
Contents lists available at ScienceDirect

Applied Mathematical Modelling  

journal homepage: www.elsevier.com/locate/apm

Tensor completion via total curvature variation and low-rank 

matrix factorization

Zhi Xu a,b, Jing-Hua Yang c,∗, Xi-Le Zhao d, Xi-hong Yan a,b, Chuan-long Wang a,b

a School of Mathematics and Statistics, Taiyuan Normal University, Jinzhong, Shanxi, 030619, PR China
b Shanxi Key Laboratory for Intelligent Optimization Computing and Blockchain Technology, Taiyuan Normal University, Jinzhong, Shanxi, 
030619, PR China
c School of Information Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, 611756, PR China
d School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China

A R T I C L E I N F O A B S T R A C T 

Keywords:

Low-rank matrix factorization

Total curvature variation

Low-rank tensor completion

Proximal alternating minimization algorithm

Curvature-based regularization has attracted growing concern in the field of image restoration, 
benefiting from its favorable geometric properties, such as preserving sharp edges, corners and 
contrast. Total variation regularization has the ability to promote piecewise smooth property 
and preserve edges in image processing. Inspired by the advantages of curvature regularization 
and total variation, in the paper, we first develop a regularization that combines curvature and 
total variation to explore the geometric characteristics inside high-dimensional data, called total 
curvature variation (TCV) regularization, which can better preserve local information of the 
underlying data. We present a new low-rank tensor completion model via TCV and low-rank matrix 
factorization, which can simultaneously exploits the global low-rank prior and local structure 
information of data. We solve the proposed minimization problem by using the effective proximal 
alternating minimization algorithm with guaranteed convergence. Results from experiments on 
color images, videos, and magnetic resonance images show the superior performance of the 
proposed method over the compared methods in terms of quantitative and qualitative evaluations.

1. Introduction

Being the higher-dimensional extension of vector and matrix, tensor is an important data form which can express more underlying 
complex structure inside the data. Tensor can be used as a powerful tool in the field of high-dimensional image processing, such as 
color image and video completion [1,2], magnetic resonance image (MRI) recovery [3,4], hyperspectral image (HSI) recovery [5,6], 
traffic measurement data recovery [7], and data clustering [8,9]. In this work, we concentrate on tensor completion problem.

Tensor completion is a crucial procedure to recovery a clean image from the incomplete observation. Low-rank constraint is the 
most common approach in low-rank tensor completion (LRTC) problem. LRTC can be taken as the generalization of low-rank matrix 
completion [10]. Mathematically, the LRTC problem can be modeled as:
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min


rank()

s.t. Ω() =,
(1)

where  ∈ℝ𝐼1×⋯×𝐼𝑁 is the underlying tensor,  ∈ℝ𝐼1×⋯×𝐼𝑁 denotes the initial incomplete tensor, Ω is the set in which the entries 
are known, Ω represents a linear projection operator, it makes the elements of tensor  in Ω equal to . So the key problem 
of LRTC is to solve the measure of tensor rank. Unlike the rank of matrix, there exist no uniqueness for the rank of tensor. The 
typical tensor ranks are CANDECOMP/PARAFAC (CP) rank [11] and Tucker rank [12]. In past few decades, some new low-rank 
approximation characterizations for tensor are proposed, like tubal rank [13], tensor train (TT) rank [14], tensor ring (TR) rank [15], 
and fully-connected tensor network (FCTN) rank [16,17]. Nevertheless, the minimization of tensor rank is NP-hard [18] because of 
the non-convexity and non-continuity of the rank. To cope with this question, Liu et al. [19] developed the sum of nuclear norm of 
the unfolding matrices as the convex surrogate of Tucker rank, and come up with the following LRTC approach:

min


𝑁∑
𝑘=1

𝛼𝑘‖𝐘(𝑘)‖∗
s.t. Ω() =,

(2)

where ‖ ⋅ ‖∗ represents the nuclear norm, 𝐘(𝑘) ∈ ℝ𝐼𝑘×
∏

𝑛≠𝑘 𝐼𝑛 is the mode-𝑘 unfolding of tensor  , and each 𝛼𝑘 ≥ 0, 
∑𝑁

𝑘=1 𝛼𝑘 = 1. 
In order to search for the efficient solution of solving problem (2), Liu et al. [19] proposed the high accuracy low rank tensor 
completion algorithm (HaLRTC), which is efficient to obtain the high accuracy solution. Over the last decade, numerous tensor 
completion methods based on (2) are put forward. Ji et al. [20] proposed a kernel LRTC method via mapping 𝐘(𝑘) to a higher-order 
kernel space and then minimizing the sum of the Schatten-𝑝 quasi-norm [21]. However, such models need to calculate the singular 
value decomposition (SVD) of all 𝐘(𝑘) during each iteration, with the result that the computation complexity increases. To address 
this matter, Xu et al. [22] executed low-rank matrix parallel factorization for each 𝐘(𝑘), named TMac, which can be formulated as:

min 
𝐀𝑘,𝐗𝑘,

𝑁∑
𝑘=1

𝛼𝑘

2 
‖𝐘(𝑘) −𝐀𝑘𝐗𝑘‖2𝐹

s.t. Ω() =,

(3)

where 𝐀𝑘 ∈ℝ𝐼𝑘×𝑟𝑘 , 𝐗𝑘 ∈ℝ𝑟𝑘×
∏

𝑛≠𝑘 𝐼𝑛 , and 𝑟𝑘 presents the estimated rank of the matrix 𝐘(𝑘). TMac has shown its better performance 
in the efficiency of computing. Note that models (2) and (3) only consider the global low-rank prior of tensor. However, this may 
cause some unsatisfactory results like losing important image details when facing high-dimensional image with complex structures 
or extremely low sampling rate.

An important but often overlooked fact is that most high-dimensional images are characteristic of piecewise smoothness. As one of 
the best-known regularization to characterize the piecewise smooth property, total variation (TV) has the effects of preserving edges 
and promoting local piecewise smoothness in image processing [23,24]. A lot of researches based on TV have been done for different 
image processing problems [25,26]. Zhao et al. [27] introduced TV regularization into sparse unmixing for image restoration. Inspired 
by the work [27], Ji et al. [28] applied TV to 𝐗3 in optimization problem (3), and presented a low-rank matrix factorization-based 
project (MF-TV), it can be given as follows:

min 
𝐀𝑘,𝐗𝑘,

𝑁∑
𝑘=1

𝛼𝑘

2 
‖𝐘(𝑘) −𝐀𝑘𝐗𝑘‖2𝐹 + 𝜇TV(𝐗3)

s.t. Ω() =,

(4)

where 𝜇 is a positive regularization parameter. MF-TV can get a better completion result compared to TMac. Li et al. [29] incorporated 
TV into the unfolding matrices along each mode for LRTC problem (LRTC-TV). Yokota et al. [30] developed a convex programming 
for tensor completion and denoising simultaneously which devotes to minimize the objective function consisting of tensor nuclear 
norm and TV in the condition of noise inequality. Chen et al. [31] proposed an asymmetric three-dimensional TV and integrated it 
into framelet regularized low-rank tensor completion.

