows the principle of modeling GCN layes by GP.
Compared with the conventional graph convolutional operation
in GCN, the input features in GP are assumed to follow the
Gaussian distributions, and their corresponding output features
are assumed to follow the joint multivariate Gaussian distribu-
tion. In such case, the mapping between input and output can
be described by GP, which is determined by the kernel function.
Hence, GP is regarded as a function over all Gaussian distribu-
tions. With this strategy, the learning of specific values of weights
in conventional graph convolutional operation is replaced by the
estimation of Gaussian kernel in GP [i.e., Fig. 1(b)]. With the
determined kernel, the statistical characteristic of graph structure
input can be explored [44].
3) Extending the Kernel to Multiscale Version: Aselaborated
before, the processing of GP kernel on MGPGCN can be also
obtained from GPGCN by the corresponding transformation
according to (12)—(15). In particular, the multiscale information
is also integrated into kernel for constructing multiscale kernel.
Thus, compared with the GCN layer in (5) and the GCNII layerin
(8), the corresponding transformation from (5) to (8) is imposed
on the kernel. With changing the form of (13) or (15), we could
acquire the final transformation on kernel. Consequently, the
corresponding transformation steps are shown as follows, i.e.,
GCNIL: X < ((1 — ) Af(X) +~vXO)((1 — 8T+ 6W).
1) The nonlinear activation function f on X corresponds
to the transformation on GP kernel f(K)=CW" =
B0 0.7y 09T,

2) The left multiplication by Af(X) corresponds to the
operation AC AT on kernel in view of the expectation in
(12).

3) Similarly, multiplication coefficient y.X (?) corresponds to

72K and (1 — 6)1 corresponds to (1 — §)2.

4) For the weight term, SW corresponds to 6202, where

hyperparameter o, is the variance of network weight.

In conclusion, when modeling GCNII by GP, the graph convo-
lutional rule in (8) is converted into the operation on GP kernel,
and the update rule is given as

K« ((1 —)2ACAT 4 721%(0)) ((1—6)2+5%2).
(16)

According to the above pattern, it could be found that when the
architecture of layer is changed, the corresponding operation on
kernel is also determined. For instance, the convolutional oper-
ations AX corresponds to the kernel operation AK A”, Af(X)
corresponds to ACAT, X + b corresponds to K + UgleN,
and so on. Therefore, modeling GCN-based layer by GP is pro-
grammable and extended, which is similar to that in GP-based
CNN.

Here, considering that only utilizing 1-step adjacent nodes
may not extract information sufficiently, the multiscale kernel
K in (17) is shown as Fig. 2, where 7, is the concentration
parameter, K, denotes the kernel derived from p-step adjacent
nodes, and p is usually set to 3. With this strategy, the multiscale
kernel in Fig. 2 can further explore the neighborhood informa-
tion. By fusing the kernels learned from different adjacent nodes,
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Traditional GCN
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- :.'
i 1]
o (1=7)’ ® 75 JOV
Gaussian Process-driven GCN u
fitting f(«) ~ GP(m, K) K(l) A f(Kl_l) K(O)

-1\ _

i fIK™) = Ezl(l-l)NN(o K(l—l))[d)( i Z; i

| |

NG I I

| % t:':']_ E o |

| — 4 I

i J :-:. Expectation i

| |

: " i-1) |

T fED

Topusl Bl Nndca T@ Matrix Multiplication () Elementwise Multiplication = (1=26)%+6%02 T

(a) (b)
Fig. 1.  Illustrations of (a) the GPGCN strategy and (b) the iterative process for kernel.
Qe > K matrix. Accordingly, the complexity of two terms in (16) are
o 1= .
el g0 O(N.N + N?) and O(N?), respectively.

g ;i , .,/0 ® Different from the existing GCN-based PolSAR classifica-
/g N o §é>o » Ko tion methods, the proposed method combines the advantages
© € 0 0 ¢ » 99 ,O(o of GCN and GP, such as: 1) MGPGCN not only considers
Constructed Graph o 20, > more graph-structure information than GCN but also learns the
.o'Q.,;). I distribution of features for mitigating over-smoothing; 2) Due
T %Oo o 3 & > Ks to the fact that the workload of GCNs fall on the training phase,
T Ogb%o they generally have the time-consuming training process, while
‘ Ot};er i .. MGPGCN does not require a costly training phase and is flexible
“ommmmssmmmeseseee=t b tep adiacent nodes » Kp~ on test time; 3) Since the convolution operation of each layer

Fig. 2. Illustrations of the multi-scale strategy. By constructing the multiscale
kernel, several GP kernels are learned under different scales, and thereby the
context information is further leveraged.

the spatial context is further integrated as follows:

K =mK; + 1K + -+ 1,K,. (17)
Finally, by the obtained multiscale GP kernel K , the classi-
fication results y* of a test point 2* can be calculated by (18)
according to [50]
« (L) (L _
y = KPEE + ey, (18)
The computational complexity of the proposed MGPGCN
mainly focuses on the calculation of the multiscale kernel, which
is O(Lp(N.N + N?)). Here, L is the number of layer, p is the
number of multiscale kernels, and /V, is the number of nonzero
elements in adjacent matrix. Specifically, the update rule of each
kernel in fusion of multiscale kernels is shown in (16). The
computational complexity of ACA™ is O(N.N + N?), and
the complexity of v2K () is O(N?) since K(*) is not sparse

is transformed to the update of kernel, the quality of obtained
kernel will intensively influence the classification performance.
Hence, the integration of multiscale information can improve
the representation ability for acquiring a better kernel. Hence,
as mentioned above, MGPGCN could obtain a shorter training
process, effectively deal with the oversmoothness problem, and
incorporate the contextual information and uncertainty.