Although TV regularization has been proved to have the ability of preserving sharp edges in image restoration, it also suffers 
from some undesirable effects, such as the staircase effect and losing image contrast [32]. To overcome these drawbacks, some 
curvature-based methods have been introduced for two-dimensional grayscale image recovery [33,34]. As a significant geometric 
concept, curvature can characterize the degree to which a curve or a surface deviates from a straight line or a flat plan. The curvature 
regularization is outstanding in image processing field due to its fine geometric interpretability and strong prior in the continuity, 
and it has the ability to preserve sharp edges, corners, and contrast of image [35]. Zhu and Chan [36] introduced the 𝐿1 norm 
of mean curvature [37] of the image surface to recover noisy images, and got better edges and corners than the classical Rudin

Osher-Fatemi model [23]. Brito-Loeza et al. [38] considered the 𝐿1 norm of Gaussian curvature as the regularization term in image 
restoration problem, and verified the capability of curvature regularization to preserve sharp edges and contrast of image. Dong et 
al. [39] incorporated the low dimensional manifold regularization with a higher-order curvature regularization in grayscale image 
completion. Zhong et al. [40] minimized the normal curvatures along different directions for image completion. Nevertheless, almost 
all curvature-based methods are used in two-dimensional image processing.
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Fig. 1. The results recovered by different methods. The first and second rows respectively show the 24-th and 46-th slices of the recovered synthetic 50 × 50 × 50
data with 90% entries missing. From left to right: original data, observed data, the recovered results by TMac [22], MF-TV [28], and the proposed method TCV-LRTC, 
respectively.

To preserve the geometric properties of high-dimensional image and avoid the staircase effect in smooth region, we make the 
corresponding curvature at a point as the weight of TV, and develop the total curvature variation (TCV) regularization for tensor 
completion. Then we present a new LRTC model based on low-rank matrix factorization and TCV (TCV-LRTC),

min 
𝐀𝑘,𝐗𝑘,

𝑁∑
𝑘=1

𝛼𝑘

2 
‖𝐘(𝑘) −𝐀𝑘𝐗𝑘‖2𝐹 + 𝜆⟨𝜙(𝜅), |∇𝐘(1)|⟩

s.t. Ω() =,

(5)

where 𝜆 > 0 is the regularization parameter, 𝐘(1) represents the mode-1 unfolding of tensor  , |∇𝐘(1)| denotes the TV of matrix 
𝐘(1), < ⋅, ⋅ > denotes the inner product, 𝜙(𝜅) is a function about the curvature 𝜅. The difference between our model and two other 
methods, i.e., TMac [22] and MF-TV [28], lies on the strong prior of curvature to keep local features. Our motivation can be seen 
in Fig. 1. The test data is synthetic with size 50 × 50 × 50, there is a white square moving across the main diagonal in the first 
40 frames, its last 10 frames only have background with intensity 0.5. The recovered results exhibited in Fig. 1 are respectively 
the 24-th and 46-th frames of the synthetic data. Apparently, the proposed method ameliorates the restoration effects for global 
and local characteristics. The proposed regularization-enhanced framework achieves dual-scale recovery, simultaneously preserving 
global structures coherence through low-rank constraints while capturing fine-grained local details via the novel regularizer, relative 
to matrix factorization-based tensor completion methods [22]. Compared to TV-based approaches [28,29], our curvature-aware 
formulation maintains sharp edges, corners and contrast of the image and eliminates the staircase artifacts caused by TV. Furthermore, 
this work is the first successful extension of traditional curvature regularization [33,34,40] to high-dimensional image restoration, 
overcoming the inherent dimensional limitations of the two-dimensional grayscale applications. 

To sum up, the main contributions of this paper consist of three aspects.

∙ The TCV regularization based on TV and curvature is designed to capture the geometric properties in the high-dimensional image 
completion problem. To the best of our knowledge, TCV is first extended to explore local details of high-dimensional image. TCV can 
overcome the staircase effect caused by TV, and can also preserve sharp edges, corners and contrast of the image.

∙ We produce a novel LRTC model by incorporating TCV into the low-rank matrix factorization, which is capable of concurrently 
capturing both the global low-rank properties and local detailed features of the high-dimensional image.

∙ The proximal alternating minimization (PAM) algorithm is employed to convert the original optimization problem with coupled 
variables to some solvable subproblems. The convergence of the algorithm based on PAM framework is theoretically guaranteed. 
Numerical experiments are performed on color images, videos and MRIs, and verify that the proposed method achieves better recovery 
results compared with five tensor completion methods.

The outline of this work organizes as follows. We introduce some notations and preliminaries about tensor and TCV in Section 2. 
Section 3 describes the TCV regularized LRTC model and then presents the solving algorithm. Section 4 gives extensive experiments 
and comparable results to verify the performance of the proposed method. Section 5 is the conclusion of this paper.

2. Notations and preliminaries

In this section, some basic notations for tensor and preliminaries of total curvature variation and curvature are given.
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2.1. Tensor basics

In this paper, we respectively represent vector by boldface lowercase letter (e.g., 𝐚), matrix by capital letter (e.g., 𝐀), and tensor 
by calligraphic letter (e.g., ). Given an 𝑁 -order tensor  ∈ℝ𝐼1×⋯×𝐼𝑁 , its (𝑖1, 𝑖2,⋯ , 𝑖𝑁 )-th entry is expressed by 𝑎𝑖1,𝑖2 ,⋯,𝑖𝑁

.

The inner product of two tensors  and  of the same size is denoted as

⟨,⟩ = ∑
𝑖1 ,𝑖2 ,⋯,𝑖𝑁

𝑎𝑖1 ,𝑖2 ,⋯,𝑖𝑁
𝑏𝑖1 ,𝑖2 ,⋯,𝑖𝑁

.

The Frobenius norm of  is ‖‖𝐹 =
√⟨,⟩.

For a 𝑁 -order tensor  ∈ℝ𝐼1×⋯×𝐼𝑁 , the mode-𝑘 unfolding of  is expressed as 𝐀(𝑘) ∈ℝ𝐼𝑘×
∏

𝑛≠𝑘 𝐼𝑛 , and its (𝑖𝑘, 𝑗)-th entry equals 
to the (𝑖1, 𝑖2,⋯ , 𝑖𝑁 )-th entry of tensor , where

𝑗 = 1 +
𝑁∑

𝑛=1,𝑛≠𝑘

(𝑖𝑛 − 1)𝐽𝑛 with 𝐽𝑛 =
𝑛−1 ∏

𝑚=1,𝑚≠𝑘

𝐼𝑚.

The inverse operator of unfolding is expressed by ``fold'', i.e.,  = fold(𝑘)(𝐀(𝑘)). Besides, ‖‖𝐹 = ‖𝐀(𝑘)‖𝐹 for 𝑘 = 1,⋯ , 𝑁 . We define 
the Tucker rank of tensor  as an array:

rank() = (rank(𝐀(1)), rank(𝐀(2)),⋯ , rank(𝐀(𝑁))). (6)

2.2. Total curvature variation (TCV) regularization

This subsection concretely presents the discrete formulation of TCV regularization. Let 𝑢 be a two-dimensional image, 𝑢(𝑖, 𝑗) is the 
gray value at point (𝑖, 𝑗). In this paper, we develop the regularization based on curvature [40] and TV to capture the local information, 
named total curvature variation (TCV) regularization, which can be formulated as following form:

𝑅(𝑢) = ⟨𝜙(𝜅), |∇𝑢|⟩, (7)

where |∇𝑢| is the isotropic TV of 𝑢, 𝜙(𝜅) is a suitable function of curvature 𝜅 of the point (𝑖, 𝑗). Following [40], in this work, 
𝜙(𝜅) = 1 + 𝜔|𝜅| is selected. For an 𝑚 × 𝑛 image, the discrete gradient operator at the (𝑖, 𝑗)-th pixel is defined as:

(∇𝑢)𝑖,𝑗 = ((𝐃1𝑢)𝑖,𝑗 , (𝐃2𝑢)𝑖,𝑗 ), 𝑖 = 1,⋯ , 𝑚, 𝑗 = 1,⋯ , 𝑛, (8)

where 𝐃1 and 𝐃2 are the first-order difference operators in horizontal and vertical directions.

2.3. Discrete calculation of curvature

In this subsection, we present herein a discretization scheme for curvature estimation. For a two-dimensional image 𝑢 ∶ Θ →
ℝ,Θ ⊂ ℝ2, assume that  ∶ (𝑥, 𝑢(𝑥)) denotes the regular surface in ℝ3 for 𝑥 ∈Θ. The normal curvature at a point can be represented 
as the ratio of the second fundamental form II to the first fundamental form I:

𝜅𝑛 =
II
I 

, (9)

where I = 𝑑𝑠2 denotes the square of the arc-length between center point and its neighbor point, II can be approximated by the 
following proposition.

Proposition 1. [40] Assuming that  ∶ (𝑥, 𝑢(𝑥)) denotes an image surface, 𝑂(𝑖, 𝑗, 𝑢𝑖,𝑗 ) is any point on  , the second fundamental form II at 
𝑂 can be approximately calculated as:

II ≈ 2𝑑𝑙, (10)

where 𝑑𝑙 is the distance to the tangent plane of 𝑂 from its neighbor point 𝑃 (𝑖+△𝑖, 𝑗 +△𝑗, 𝑢𝑖+△𝑖,𝑗+△𝑗 ), △𝑖 and △𝑗 respectively express 
the increments for variables 𝑖 and 𝑗.

To simplify the symbol for computing normal curvature, we present the image surface in ℝ3 with function 𝑧 = 𝑢𝑖,𝑗 , (𝑖, 𝑗) ∈ Θ. 
The domain Θ of size 𝑚 × 𝑛 can be expressed by the grid Θ = {(𝑖, 𝑗) ∶ 1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛}. The normal curvature at the central 
point 𝑂 can be calculated numerically though a 3 × 3 patch in discrete form, see Fig. 2(a), where △ denotes a half point. Take the 
calculation of normal curvature of 𝑂(𝑖, 𝑗, 𝑢𝑖,𝑗 ) along the direction ⃖ ⃖⃖⃖⃖⃖⃗𝑂𝑋 as an example, we use the plane T𝑋𝑌 𝑍 spanned by three points, 
𝑋(𝑖 − 1, 𝑗, 𝑢𝑖−1,𝑗 ), 𝑌 (𝑖, 𝑗 − 1, 𝑢𝑖,𝑗−1) and 𝑍(𝑖, 𝑗 + 1, 𝑢𝑖,𝑗+1), to estimate the tangent plane of 𝑂. The normal vector 𝐕 of plane T𝑋𝑌 𝑍 can 
be obtained by computing the outer product of the vectors ⃖⃖⃖⃖⃖⃖⃗𝑋𝑌 and ⃖⃖⃖⃖⃖⃖⃗𝑋𝑍 ,

𝐕 = ⃖⃖⃖⃖⃖⃖⃗𝑋𝑌 × ⃖⃖⃖⃖⃖⃖⃗𝑋𝑍 = (2𝑢𝑖−1,𝑗 − 𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗+1, 𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗+1,2). (11)

Applied Mathematical Modelling 150 (2026) 116368 

4 



Z. Xu, J.-H. Yang, X.-L. Zhao et al. 

Fig. 2. Illustration of the tangent plane. (a) The distance from half point 𝑃 to tangent plane 𝑇𝑋𝑌 𝑍 , (b) tangent planes 𝑇1 and 𝑇2 , (c) tangent planes 𝑇3 and 𝑇4 . 

Then the distance 𝑑𝑙 in (10) can be estimated by the projection distance from half point 𝑃 (𝑖− 1
2 , 𝑗, 𝑢

𝑖− 1
2 ,𝑗

) to the tangent plane T𝑋𝑌 𝑍 ,

𝑑𝑙 =
⃖⃖⃖⃖⃖⃖⃗𝑋𝑃 ⋅𝐕|𝐕| =

2𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗+1

2
√

(2𝑢𝑖−1,𝑗 − 𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗+1)2 + (𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗+1)2 + 4
, (12)

where 𝑢
𝑖− 1

2 ,𝑗
can be approximated by the average value of its neighbor points 𝑂 and 𝑋, i.e., 𝑢

𝑖− 1
2 ,𝑗

= 𝑢𝑖−1,𝑗+𝑢𝑖,𝑗

2 .

According to the geometric characteristics of a surface, different direction vectors at one point correspond to different normal 
curvatures. We compute four normal curvatures at point 𝑂 along four directions, i.e., ⃖⃖⃖⃖⃖⃖⃗𝑂𝑋 , ⃖⃖⃖⃖⃖⃗𝑂𝑌 , ⃖⃖⃖⃖⃖⃖⃗𝑂𝑍 and ⃖⃖⃖⃖⃖⃖⃖⃗𝑂𝑊 . As shown in Fig. 2(b) 
and 2(c), four triangular planes (i.e., 𝑇1 −𝑇4) are applied to approach the tangent planes along four directions. Then the four distances 
(i.e., 𝑑𝑞, 𝑞 = 1,2,3,4) from half points to tangent planes can be calculated as follows:

𝑑1 =
2𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗+1

2
√

(2𝑢𝑖−1,𝑗 − 𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗+1)2 + (𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗+1)2 + 4
;

𝑑2 =
𝑢𝑖,𝑗−1 + 𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗

2
√

(2𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗+1)2 + (𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗−1)2 + 4
;

𝑑3 =
𝑢𝑖−1,𝑗 − 𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗

2
√

(𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗 )2 + (𝑢𝑖−1,𝑗 − 𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗−1)2 + 4
;

𝑑4 =
2𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗 − 𝑢𝑖+1,𝑗

2
√

(𝑢𝑖−1,𝑗 − 𝑢𝑖+1,𝑗 )2 + (𝑢𝑖−1,𝑗 − 𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗+1)2 + 4
.