B. PR-Based Feature Enhancement

By designing MGPGCN, more contextual information over
constructed graph is captured and less original information will
be lost during feature extraction process. Furthermore, in order
to expand the application scenarios of the proposed MGPGCN,
it is also necessary to consider the effects of orientation angle,
which may generate the following problems about GP.

1) Lack of Robustness to Noise: This problem is exhibited
as “data length scale” that limits the classification accuracy
of obtained GP kernel. Specifically, GP may not be stable
for the large length-scale and large spatial-scale dataset. In
hyperspectral or optical image field, the element number of
each input feature commonly ranges from tens to hundreds, and
these few noise elements may generate low effect during feature
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extraction. When processing the PolSAR image by GCNs, we
generally utilize SLIC or other superpixel techniques to reduce
the spatial scale. However, the upper triangular elements of
superpixel-level coherency matrix are selected to construct the
nine-elements input vector, which still has a low length-scale.
Accordingly, the low length scale may lead the speckle noise to
generating a serious impact to GP.

2) Interpretation Ambiguity Caused by Variant Targets: Due
to the influence of imaging angles, the same terrain types may
show different scattering characteristics (or various terrain types
may show similar scattering characteristics). This is caused by
the polarization distortion due to radar side-looking geometry,
and these variant targets are easily confused by the low-quality
GP kernel.

Hence, for dealing with these two problems, the PR-based
feature enhancement strategy is developed in this section, where
the diverse scattering similarity measurements are integrated
into the PR field to learning the scattering properties, and then,
the measurement results of similarity degree are regraded as the
new features concatenated with the original data for improving
the discriminant and data’s length scale, thus making the speckle
noise and variant targets be solved.

Specifically, since the PoISAR image is too large to directly
construct the graph adjacency matrix, the SLIC algorithm in
[31] and [51] is first employed to generate superpixels. By
averaging all T among a superpixel, the mean coherency matrix
can be obtained (denoted by ’i‘), which has the same form as
thatin (1). Subsequently, the rotation-based scattering similarity
measurement is introduced as follows:

tr(TU SH)

=2 o) 1
tr[ Tt S,.] (1

where S, represents the typical scattering models. tr(-) is the
trace of matrix, and (-)¥ indicates the Hermitian transpose.
TR s calculated according to (2) with rotation angle .
Compared with the commonly-used polarimetric target decom-
position techniques in [52] and [53], which involve in high
computation overhead and limited application scenarios, the
scattering similarity measurement developed by [54], [55], and
[56] has the simple form and unified scale, and can efficiently
obtain the scattering components of target via calculating the
similarity between each typical scattering and target. More
importantly, due to integrating the PR strategy into (19) by
T(R), the influence of rotation angle can be also considered
in the scattering similarity measurement, thus fully extracting
the variant features.

Meanwhile, since a single scattering model is not enough
for the complex scenes, several typical scattering models (like
volume, surface, double, helix) are introduced as follows, i.e.,

) 15 5 0 ) 2 0 0
Volume : S.; = 30 5 7 0],S2= 1 01 0
0 0 8 0 0 1
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where S.;—S.4 are volume scattering models, S5 is surface
scattering model, S, is double scattering model, and S.7—Sg
are Helix scattering models, respectively [45]. A1 and Ay are
two parameters. By substituting T and S.,—-S.s into (19),
eight responsibility weights are calculated. For example, the
responsibility weight DSI(T(R), Sc1) is determined as (21),
where by is the bias corresponding to D1, and Cp is anormalized
factor that can be omitted during the enhancement process. For
simplifying, we use the following vector Sg; to denote the
coefficient in D, for each element in T

1 ~ -
Dy = {15T11 + (10 cos? oy — 10sin? oy )R(T12)

Co
+ 20sin(ay ) cos(a;)R(T13) + Taa[8sin?(2a;)
+ 7cos?(20)] — sin(4a;1)R(Tas3) + [8 cos?(2a1)

+ 7Sin2(2a1)]'i‘33} + by (21)
Sp1 = [15,10cos(201),0,10sin(2a1), 0, sin? (201
+ 7, —sin(4a;), 0, cos®(2aq) + 7). (22)

Similarly, the other seven responsibility weights correspond-
ing to S.o—S,g are given by (23). Therefore, following the linear
transformation in each S, we could obtain eight weights (i.e.,
new features), which are concatenated with the original input
to generate new input features with 17 elements. Furthermore,

we could also employ several group steps A on rotation an-
gles for extending the input to higher dimension, i.e., aEEl) =
a;, al(-Ez) =a; + Ay, aEES) = a; + Ao, ---. Whenever a A is
introduced, the length scale of the input feature can increase 8.

Generally, choosing only one or two groups aEE) can effectively
avoid the feature redundancy.

The proposed PR-based feature enhancement is shown in
Fig. 3. The input data of network is mapped into the PR domain
to compute the scattering similarities by several scatter models,

and then the learned scattering similarities are concentrated with
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Fig. 3. Illustrations of the rotation-cased feature enhancement strategy. By
learning the scattering similarities of each superpixel, the responsibility weights
are regarded as the enhanced features.

the original input feature to construct the new input feature. With

this strategy, the input feature can contain more polarimetric

information and be more discriminative

Sp2=1[2,0,0,0,0,1,0,0,1]

Spz = [0,0,0,0,0,7 +sin?(2az), — sin(4az), 0, cos? (2a)

+ 7]

Spa = [15,—10cos(2as3),0, —10sin(2a3), 0, sin®(2a3) + 7,
— sin(4as), 0, cos®(2a3) + 7]

Sps = [1,2h1 cos(2a4),0, 241 sin(2ay), 0, A7 sin(4ay), 0,

A2 sin?(20))

%(
S [ ( )+.7:2()\,2) 2R()\,2) COS(QQ5) 2.7:()\2)
)

s(2as),
2R (A2) sin(2as), 2F (A2) sin(2as), cos® Ras), sin(4as ),
0, sin’(2a5)]
Spr =1[0,0,0,0,0,1,0, —2,1]
Ses =10,0,0,0,0,1,0,2,1]. (23)

Consequently, with this superpixel-level feature enhancement
strategy in Fig. 3, the input feature can include more discrim-
inative information for distinguishing variant targets, and the
larger length scale also assists GP to eliminate the noise effect.
Compared with the traditional feature augmentation techniques
in computer vision (CV) (e.g., image rotation, flipping), the
polarization rotation enhancement strategy have the distinct
advantages in physical interpretability and information exploita-
tion, specifically: 1) Polarization rotation adjusts the polarization
basis while strictly preserving the mathematical integrity of scat-
tering matrices under Maxwell equation constraints. However,
the geometric transformations in CV disrupt PoISAR pixel spa-
tial relationships and scattering phase coherence; 2) Polarization
rotation can selectively amplify specific scattering responses,
which can be regarded as the orientation angle compensation to
some extent; 3) Traditional rotation in CV introduces geometric
artifacts (like aliasing), while polarization rotation suppresses
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Algorithm 1: Proposed MGPGCN Algorithm.

Input: PolSAR data T, layer number L, step length A,
neighborhood scale p, parameters v and 6.
Initialize: Calculate superpixel-level polarimetric
coherency matrix T by SLIC. Randomly initialize
parameters o, A1, and Ao.
Step 1: Enhance input features:
Obtain T(®) by mapping T into polarimetric rotation
domain via (2).
Calculate the responsibility weights Dg1~Dgs (i.e.,
enhanced features) for each group of ozz(-E)
to (21)-(23) by GCN.
Obtain the new input feature X by the concatenation
of the original input and the enhanced features.
Step 2: Train the proposed model:
Current layer number [ < L. repeat
Expectation-step: recursively calculate expectation
and covariance in (11) and (12).
Kernel-step: update each p-step GP kernel K, and
determine the multi-scale kernel K via (16) and
17).
Step 3: Predict the classification label y* according to
(18).
Return: Label y*

according

azimuth-dependent scattering fluctuations by adjusting inter-
channel complex correlations. Thus, the enhancement strategy
in our MGPGCN is constructed on the polarization rotation
perspective rather than that in other approaches formed by
traditional CV-based enhancement techniques.

The corresponding graph framework of the proposed
MGPGCN is exhibited in Fig. 4. First, the PoISAR image is
divided into superpixels by SLIC algorithm, and then, each
superpixel-level coherency matrix is mapped into the PR do-
main for exploring the rotation invariance. According to the
projection matrix, various scattering similarity measurements
under different rotation angles are introduced to acquiring re-
sponsibility weights, thus yielding the enhanced features to fully
include diverse scattering information. After that, the new input
features will be fed into network, where the graph convolutional
operation is replaced via the update of GP kernel. By recursively
calculating the expectation and covariance in (11) and (12),
each kernel under different scales can be obtained. And finally,
following the Bayesian criterion, we can predict the label of
unlabel test point by (18), and draw the classification map.
The complete classification process of MGPGCN is shown in
Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. Experimental Data and Settings

For quantitatively and qualitatively discussing the classifi-
cation performance, four real PolSAR data sets are utilized
to evaluate the proposed model, which involve in different
sensors and include diverse terrain types (e.g., land agriculture,
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First, the observed PoISAR image is segmented into superpixels. Next, the input

vectors constructed from these superpixels are mapped into the PR domain to enhance the features. Then, these enhanced features are inputted into the MGPGCN

layer to estimate the multiscale GP kernel, which is subsequently used to predict
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Fig. 5.
(d) HaiNan (1540x 1250).

forest, seaside, rivers, and buildings). The Pauli RGB images,
color codes and the ground truth maps of these datasets are
illustrated in Fig. 5, where the background pixels in the ground
truth maps are marked by white. To facilitate and simplify
the description in each subsequent experiment, we abbreviate
these datasets according to their place names as “SanFrancisco,”
“Flevoland,” “Oberpfaffenhofen,” and “HaiNan,” and they are
all preprocessed by the Lee filter on the “PolSARpro” platform.
To eliminate the influence of imbalanced datasets, the number
of samples for each class is set to the same value.

1) SanFrancisco: This dataset was obtained by NASA/JPL
AIRSAR L-band radar in July 1985 over San Francisco
Bay, which is 900x 1024 in size, as shown in Fig. 5(a).
After removing the background in the corresponding color
map, there are five different terrain types, i.e., urban,
ocean, mountain, vegetation, and bare soil, which include
total 802 302 pixels.

Flevoland: This dataset with the size of 920x 1024 was
acquired by an airborne system and in June 1991. After
removing the background in the ground truth map, there
are a total of 135 263 pixels for 14 different terrain types,

2)

7

Pauli RGB images, ground truth images, and color codes. (a) SanFranci

the classification labels.

Lucerne
Rapeseed

sco (900x 1024). (b) Flevoland (920x 1024). (c) Oberpfaffenhofen (1300 x 1200).

including potato, beans, fruit, peas, wheat, oats, rapeseed,
onions, barley, grass, flax, maize, beet, and lucerne.
Oberpfaffenhofen: This is an L-band fully PoISAR image
with the size of 1300x 1200, which was obtained by the
E-SAR platform. After removing the white background
pixels, this dataset includes 5 terrain types with total
1311 618 pixels.

HaiNan: This is an L-band fully PolSAR image with the
size of 1540x 1250, which was obtained by the airborne
platform and was available in 2024. After removing the
white background pixels, this dataset includes seven ter-
rain types with total 1 569 911 pixels.