The first fundamental form I (the square of the arc-length 𝑂𝑃 ) can be approximately calculated using the square of straight-line 
distance from 𝑂 to 𝑃 ,

I = 𝑑𝑠2 = 𝑂𝑃
2
≈ (𝑢

𝑖− 1
2 ,𝑗

− 𝑢𝑖,𝑗 )2 + ℎ2, (13)

where ℎ denotes the grid step. Hence the normal curvatures at point 𝑂 along four direction vectors can be denoted as:

𝜅𝑛,𝑞 ≈
2𝑑𝑞

𝑑𝑠2𝑞
, 𝑞 = 1,2,3,4. (14)

To make the best use of geometric measurements along all direction vectors, we employ the discrete total curvature at a given 
point 𝑥 ∈Θ, which can be estimated by:

𝜅(𝑥) ≈
4 ∑

𝑞=1 
|𝜅𝑛,𝑞|. (15)

3. The proposed model and algorithm

This section introduces the formulated LRTC model along with its corresponding algorithm with convergence guarantees.
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3.1. Proposed model

For a 𝑁 -order tensor  ∈ℝ𝐼1×⋯×𝐼𝑁 , the objective function of the proposed model (5) can be reformulated as follows:

min 
𝐀,𝐗,

𝑓 (𝐀,𝐗,) = min 
𝐀,𝐗,

𝑁∑
𝑘=1

𝛼𝑘

2 
‖𝐘(𝑘) −𝐀𝑘𝐗𝑘‖2𝐹 + 𝜆⟨𝜙(𝜅(𝐘(1))), |∇𝐘(1)|⟩, (16)

where 𝐀 = (𝐀1,⋯ ,𝐀𝑁 ), 𝐗 = (𝐗1,⋯ ,𝐗𝑁 ), 𝜆 is the regularization parameter, 
∑𝑁

𝑘=1 𝛼𝑘 = 1, 𝛼𝑘 ≥ 0(𝑘 = 1,⋯ , 𝑁), and 𝜅(𝐘(1)) is the 
curvature of one point on the surface formed by 𝐘(1).

The proposed model has two parts, the first term is the low-rank matrix factorizations of all unfolding matrices 𝐘(𝑘) that promotes 
the global low-rankness of the underlying tensor  . We assume that the Tucker rank of  is (𝑟1,⋯ , 𝑟𝑁 ) and 𝑟𝑘 < 𝐼𝑘 (𝑘 = 1,⋯ , 𝑁), 
therefore, 𝐀𝑘 ∈ℝ𝐼𝑘×𝑟𝑘 and 𝐗𝑘 ∈ℝ𝑟𝑘×

∏
𝑛≠𝑘 𝐼𝑛 are the low-rank matrix factorization of 𝐘(𝑘).

In this work, |∇𝐘(1)| is the isotropic TV of 𝐘(1). Generally speaking, the more uneven a point on the surface is, the larger curvature 
it will have. If a point on the surface has a larger TV value, then it must be characterized by larger curvature. Giving the same weight 
to the TV at all points is illogical. Hence we assign different weights to TV using the corresponding curvatures so that the staircase 
effects in smooth region can be avoided and the geometric properties of the image can be preserved.

Remark 1. The second term is total curvature variation (TCV) regularization whose role is keeping the geometric properties of the 
image, such as piece-wise smoothness, edges, corners, and contrast. Since the mode-1 unfolding 𝐘(1) and mode-2 unfolding 𝐘(2) of 
have similar spatial information like potential edges and texture features. To reduce the computational complexity, we only employ 
the regularization about 𝐘(1) to preserve spatial local information.

3.2. Proposed algorithm

In this subsection, the proximal alternating minimization (PAM) algorithm [41] is used to solve the proposed model.

Obviously, the objective function (16) is not jointly convex for (𝐀,𝐗,). Let  = (𝐀,𝐗,), 𝑙 = (𝐀𝑙 ,𝐗𝑙 , 𝑙), by utilizing the 
proximal operator under the PAM algorithmic framework, (16) can be approximated by the following expression:

min
 ℎ(,𝑙) = min

 𝑓 () + 𝛾

2 
‖−𝑙‖2

𝐹
, (17)

where 𝛾 > 0 is the proximal parameter. From (17), the subproblems for 𝐀, 𝐗 and  can be calculated respectively by:

⎧⎪⎨⎪⎩
𝐀𝑙+1 = arg min𝐀 𝑓 (𝐀,𝐗𝑙 , 𝑙) + 𝛾

2 ‖𝐀−𝐀𝑙‖2
𝐹

,

𝐗𝑙+1 = arg min𝐗 𝑓 (𝐀𝑙+1,𝐗, 𝑙) + 𝛾

2 ‖𝐗−𝐗𝑙‖2
𝐹

,

 𝑙+1 = arg min 𝑓 (𝐀𝑙+1,𝐗𝑙+1,) + 𝛾

2 ‖ − 𝑙‖2
𝐹

.

(18)

Since 𝐀-subproblem and 𝐗-subproblem can be respectively regarded as 𝑁 independent subproblems, we can solve them easily as 
follows:

𝐀𝑙+1
𝑘

= arg min
𝐀𝑘

𝛼𝑘

2 
‖𝐘𝑙

(𝑘) −𝐀𝑘𝐗𝑙
𝑘
‖2

𝐹
+ 𝛾

2 
‖𝐀𝑘 −𝐀𝑙

𝑘
‖2

𝐹

= (𝛼𝑘𝐘𝑙
(𝑘)(𝐗

𝑙
𝑘
)𝑇 + 𝛾𝐀𝑙

𝑘
)(𝛼𝑘𝐗𝑙

𝑘
(𝐗𝑙

𝑘
)𝑇 + 𝛾𝐈1)†,

(19)

and

𝐗𝑙+1
𝑘

= arg min
𝐗𝑘

𝛼𝑘

2 
‖𝐘𝑙

(𝑘) −𝐀𝑙+1
𝑘

𝐗𝑘‖2𝐹 + 𝛾

2 
‖𝐗𝑘 −𝐗𝑙

𝑘
‖2

𝐹

= (𝛼𝑘(𝐀𝑙+1
𝑘

)𝑇 𝐀𝑙+1
𝑘

+ 𝛾𝐈2)†(𝛼𝑘(𝐀𝑙+1
𝑘

)𝑇 𝐘𝑙
(𝑘) + 𝛾𝐗𝑙

𝑘
),

(20)

where 𝐈1 ∈ ℝ𝑟𝑘×𝑟𝑘 and 𝐈2 ∈ ℝ𝑟𝑘×𝑟𝑘 are identity matrices, and (⋅)† denotes the Moore-Penrose pseudoinverse of matrix (⋅). The com

plexity of computing 𝐀𝑘 and 𝐗𝑘 is 𝑂(𝐼𝑘𝑟2
𝑘
+ 𝐼𝑘𝑟𝑘𝑠𝑘 + 𝑟2

𝑘
𝑠𝑘) for 𝑘 = 1,⋯ , 𝑁 , where 𝑠𝑘 =

∏𝑁
𝑛=1,𝑛≠𝑘 𝐼𝑛.

The  - subproblem can be expressed as:

 𝑙+1 = arg min 
Ω()=

𝑁∑
𝑘=1

𝛼𝑘

2 
‖𝐘(𝑘) −𝐀𝑙+1

𝑘
𝐗𝑙+1

𝑘
‖2

𝐹
+ 𝛾

2 
‖ − 𝑙‖2

𝐹
+ 𝜆⟨𝜙(𝜅(𝐘(1))), |∇𝐘(1)|⟩. (21)

Then we transform solving the problem of tensor  into the effective solution method for unfolding matrices 𝐘𝑙+1
(𝑘) , 𝑘 = 1,⋯ , 𝑁 . We 

have:

𝐘𝑙+1
(𝑘) =

𝛼𝑘𝐀𝑙+1
𝑘

𝐗𝑙+1
𝑘

+ 𝛾𝐘𝑙
(𝑘)

𝛼𝑘 + 𝛾 
, 𝑘 = 2,⋯ , 𝑁. (22)

The complexity of computing 𝐘𝑙+1
(𝑘) , 𝑘 = 2,⋯ , 𝑁 is 𝑂(

∑𝑁
𝑘=2 𝑟𝑘

∏𝑁
𝑛=1 𝐼𝑛).
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When 𝑘 = 1, the 𝐘(1)-subproblem is expressed as:

𝐘𝑙+1
(1) = arg min

𝐘(1)

𝛼1
2 
‖𝐘(1) −𝐀𝑙+1

1 𝐗𝑙+1
1 ‖2

𝐹
+ 𝛾

2 
‖𝐘(1) −𝐘𝑙

(1)‖2𝐹 + 𝜆⟨𝜙(𝜅(𝐘(1))), |∇𝐘(1)|⟩. (23)

We solve the 𝐘(1)-subproblem via the alternating direction method of multipliers (ADMM) algorithm [42,43]. To refrain from com

puting the gradient of the term pertaining to curvature, we consider 𝜙(𝜅) in (23) as a weighted matrix of |∇𝐘(1)|. Since ∇= (𝐃1,𝐃2), 
by introducing two auxiliary variables 𝐐1 and 𝐐2, (23) can be rewritten as:

arg min 
𝐘(1) ,𝐐1 ,𝐐2

𝛼1
2 
‖𝐘(1) −𝐀𝑙+1

1 𝐗𝑙+1
1 ‖2

𝐹
+ 𝛾

2 
‖𝐘(1) −𝐘𝑙

(1)‖2𝐹 + 𝜆⟨𝜙(𝜅), |(𝐐1,𝐐2)|⟩
s.t. 𝐐1 =𝐃1𝐘(1), 𝐐2 =𝐃2𝐘(1).

(24)

The corresponding augmented Lagrangian function of (24) is represented as:

𝐿(𝐘(1),𝐐1,𝐐2,𝐖1,𝐖2) =
𝛼1
2 
‖𝐘(1) −𝐀𝑙+1

1 𝐗𝑙+1
1 ‖2

𝐹
+ 𝛾

2 
‖𝐘(1) −𝐘𝑙

(1)‖2𝐹 + 𝜆⟨𝜙(𝜅), |(𝐐1,𝐐2)|⟩
+ ⟨𝐖1,𝐐1 −𝐃1𝐘(1)⟩+ 𝛽

2 
‖𝐐1 −𝐃1𝐘(1)‖2𝐹

+ ⟨𝐖2,𝐐2 −𝐃2𝐘(1)⟩+ 𝛽

2 
‖𝐐2 −𝐃2𝐘(1)‖2𝐹 ,

(25)

where 𝐖1 and 𝐖2 denote the Lagrangian multipliers and 𝛽 > 0 is the penalty parameter. Then, the problem (25) can be updated as 
follows:

⎧⎪⎪⎨⎪⎪⎩

𝐘𝑙+1,𝑐+1
(1) = arg min𝐘(1)

𝐿(𝐘(1),𝐐𝑐
1,𝐐𝑐

2,𝐖𝑐
1,𝐖𝑐

2),
(𝐐𝑐+1

1 ,𝐐𝑐+1
2 ) = arg min(𝐐1 ,𝐐2) 𝐿(𝐘𝑙+1,𝑐+1

(1) ,𝐐1,𝐐2,𝐖𝑐
1,𝐖𝑐

2),
𝐖𝑐+1

1 =𝐖𝑐
1 + 𝛽(𝐐𝑐+1

1 −𝐃1𝐘
𝑙+1,𝑐+1
(1) ),

𝐖𝑐+1
2 =𝐖𝑐

2 + 𝛽(𝐐𝑐+1
2 −𝐃2𝐘

𝑙+1,𝑐+1
(1) ).

(26)

Next, we give the solving procedure of the first two steps in (26).

For 𝐘(1)-subproblem in (26), we solve the following problem:

𝐘𝑙+1,𝑐+1
(1) =arg min

𝐘(1)

𝛼1
2 
‖𝐘(1) −𝐀𝑙+1

1 𝐗𝑙+1
1 ‖2

𝐹
+ 𝛾

2 
‖𝐘(1) −𝐘𝑙

(1)‖2𝐹
+ 𝛽

2 
‖𝐐𝑐

1 −𝐃1𝐘(1) +
𝐖𝑐

1
𝛽

‖2
𝐹
+ 𝛽

2 
‖𝐐𝑐

2 −𝐃2𝐘(1) +
𝐖𝑐

2
𝛽

‖2
𝐹

.