In all subsequent experiments, the hyperparameter d; is set
to log(0.5/1 + 1), and this configuration ensures that the decay
of the weight matrix increases adaptively as more layers are
stacked. The number of latent units in each layer is fixed as
256, and dropout rate is set to 0.5. The variances of weight and
bias are 0, = 0, and o, = 1, respectively. The noise variance
e of training samples is determined as 50 values by a grid
search over numerical interval [1e-8, le-2]. For the concentra-
tion parameter 7,, in multiscale strategy, since there is significant

3)

4)
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TABLE I
PARAMETER ANALYSIS OF SCALE p ON THE SANFRANCISCO DATASET
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TABLE II
PARAMETER ANALYSIS OF ROTATION ANGLE @ ON SANFRANCISCO DATASET

Scal 1 ) 3 4 5 Various «
cale p U 0 1. 1r learned o
Bare soil 9413 | 88.73 | 9145 | 83.10 | 70.79 2 1 1 2 (Proposed)
Mountain 98.75 | 98.93 | 99.22 | 99.64 95.09 OA [[95.90 | 95.87 | 94.83 9535 | 9546 | 96.14
Ocean 9427 | 95.87 | 93.86 | 91.01 87.12 k |[93.70 | 93.62 | 92.08 9286 | 93.04 | 94.04
Urban 95.74 | 9653 | 9828 | 92.00 88.24 Various A,
Vegetation 90.93 93.89 88.16 91.91 27.65 AL =0 single A single A A, =1/6m,
OA 95.03 | 96.14 | 95.75 | 92.04 | 74.94 (Proposed) | Ay=1/6m | Ay=1/4m Ay=1/4m
K 9237 | 94.04 | 9343 | 87.96 83.99 OA 96.14 95.90 95.64 9528
Time(s) 117.33 | 132,67 | 144.02 | 207.63 | 1971.84 K 94.04 93.66 93.29 92.73
Graph+Inference
p-hop 71982 | 213832 | 698476 | 2410964 | 8342312
neighbor

spatial heterogeneity of terrain targets across diverse scenes,
which makes it challenging to determine the relative importance
of the information at each scale. Hence, 7, is determined as
1/p to use the averaging strategy for multiscale information
fusion, thus ensuring the model generalizability. In particular,
considering too much superpixels will significantly increase
the complexity of network and the scale of adjacency matrix,
while a few superpixels cannot guarantee the randomness of
training process. Thus, following [37], the number of clustering
centers, compact factor and iteration number in SLIC algo-
rithm are chosen to 1le4,10, and 20 throughout experiments.
Meanwhile, three evaluation indexes [i.e., per-class accuracy,
overall accuracy (OA), and kappa coefficient (x)] are leveraged
to evaluate and analyze these classification results, where higher
values indicate better classification performance. Particularly, to
ensure the robustness of the results, every experiment is repeated
five times, and the average value is taken as the final result.
Experimental environment is Windows 10 system and Pytorch
1.11 version with CUDA 11.3, and python 3.8.

B. Neighborhood Scale and Rotation Angle

In this section, some experiments are conducted on the San-
Francisco dataset to analyze the influence of the hyperparame-
ters p and rotation angle « in the proposed MGPGCN, and the
training set is selected as 100 samples per-class.

Specifically, various values for neighborhood scale p are
selectedtobe {1, 2, 3, 4, 5}, while the group number of enhanced
features and rotation angle are fixed, and the corresponding
results are presented in Table I, where the maximum values of
OA and kappa coefficients are highlighted in bold for emphasis.
When select a small value of neighborhood scale as p = 1, there
are only 71 982 1-hop neighbors and the multiscale information
is not considered, such that the learning time (i.e., the sum of
constructing graph and inference process) only takes 117.33 s.
However, although a small scale neighborhood can obtain a fast
inference process, small receptive field leads to the inadequate
learning of contextual information, thus obtaining an unsatisfied
classification performance (i.e., 95.03% on OA). As the neigh-
borhood scale increases (such as p = 2 or p = 3), more neighbor-
hood information is incorporated in the graph adjacency matrix,
and then is transmitted into the GP kernel. Accordingly, more

spatial context information over constructed graph is considered
and the classification accuracy can be improved. Compared with
p =2 and p = 3, it can be found that setting p = 2 has 213 8§32
p-hop neighbors (which is 1/3.26 than that of p = 3) and takes
less time for learning, which obtain the better performance. In
contrast, if a relatively large value of p is determined as 5,
too many p-hop neighbors are considered (i.e., 8 342 312). In
such case, the learning time significantly increases to 1971.84s,
and accordingly, due to focusing on too much neighborhood
information, the resulting label is too smooth, thus yielding a
very low classification accuracy. Hence, to the SanFrancisco
dataset, the best value of p is 2, which is an appropriate value to
balance the learning of local correlation and the complexity.

Subsequently, the classification results involved in various
PR angles and enhanced features are presented in Table II with
setting neighborhood scale p = 2. By fixing each rotation angle
o as —3m, — 1,0, 17, and 17, respectively, the corresponding
classification accuracies are given in the first four rows of
Table II. It can be observed that choosing different rotation an-
gles, the classification performance of the proposed MGPGCN
varies slightly. However, the proposed method with the learned
angles can gain the largest OA and « values. Meanwhile, when
select angle o; = 0, there is a significant decrease in OA and s
values, indicating that the rotation-based feature enhancement
strategy could effectively learn more representative scattering
information from the PR field. Furthermore, we utilize two
different A; (i.e., %w and %w) to show the influence of enhanced
features. When set Ay = £7 or A = 17 to extend the length
scale of enhanced features as 16, the classification accuracy is
lower than that obtained by a single group of rotation angles (i.e.,
A; = 0), which indicates that two groups of rotation angles may
extract a few redundant features in some extent. In particular,
when utilize more groups of rotation angles (i.e., both utilizing
#mand +7), model will be limited by the step length A to deter-
mine the inaccurate rotation angles. Thus, to the SanFrancisco
dataset, the best value of A is 0.

Moreover, Fig. 6(a) shows the average classification per-
formances of the proposed method and original GCN under
different depthes L with five random runs, respectively. The
specific classification performance of our MGPGCN is exhibited
in Fig. 6(b), where each dotted line represents accuracy of single
run and the solid line represents average accuracy. According to
Fig. 6(a), when L is larger than 5, the classification accuracy
of GCN begins to decline, and when L is larger than 10, the
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Fig. 6. Performance influence under different depth L on the SanFrancisco
dataset. (a) Average classification performance of MGPGCN and GCN with
different depths. (b) Specific classification performance of our MGPGCN in
five random tests (each random test is shown by dotted lines with different
color, and their average accuracy is shown as the solid black line).

accuracy of GCN deteriorates significantly. The main reason
is that the GCN utilizes the conventional convolutional opera-
tion in each layer (where a certain node may be calculated in
several subgraphs), and then the network is easily prone to over-
smoothing. On the contrary, since the convolutional operation
is transformed to the estimation of the kernel in our method, the
oversmoothing problem can be effectively addressed. In such
case, the proposed MGPGCN can remain stable performance
for depth L as large as 10, and exhibit slight decline when
10 < L < 15. Hence, introducing the GP technique into GCN
framework can effectively address the over-smoothness prob-
lem.

C. Analysis of Classification Performance

In this section, four datasets [see Fig. 5] including various
complex scenes are considered to validate the effectiveness
of the proposed MGPGCN. For accurately evaluating the ef-
fectiveness of proposed method, 7 comparative algorithms are
selected, i.e., SVM [57], CV-CNN [58], GCN [30], GCNII
[48], MDGCN [51], GPGCN, and GPGCNII [44], where SVM
(based on H/A-Alpha decomposition), CV-CNN and GCN are
the commonly-used baselines, GCNII is the backbone of the
proposed method, MDGCN designs the multiscale theory, and
both GPGCN and GPGCNII utilize GPs to model the GCN
layers. In particular, we also use two ablation models, i.e., the
proposed MGPGCN without polarimetric rotation-based fea-
ture enhancement strategy (denoted as MGPGCN w/o PRE) and
the proposed MGPGCN without multi-scale GP kernel (denoted
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as MGPGCN w/o MSK) to validate the effectiveness of these
two strategies on all datasets. Considering that these GCN-based
methods are all superpixel-level and semisupervised methods,
their training rates are only selected as 100, 20, 220, and 80
per class on the SanFrancisco, Flevoland, Oberpfaffenhofen and
HaiNan datasets, respectively.

D. Classification on SanFrancisco Dataset

Fig. 7 exhibits the classification experiments on the SanFran-
cisco dataset. According to Fig. 7(a)—(c), we can observe the
SanFrancisco dataset has five land covers: bare soil, mountain,
ocean, urban, and vegetation (corresponding to 13 701, 62 731,
329 566, 342 795, and 53 509 samples, respectively). By ob-
serving the Pauli RGB image and its corresponding ground truth
map, it can be found that different from the optical image, the
same terrain types in the POISAR image may show very different
features, i.e., “variant features.” For example, in the east side
of Fig. 7(a), there is a triangle area with orientated buildings
marked by the black circle, which has very different scattering
mechanism from other building areas and is generally identi-
fied as the vegetation area. Hence, classifying these “variant
features” could indicate how well a model learns polarimetric
characteristics sufficiently.

For SVM in Fig. 7(d), its input features are determined by
the H/A-Alpha decomposition technique. Since the structure of
SVM is shallow, the model cannot extract feature as effectively
as deep structures, thus leading to numerous misclassifications
among each classes. For the CV-CNN method in Fig. 7(e),
many urban pixels in the black circles are misidentified as
the vegetation pixels, implying that it lost many polarimetric
characteristics during classification process. Besides, due to
not introducing superpixel strategy, miscellaneous pixels are
identified, such as many ocean pixels in the lower left corner
are misclassified as bare soil pixels. In Fig. 7(f), although GCN
utilizes the superpixel strategy to consider local information and
performs well in the homogeneous areas, i.e., ocean or mountain
areas. The urban pixels marked in the lower circle are also recog-
nized as bare soil, indicate that a lot of polarimetric information
is still ignored. By designing the residual connection, GCNII
could acquire more correct classification results of bare soil and
urban categories in Fig. 7(g). However, numerous orientated
buildings in the marked triangle area are misclassified either, and
the variant features cannot be correctly processed by GCNIIL.

Particularly, according to Fig. 7(f) and (g) and Table III,
when introducing GP to model the network, the classification
accuracies of GPGCN and GPGCNII are all lower than GCN
and GCNII. The main reason is that their input features have
low length scales and large spatial scales. In such cases, GP
statistical framework are easily effected by the speckle noise,
and cannot capture the latent statistical properties of data. Hence,
GPGCN and GPGCNII achieve the lower performance on OA
and k values. As for the proposed MGPGCN in Fig. 7(m), since
the PR information is incorporated in the enhanced features,
those variant targets with similar scattering represents can be
distinguished correctly at different rotation angles. Thus, the
areas marked by black circles are all identified as the urban areas,
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Fig. 7.

SanFrancisco dataset and its classification maps by different methods. (a) Pauli RGB Image. (b) Optical image from GoogleEarth. (c) Ground-truth map.

The resulting classification maps by employing (d) SVM. (e) CV-CNN. (f) GCN. (g) GCNIIL. (h) MDGCN. (i) GPGCN. (j) GPGCNII. (k) MGPGCN w/o PRE.

(1) MGPGCN w/o MSK. (m) Proposed MGPGCN.