(27)

Assuming the periodic boundary condition in operators 𝐃1 and 𝐃2, the solution of the 𝐘(1)-subproblem can be formed as:

𝐘𝑙+1,𝑐+1
(1) = −1

(
 (𝐑)
 (𝐒) 

)
, (28)

where 𝐑 = 𝛼1𝐀𝑙+1
1 𝐗𝑙+1

1 + 𝛾𝐘𝑙
(1) + 𝛽𝐃𝑇

1𝐐
𝑐
1 +𝐃𝑇

1𝐖
𝑐
1 + 𝛽𝐃𝑇

2𝐐
𝑐
2 +𝐃𝑇

2𝐖
𝑐
2, 𝐒 = (𝛼1 + 𝛾)𝐈+ 𝛽𝐃𝑇

1𝐃1 + 𝛽𝐃𝑇
2𝐃2,  is the fast Fourier transform 

and −1 is the inverse Fourier transform. The cost of computing 𝐘𝑙+1,𝑐+1
(1) is provided mainly by the fast Fourier transforms on 

𝐼1 ×
∏𝑁

𝑘=2 𝐼𝑘 matrix. Therefore, the computing complexity is 𝑂(
∏𝑁

𝑘=1 𝐼𝑘 log
∏𝑁

𝑘=1 𝐼𝑘).
For (𝐐1,𝐐2)-subproblem in (26), we have

(𝐐𝑐+1
1 ,𝐐𝑐+1

2 ) =arg min
(𝐐1 ,𝐐2) 

𝛽

2 
‖𝐐1 −𝐃1𝐘

𝑙+1,𝑐+1
(1) +

𝐖𝑐
1

𝛽
‖2

𝐹
+ 𝛽

2 
‖𝐐2 −𝐃2𝐘

𝑙+1,𝑐+1
(1) +

𝐖𝑐
2

𝛽
‖2

𝐹

+ 𝜆⟨𝜙(𝜅), |(𝐐1,𝐐2)|⟩. (29)

(29) can be solved via the 2-D shrinkage operator [44] and updated as:

(
(𝐐𝑐+1

1 )𝑖,𝑗 , (𝐐𝑐+1
2 )𝑖,𝑗

)
=max

⎧⎪⎨⎪⎩‖𝐏𝑖,𝑗‖2 − 𝜆𝜙(𝜅(𝐘𝑙+1,𝑐+1
(1) ))

𝛽
,0
⎫⎪⎬⎪⎭

𝐏𝑖,𝑗‖𝐏𝑖,𝑗‖2 , 1 ≤ 𝑖 ≤ 𝐼1,1 ≤ 𝑗 ≤ 𝑠1, (30)

where 𝐏𝑖,𝑗 =
(
(𝐃1𝐘

𝑙+1,𝑐+1
(1) −

𝐖𝑐
1

𝛽
)𝑖,𝑗 , (𝐃2𝐘

𝑙+1,𝑐+1
(1) −

𝐖𝑐
2

𝛽
)𝑖,𝑗

)
, and we assign 0 ⋅ (0∕0) = 0. The complexity of getting (𝐐1,𝐐2) is 

𝑂(
∏𝑁

𝑘=1 𝐼𝑘).
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After obtaining all 𝐘𝑙+1
(𝑘) , 𝑘 = 1,⋯ , 𝑁 , we can update tensor  𝑙+1 by:

 𝑙+1 = Ω𝐶

(
𝑁∑

𝑘=1
𝛼𝑘fold(𝑘)(𝐘𝑙+1

(𝑘) )

)
+. (31)

The computing complexity in inner loop of solving 𝐘(1)-subproblem is 𝑂(
∏𝑁

𝑘=1 𝐼𝑘 log
∏𝑁

𝑘=1 𝐼𝑘). In summary, the complexity of 
solving all variables at each iteration is 𝑂(

∑𝑁
𝑘=1(𝐼𝑘𝑟2

𝑘
+ 𝑟2

𝑘
𝑠𝑘) + (

∑𝑁
𝑘=1 𝑟𝑘 + log

∏𝑁
𝑘=1 𝐼𝑘)

∏𝑁
𝑘=1 𝐼𝑘).

Finally, the proposed algorithm is described in Algorithm 1. 

Algorithm 1 The PAM algorithm for solving (5).

Input: The incomplete tensor ∈ℝ𝐼1×⋯×𝐼𝑁 , index set Ω, the estimated Tucker rank 𝑟1,⋯ , 𝑟𝑁 . 
Output: The recovered tensor  . 
1: Parameters: 𝛼𝑘, 𝑘 = 1,⋯ , 𝑁 , 𝜆, 𝜔, 𝛾 , 𝛽, 𝑙𝑚𝑎𝑥, 𝑐𝑚𝑎𝑥. 
2: Initialization: 𝐀0

𝑘
= rand(𝐼𝑘 × 𝑟𝑘), 𝐗0

𝑘
= rand(𝑟𝑘 ×

∏𝑁

𝑛≠𝑘
𝐼𝑛), 𝑘 = 1,⋯ , 𝑁 . 

3: Out loop: while not converged and 𝑙 < 𝑙𝑚𝑎𝑥 do 
4: Update 𝐀𝑙

𝑘
, 𝑘 = 1,2,⋯ , 𝑁 via (19); 

5: Update 𝐗𝑙
𝑘
, 𝑘 = 1,2,⋯ , 𝑁 via (20); 

6: Inner loop: while not converged and 𝑐 < 𝑐𝑚𝑎𝑥 do 
7: Update 𝐘𝑙

(1) via (28); 
8: Update 𝜅 via (15); 
9: Update (𝐐1 ,𝐐2) via (30); 
10: Update 𝐖1 and 𝐖2 via (26); 
11: end While 
12: Update 𝐘𝑙

(𝑘) , 𝑘 = 2,3,⋯ , 𝑁 via (22); 
13: Update  via (31); 
14: end While 

3.3. Convergence analysis

In this subsection, we prove that the sequence {𝐀𝑙 ,𝐗𝑙 , 𝑙} generated by the proposed PAM-based algorithm converges to a critical 
point of 𝑓 (𝐀,𝐗,). We first recall the preparation knowledge.

Lemma 1. [45] Assume 𝑓 ∶ ℝ𝑛 → ℝ ∪ +∞ is a proper lower semi-continuous function. Let {𝑥𝑘}𝑘∈ℕ be a sequence which satisfies the 
following conditions:

A1. For ∀𝑘 ∈ℕ, there exist positive constant 𝑎 so that 𝑓 (𝑥𝑘+1) + 𝑎‖𝑥𝑘+1 − 𝑥𝑘‖2 ≤ 𝑓 (𝑥𝑘);
A2. For ∀𝑘 ∈ℕ, ∃𝑣𝑘+1 ∈ 𝜕𝑓 (𝑥𝑘+1), and it satisfies ‖𝑣𝑘+1‖2 ≤ 𝑏‖𝑥𝑘+1 − 𝑥𝑘‖ for a constant 𝑏 ∈ (0,+∞);
A3. ∃{𝑥𝑘𝑗 }𝑗∈ℕ and 𝑥̃ ∈ℝ𝑛 so that 𝑥𝑘𝑗 → 𝑥̃ and 𝑓 (𝑥𝑘𝑗 )→ 𝑓 (𝑥̃), when 𝑗 →∞.