TABLE III
ACCURACY OF DIFFERENT METHODS ON SANFRANCISCO DATASET

Producer’s Accuracy (%)
Class SVM CV-CNN GCN GCNII MDGCN GPGCN GPGCNII MGPGCN - MGPGCN MGPGCN
w/o PRE  w/o MSK

Bare soil 64.04 94.12 85.95 92.57 93.19 88.95 93.04 89.10 94.13 88.73
Mountain || 62.23 97.47 97.33  95.57 97.96 96.84 99.28 97.08 98.75 98.93
Ocean 93.95 88.19 95.56 9443 94.69 93.74 92.88 96.27 94.27 95.87
Urban 97.06 95.29 90.47 94.10 95.18 90.65 93.35 91.64 95.74 96.53
Vegetation || 37.36 91.65 96.44 91.81 92.31 92.25 93.84 95.65 90.93 93.89
OA 88.51 92.27 9343 94.17 94.97 92.49 93.66 94.19 95.03 96.14
K 86.50 88.25 89.99 91.08 92.28 88.63 90.35 91.13 92.37 94.04

verifying the effectiveness of the proposed feature enhancement
strategy and indicating this strategy being suitable for the variant
problem. Meanwhile, due to leveraging the multiscale strategy
to consider the local context information, the proposed method
can obtain the smoother classification maps than other meth-
ods, especially in the homogeneous mountain and vegetation
areas, which also verifies the effectiveness of the multiscale
kernel.

Furthermore, for two ablation models (i.e., MGPGCN w/o
PRE and MGPGCN w/o MSK), the corresponding classification
maps are shown in Fig. 7(k) and (I). Obviously, after omitting
the enhanced features, many urban pixels in the black circles
are misclassified as vegetation class by MGPGCN w/o PRE.
Meanwhile, the smoother result obtained by MGPGCN w/o PRE
makes the higher accuracies in homogeneous areas (e.g., Ocean
and Vegetation areas). On the contrary, without imposing the
multiscale kernel, MGPGCN w/o MSK can effectively identify
many variant urban pixels in the black circles, and obtain the
better results in the heterogeneous areas (e.g., Bare soil area).
However, MGPGCN w/o MSK cannot keep performance on
homogeneous areas in view of neglecting the local correlations.
Compared with Fig. 7(k) and (1), the proposed MGPGCN in
Fig. 7(m) can obtain the good balance between global smooth-
ness and local saliency by utilizing both the multiscale and
feature enhancement strategies, thus achieving the better per-
formance than two ablation models. The highest values of x

coefficient and OA at the last row of Table III also validate the
validity of our MGPGCN.

Table I'V exhibits the running time of different methods on the
SanFrancisco dataset. Compared with the pixel-level CV-CNN,
the proposed MGPGCN takes the lower elapsed time and shows
the higher efficiency. This is because the superpixel technique
is considered in the proposed method to reduce the compu-
tation overhead. Meanwhile, since the learning of traditional
graph convolutional operation is converted to the estimating
of the feature distribution, the proposed MGPGCN as well as
other two statistical modeling-based methods (i.e., GPGCN and
GPGCNII) can determine the classification results with an
efficient process. Compared with the GPGCN and GPGC-
NII, though MGPGCN spends 82.70s, the better classifica-
tion results can be obtained by MGPGCN due to more con-
text information and PR information being explored. In sum-
mary, by trading a little more time, MGPGCN can obtain
higher performance with the proposed multiscale and rotation
strategies.

E. Classification on Flevoland, Oberpfaffenhofen, and
HaiNan Datasets

In this section, we discuss the classification experiments on
Flevoland, Oberpfaffenhofen, and HaiNan datasets simultane-
ously. Fig. 5(b)—(d) presents the Pauli RGB images and the
ground truth maps of the Flevoland, Oberpfaffenhofen, and
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TABLE IV
RUNNING TIME OF DIFFERENT METHODS ON EACH DATASET
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Time (s) 1 epoch 100 epoches inference
CV-CNN | GCN  GCNII' MDGCN | GPGCN  GPGCNII  MGPGCN
SanFrancisco_s 12552 | 117.59 118.86 121.14 58.04 58.21 82.70
Flevoland_s 131.04 | 199.61 194.80  202.09 58.33 58.97 82.20
Oberpfaffenhofen 152.11 | 33550 335.87 339.24 84.63 84.23 116.68
HaiNan_s 145.32 | 22442 22520 23335 95.44 96.07 127.13
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Flevoland dataset and its classification results by employing different methods. (a) Color code map. (b) SVM. (c) CV-CNN. (d) GCN. (e) GCNIIL

(f) MDGCN. (g) GPGCN. (h) GPGCNIL (i) MGPGCN w/o PRE. (j) MGPGCN w/o MSK. (k) Proposed MGPGCN.

I Bore Ground (630569)

I Forest (230142)

I Buildings (235415)
Farmland (93163)

Road (122329)

Fig. 9.

Oberpfaffenhofen dataset and its classification results by employing different methods. (a) Color code map. (b) SVM. (¢) CV-CNN. (d) GCN. (e) GCNII.

(f) MDGCN. (g) GPGCN. (h) GPGCNIL (i) MGPGCN w/o PRE. (j) MGPGCN w/o MSK. (k) Proposed MGPGCN.

HaiNan datasets, respectively, and their corresponding color
maps and the number of each terrain types. The classification
results generated by the proposed MGPGCN as well as other
comparative methods are shown in Figs. 8-10. For the quantita-
tive evaluation, the performance analyses are all summarized in
the Table V- VII, including the OA, « coefficient, and producer’s
accuracy.

Specifically, for the Flevoland dataset, due to the fact that the
same crop categories are commonly found among a local area,
the spatial information is very significant to encourage a certain
pixel to learn the same labels with its adjacent pixels. Thus,
by observing classification results of SVM, CV-CNN, GCN,
and GCNII in Fig. 8(c)—(f) and their performance indicators
in Table V, we can find that due to not introducing superpixel
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Grassland
Village

‘Wooded Land
River

Pond

Dense Woodland

Sparse Woodland

Fig. 10. HaiNan dataset and its classification results by employing different methods. (a) Ground truth map. (b) Color code map. (c) SVM. (d) CV-CNN. (e)
GCN. (f) GCNIL (g) GPGCN. (h) GPGCNIL. (i) MDGCN. (j) MGPGCN.

TABLE V
ACCURACY OF DIFFERENT METHODS ON FLEVOLAND DATASET

Producer’s Accuracy (%)
Class 1SVM  CV-CNN GCN GCNII' MDGCN  GPGCN  GPGCNII MOPOCN T MGPOCN -y 5pGen
w/o PRE  w/o MSK

Potato || 7871 9862 8530 9020 9760 9251 8672 0842 8997 9380
Fruit | 87.54 9869 9953 99.60 9986 9979  99.56 9951 99.31 99.74
Oats || 3665 99.14 9934 9941 10000 10000 9971 10000 10000  100.00
Beet || 8721 7513 8403 8093 6786 7921 7280 7575  89.16 8558
Barley || 8931 8952 9146 9661 9341 9229 9536 9390 9401 96.20
Onions | 38.13 4474 8833 8673 7066 7815 8687 8142 8573 83.83
Wheat || 9126 9452 9748 9075 9816 9306 9553 9250 9680  97.63
Beans || 4497 9195 80.88 9698 8267 8126 9944 8333  97.08 85.40
Peas || 7840 9449 9406 9943 9972  99.16 9985 9925 9902  99.86
Maize || 4393 5076 9905 9732 8826 9732 9669 9338 9732 9944
Flax || 8349 9944 9967 9923 9929 9934 9993 10000 10000  100.00
Rapeseed || 73.57 9598 9107 9387 9484 9670 9887 9548 9364 9328
Grass | 6361 8171 9921 9916 9553 9925 9881 9801 99.50  99.16
Lucerne || 3628 9187 9829 100.00 9884 9950  100.00 9904 9993 100.00
OA || 8004 0163 9196 9200 9352 0311 9345 9371 o417 9490

k|| 7865 9023 9057 9168 9240 9195 9233 9262 9317 9402

TABLE VI

ACCURACY OF DIFFERENT METHODS ON OBERPFAFFENHOFEN DATASET

Producer’s Accuracy (%)
Class SVM CV-CNN GCN GCNII MDGCN GPGCN GPGeNm MOPGCN MGPGEN np 5oy
w/o PRE  w/o MSK
Barc ground || 8071 80.60 6636 7583 7981 _ 6338 7051 275 76.07 77.22
Forest || 8395  81.05 86.67 8858 8211 8799  91.81 91.91 89.17 88.10
Buildings || 7932  83.16 8269 89.10 8187  84.11 8380 90.22 90.62 94.00
Farmland || 61.93 7593 7676 9099  86.69 7928  90.55 90.10 91.02 9251
Road 6738  77.16 4469 7608 7642 4386  82.16 80.82 79.80 79.05
OA 7845 8049 7157 S8LI3 8006 703 79.14 81.23 82.30 83.39
5 7373 7263 6111 7390 7318 6038 7172 74.45 75.77 77.16
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TABLE VII
ACCURACY OF DIFFERENT METHODS ON HAINAN DATASET
Producer’s Accuracy (%)
Class GCN GCNII MDGPGCN GPGCN GPGCNII
CV-CNN GCN GCNII MDGCN GPGCN GPGCNII +PR  +PR +PR +PR +PR MGPGCN
Village 7527 7049 70.61 7652  59.72 6330 75.07 7535 71.34 57.96 64.18 76.48
River 97.47  96.18 94.00 97.60 86.44 89.45 9791 95.67 94.66 86.11 89.96 98.62
Pond 7292  89.79 92.56 95.80 77.68 94.09 93.09 93.18 69.01 89.19 93.89 94.13
Sparse Woodland 2279  78.64 89.23 92.53 54.39 85.27 76.64 84.71 79.28 74.69 88.40 93.68
Woodland 37.70 6199 69.86 80.22 63.98 75.17 66.79  70.90 65.34 68.87 77.07 82.45
Dense Woodland 75.69  84.61 88.47 90.50 75.50 85.98 84.63 88.35 89.46 79.28 87.34 90.70
Grassland 68.73 9221 92.07 97.14 63.64 92.51 91.03 94.18 97.04 86.60 92.85 97.38
OA 7143 81.28 84.44 83.53 71.31 81.93 82.77 85.35 84.00 75.70 83.16 88.71
K 5744 7293 7736 76.04 59.71 73.80 75.12  78.61 76.42 65.56 75.53 83.49
technique and ignoring the multi-scale information, the classifi- TABLE VIII
cation results of SVM and CV-CNN cannot provide the smooth FINAL ROTATION ANGLES OF HAINAN DATASET
label, and many misclassifications are generated by GCN and Leamned angles 5 . o o o
NII among potato and wheat areas. Although MDGCN incor- L 2 s 1 >
GC £p ghMDGC T 0.8308 | 0.9765 | 0.0555 | 0.1440 | 0.7369

porates the multiscale information, its performance shows low
accuracy to recognize the pixels in a local patch, e.g., the onions
class. Moreover, GPGCN and GPGCNII obtain miscellaneous
pixels in the beet areas in view of the insufficient learning of
polarimetric information. By compared with the proposed model
and its ablation models, the classification results obtained by the
proposed MGPGCN verify that our superpixel-level PR feature
enhancement strategy can effectively assist the GP statistical-
modeling techniques to learn the accurate data properties and
eliminate the effect of noise.