If 𝑓 satisfies the Kurdyka-Łojasiewicz (KŁ) property [46] at the cluster point 𝑥̃, then {𝑥𝑘}𝑘∈ℕ converges to 𝑥̄ = 𝑥̃ when 𝑘 →∞, 
where 𝑥̄ is a critical point of 𝑓 .

Now, we study the convergence of the proposed algorithm. For simplicity’s sake, the short version of objective function (16) can 
be expressed as:

𝑓 (𝐀,𝐗,) = 𝑓1(𝐀,𝐗,) + 𝑓2(), (32)

where 𝑓1(𝐀,𝐗,) =
∑𝑁

𝑘=1
𝛼𝑘

2 ‖𝐘(𝑘) −𝐀𝑘𝐗𝑘‖2𝐹 and 𝑓2() = 𝜆⟨𝜙(𝜅), |∇𝐘(1)|⟩. As we regard 𝜙(𝜅(𝐘(1))) as a weighted matrix in solving 
𝐘(1)-subproblem, so 𝑓2 is the Frobenius norm with coefficient matrix 𝜆𝜙(𝜅). Next, we give the boundedness of {𝐀𝑙 ,𝐗𝑙 , 𝑙} generated 
by Algorithm 1. And then, we illustrate the function (32) and the sequence {𝐀𝑙 ,𝐗𝑙 , 𝑙} meets the conditions in Lemma 1 and its 
convergence theorem.

Lemma 2. The sequence {𝐀𝑙,𝐗𝑙 , 𝑙} obtained by Algorithm 1 is bounded.

Proof. We first prove the objective functions in (18) satisfy sufficient decrease property. Suppose that 𝐀𝑙+1, 𝐗𝑙+1, and  𝑙+1 represent 
the optimal solutions for each subproblem of (18), then it follows that

⎧⎪⎨⎪⎩
𝑓 (𝐀𝑙+1,𝐗𝑙 , 𝑙) + 𝛾

2 ‖𝐀𝑙+1 −𝐀𝑙‖2
𝐹

≤ 𝑓 (𝐀𝑙 ,𝐗𝑙 , 𝑙),
𝑓 (𝐀𝑙+1,𝐗𝑙+1, 𝑙) + 𝛾

2 ‖𝐗𝑙+1 −𝐗𝑙‖2
𝐹

≤ 𝑓 (𝐀𝑙+1,𝐗𝑙 , 𝑙),
𝑓 (𝐀𝑙+1,𝐗𝑙+1, 𝑙+1) + 𝛾

2 ‖ 𝑙+1 − 𝑙‖2
𝐹

≤ 𝑓 (𝐀𝑙+1,𝐗𝑙+1, 𝑙).
(33)
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Next, we prove the sequence {𝐀𝑙 ,𝐗𝑙 , 𝑙} is bounded. Since for 𝑘 = 1,2,⋯ , 𝑁 ,

lim ‖𝐀𝑘‖𝐹 →+∞

𝛼𝑘

2 
‖𝐘(𝑘) −𝐀𝑘𝐗𝑘‖2𝐹 = +∞,

lim ‖𝐗𝑘‖𝐹 →+∞

𝛼𝑘

2 
‖𝐘(𝑘) −𝐀𝑘𝐗𝑘‖2𝐹 = +∞,

lim ‖‖𝐹 →+∞

𝛼𝑘

2 
‖𝐘(𝑘) −𝐀𝑘𝐗𝑘‖2𝐹 = +∞.

We can conclude that

lim ‖𝐀𝑘‖𝐹 →+∞
𝑓 (𝐀,𝐗,) = +∞,

lim ‖𝐗𝑘‖𝐹 →+∞
𝑓 (𝐀,𝐗,) = +∞,

lim ‖‖𝐹 →+∞
𝑓 (𝐀,𝐗,) = +∞.

Therefore, for unbounded {𝐀𝑙,𝐗𝑙 , 𝑙}, 𝑓 (𝐀𝑙+1,𝐗𝑙+1, 𝑙+1) tends to infinity. That is, the bounded nature of 𝑓 (𝐀𝑙+1,𝐗𝑙+1, 𝑙+1) ensures 
a bounded solution for {𝐀𝑙,𝐗𝑙 , 𝑙}.

In the following, we proceed to show that 𝑓 (𝐀𝑙+1,𝐗𝑙+1, 𝑙+1) exhibits bounded behavior. From (33), we derive

𝑓 (𝐀𝑙+1,𝐗𝑙+1, 𝑙+1) ≤ 𝑓 (𝐀𝑙+1,𝐗𝑙+1, 𝑙+1) + 𝛾

2 
‖𝐀𝑙+1 −𝐀𝑙‖2

𝐹
+ 𝛾

2 
‖𝐗𝑙+1 −𝐗𝑙‖2

𝐹
+ 𝛾

2 
‖ 𝑙+1 − 𝑙‖2

𝐹

≤ 𝑓 (𝐀𝑙 ,𝐗𝑙 , 𝑙)

≤ 𝑓 (𝐀𝑙 ,𝐗𝑙 , 𝑙) + 𝛾

2 
‖𝐀𝑙 −𝐀𝑙−1‖2

𝐹
+ 𝛾

2 
‖𝐗𝑙 −𝐗𝑙−1‖2

𝐹
+ 𝛾

2 
‖ 𝑙 − 𝑙−1‖2

𝐹

≤

⋯

≤ 𝑓 (𝐀0,𝐗0,0).

Therefore, 𝑓 (𝐀𝑙+1,𝐗𝑙+1, 𝑙+1) is bounded, and it follows that {𝐀𝑙 ,𝐗𝑙 , 𝑙} is bounded.

Theorem 1. The bounded sequence {𝐀𝑙,𝐗𝑙 , 𝑙} produced by Algorithm 1 can converge to a critical point of 𝑓 .

Proof. First, 𝑓1 is proper, and also is a 𝐶1 Lipschitz continuous gradient function about variables 𝐀, 𝐗, and  . 𝑓2 is proper and 
continuous. So 𝑓 is a proper lower semi-continuous function.

Second, the alternating procedure (18) is a special case of PAM framework in Remark 6.1 of [45] when 𝐁𝑖 = 𝛾𝐈. Thus, the sequence 
{𝐀𝑙,𝐗𝑙 , 𝑙} generated via PAM framework meets the conditions A1, A2, and A3 in Lemma 1.