According to Fig. 5(c), the Oberpfaffenhofen dataset includes
five classes: bare ground, forest, buildings, farmland, and road
(corresponding to 630 569, 230 142, 235 415, 93 163, and
122 329 samples, respectively). Obviously, pixel-based classi-
fication methods may offer greater advantages for this dataset
due to the coexistence of multiple land-cover categories within
localized small pixel blocks (e.g., road areas). For example, in
Fig. 9(b) and (c), while SVM and CV-CNN produce signifi-
cant misclassifications in homogeneous regions, they preserve
clearer edge structures than superpixel-based methods. In con-
trast, the conventional SLIC superpixel segmentation struggles
to define precise boundaries in central areas containing diverse
targets within local blocks, leading to partial spatial information
loss in superpixel-based methods [i.e., Fig. 9(d)—(k)] and conse-
quent misclassifications in heterogeneous zones. Hence, in the
future work, we consider to improve the segmentation results
of superpixels by incorporating spatial information or utilizing
pixel-level information to assist superpixel segmentation [5],
thus determining more accurate superpixel edges to address this
issue. Compared with GCN, GCNII, MDGCN, GPGCN, and
GPGCNII in Fig. 9(d)—(h), the proposed MGPGCN can obtain
the better performance by employing the PR strategy, especially
for the areas marked by the blue circle. Meanwhile, by applying
multiscale strategy, MGPGCN can acquire more smoother labels
in the homogeneous areas, such as the lower right corner of the
image. The highest OA and « values in Table VI further confirm
our method’s effectiveness.

As for the HaiNan dataset [59], the corresponding classi-
fication experiments are exhibited in the Fig. 10. According

to Fig. 10(a), we can find that there are seven land covers
in the whole image: village, river, pond, sparse woodland,
woodland, dense woodland, and grassland (corresponding to
261 358, 131 327, 38 020, 60 897, 153 711, 847 909, 76 689
samples, respectively). Since the scene is very complex, we
set 12% samples per class of supervised SVM and CV-CNN
for training, and 80 samples per class of other superpixel-level
semi-supervised methods for training. By observing Fig. 10(d),
though the CV-CNN’s classification result maintains the main
structure due to the higher train ratio, there are still too many
misclassifications in each terrain type, resulting in a miscella-
neous labeling map. Meanwhile, for the GCN, GCNII, GPGCN,
and GPGCNII in Fig. 10(e)—(h), many homogeneous dense
woodland pixels among the red circle are incorrectly recognized
as miscellaneous pixels, and the heterogeneous pixels in the
black circle or the central area are also difficult to identify. The
main reason is that the pixel patches in this dataset are very
small and most of them have irregular shapes. Hence, these four
methods without considering the multiscale features cannot fully
leverage the contextual information from neighboring nodes.
On the contrary, with the multiscale strategy, the classifica-
tion results obtained by the MDGCN and proposed MGPGCN
all exhibit the smoother labels. Compared with the result of
MDGCN, MGPGCN integrates more detailed information and
achieves the better performance the intersection of different
land covers in view of employing the PR strategy to enhance
the discriminant of features. In particular, Table VIII exhibits
the determined rotation angles, it can be observed that each
learned «; is not equal to 0, which means all enhanced features
have been effectively rotated. Fig. 11 shows the visual feature
maps of each PR-based channel. According to these maps, the
discriminant information can be explored from various angles,
and thereby the original input of network can be enhanced from
diverse scattering model perspectives.

Furthermore, the PR-based enhancement strategy is also
added in the GCN, GCNII, MDGCN, GPGCN, and GPGCNII
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Sanfrancisco dataset

Dy

Fig. 11.  Visual maps of rotation features on different datasets.

for verify its effectiveness, where the rotation angles are fixed
as -m/4, -mw/6, ©/6, and w/4 for selecting the best result for
comparison. Their corresponding results are also given in the
Table VII. According to the table, we can find that the classifi-
cation performance of each method is improved by leveraging
PR technique, thus verifying the effectiveness of our feature
enhancement strategy. Meanwhile, the highest classification ac-
curacy of our method also verifies the superiority of the proposed
MGPGCN.

In summary, the above experiments demonstrate that the pro-
posed MGPGCN effectively explores the rotational invariance
and extracts more discriminative information through the PR-
based feature enhancement strategy, while reducing interference
from speckle noise. The multi-scale strategy further extracts
neighborhood information, suppressing anomalies within local
regions to achieve smooth and reliable classification results.
In addition, the uncertainty quantification inherent to the GP
enhances the model’s robustness. Hence, the proposed model
can have a certain degree of robustness and generalization for
different PoISAR scenes.

V. CONCLUSION

In this work, a novel MGPGCN has been proposed for Pol-
SAR image semi-supervised classification. First, considering
that deep probability networks can effectively learn the latent
feature distribution, GP is introduced into GCN for addressing
the oversmoothing problem, improving the learning capability
and capturing uncertainty. Instead of directly modeling GCN
by GP, we model the GCNII architecture to reserve more po-
larization information of the original PoISAR image and derive
the corresponding multiscale GP kernel function. In such case,
the representation capability can be further improved, and the

HaiNan dataset

contextual information can be fully learned. In addition, the
superpixel technique is utilized to reduce the computation com-
plexity of graph and GP kernel on spatial scale perspective.
Meanwhile, the PR-based feature enhancement strategy is also
designed to enhance the data length scale, by which the input
feature is more discriminative and the noise effect is further
mitigated. Finally, according to the learned kernel, the accu-
rate classification results are obtained by the joint probability
density. The experimental results on four real-world PolISAR
datasets with various scenes show that our MGPGCN has better
performance than some widely-used GCN-based classification
methods.

In the future, we will consider to construct the graph neural
processes by extending GP to neural processes, such that the
prior assumption of GP can be more relaxed and the compu-
tation overhead will be much lower. Meanwhile, the negative
sample selection strategy will be introduced into the graph
neural processes. In this case, those adjacent negative nodes that
include abundant information can help the positive samples to
enlarge the interclass distance, further explore the neighboring
correlations, and improve the learning ability. Furthermore, the
superpixel segmentation technique will also be improved by po-
larimetric scattering information for obtaining the more accurate
edges.
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