Third, we will illustrate that 𝑓 satisfies the KŁ property at each iteration point {𝐀𝑙 ,𝐗𝑙 , 𝑙}. The first fact is that the semi-algebraic 
function satisfies the KŁ property [47]. The union of finite semi-algebraic functions is still semi-algebraic [45]. 𝑓1(𝐀,𝐗,) is a 
polynomial function about variables 𝐀, 𝐗 and  , and it is formed by a linear mapping of some finite-dimensional spaces. In addition, 
polynomial is semi-algebraic function. So 𝑓1 is semi-algebraic. Since the Frobenius norm is semi-algebraic function [41], 𝑓2() is 
semi-algebraic. Ultimately, as the sum of 𝑓1 and 𝑓2, 𝑓 is a semi-algebraic function and satisfies the KŁ property.

By Lemma 1, the bounded sequence {𝐀𝑙,𝐗𝑙 , 𝑙} converges to a critical point of 𝑓 . □

4. Numerical results and discussion

In this section, we carry out numerical experiments on three datasets to show the performance of the LRTC method incorporating 
TCV (TCV-LRTC). We compare the proposed method with five different LRTC techniques: TMac [22], MF-TV [28], HaLRTC [19], 
LRTC-TV [29], and KLRTC [20].

The peak signal to noise rate (PSNR) and the structural similarity index (SSIM) [48] are employed to evaluate the restoration 
quality. All experiments are implemented using MATLAB R2021a on Windows 11, with Intel Core i5 CPU @2.50 GHz and 16 GB 
Memory.

We stop algorithm once the relative change (RelCha) is less than the tolerance 𝜖 (i.e., RelCha= ‖ 𝑙− 𝑙−1‖𝐹‖ 𝑙−1‖𝐹
< 𝜖), or the maximum 

number of iterations is satisfied. The tolerance 𝜖 is generally set to be 10−4.
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Fig. 3. The tested color images used in experiments. 

Table 1
Quantitative evaluation of the reconstructed results by all compared methods for color images with different SRs.

Image
SR 0.1 0.2 0.3 0.4

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

house

TMac 7.69 0.0283 12.50 0.1434 20.78 0.5358 28.08 0.7739 
MF-TV 12.71 0.0530 23.74 0.3532 27.38 0.7610 29.51 0.8590 
HaLRTC 20.26 0.4776 23.63 0.6456 26.52 0.7616 28.96 0.8409 
LRTC-TV 22.86 0.7208 26.47 0.8125 28.58 0.8592 30.18 0.8704 
KLRTC 22.45 0.7147 25.75 0.8060 27.73 0.8549 29.14 0.8894 
TCV-LRTC 25.75 0.7211 28.31 0.8137 29.74 0.8595 32.59 0.8942

baboon

TMac 6.28 0.0364 7.32 0.0648 8.67 0.0978 10.22 0.1387 
MF-TV 9.39 0.0702 15.16 0.1661 18.66 0.4479 21.79 0.5466 
HaLRTC 18.18 0.3110 20.05 0.4576 21.49 0.5741 22.93 0.6776 
LRTC-TV 20.29 0.4254 21.66 0.5636 22.75 0.6655 23.78 0.7462 
KLRTC 20.26 0.4246 21.63 0.5668 22.65 0.6642 23.62 0.7419 
TCV-LRTC 20.63 0.4708 22.12 0.6010 23.02 0.6895 24.17 0.7606

cat

TMac 7.20 0.0451 9.19 0.0762 12.04 0.1954 16.85 0.4797 
MF-TV 11.11 0.0736 16.99 0.2176 25.20 0.5504 29.28 0.8035 
HaLRTC 20.10 0.4223 23.25 0.6001 25.83 0.7274 28.11 0.8206 
LRTC-TV 22.49 0.5709 25.60 0.7134 27.39 0.7982 28.99 0.8555 
KLRTC 22.63 0.5716 25.48 0.7121 27.26 0.7928 28.94 0.8499 
TCV-LRTC 24.62 0.6868 27.14 0.7808 28.73 0.8455 30.32 0.8887

splash

TMac 14.91 0.4397 23.80 0.8068 32.65 0.9289 34.65 0.9544 
MF-TV 24.57 0.5551 31.31 0.9070 33.42 0.9399 34.49 0.9593 
HaLRTC 24.69 0.8131 28.96 0.8971 32.02 0.9384 34.38 0.9612 
LRTC-TV 27.21 0.9069 30.39 0.9270 31.49 0.9500 34.50 0.9619 
KLRTC 25.73 0.8784 28.71 0.9245 30.20 0.9445 31.31 0.9568 
TCV-LRTC 30.29 0.9084 32.56 0.9334 33.71 0.9643 34.74 0.9754

monarch

TMac 9.72 0.1452 12.28 0.2768 15.23 0.6443 18.54 0.8117 
MF-TV 13.23 0.1561 21.70 0.6556 26.07 0.8534 30.95 0.9558 
HaLRTC 18.13 0.6405 21.04 0.8096 23.69 0.8959 26.23 0.9411 
LRTC-TV 20.15 0.8001 24.32 0.9267 27.01 0.9627 29.04 0.9770 
KLRTC 19.87 0.8061 23.73 0.9217 26.27 0.9589 28.37 0.9759 
TCV-LRTC 24.45 0.8915 27.76 0.9417 29.11 0.9649 31.95 0.9782

waterfall

TMac 9.79 0.1743 11.39 0.2609 13.34 0.3840 16.65 0.6352 
MF-TV 14.47 0.1639 16.71 0.3863 23.39 0.7009 28.17 0.8974 
HaLRTC 21.30 0.5896 23.52 0.7545 25.43 0.8509 27.33 0.9125 
LRTC-TV 22.52 0.6484 24.69 0.8028 26.40 0.8832 27.87 0.9270 
KLRTC 22.76 0.6597 24.65 0.8009 26.10 0.8747 27.49 0.9207 
TCV-LRTC 24.28 0.7547 26.55 0.8636 27.99 0.9174 29.39 0.9478 

4.1. Color image completion

We test the capability of all methods on six color images,1 called house, baboon, cat, splash, monarch, and waterfall. The first three 
color images are of size 256 × 256 × 3, and the last three images are of size 512 × 512 × 3. Fig. 3 exhibits all the tested color images. 
The observed data is obtained by random sampling method and the sampling rates (SRs) are set to 0.1, 0.2, 0.3, and 0.4, respectively.

Table 1 exhibits the PSNR and SSIM values of the recovered results performed by TCV-LRTC and other compared methods. The 
highest values are marked with black bold font. We can see from Table 1 that the proposed method TCV-LRTC obtains the highest 
PSNR and SSIM values for all color images. For visualization, we symbolically show some experimental results in Fig. 4. As observed 
in Fig. 4, when the SR is lower, TMac and MF-TV have terrible reconstructed results, the recovery result of HaLRTC has a lot of 

1 https://sipi.usc.edu/database/database.php.
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Fig. 4. The recovered color images by all compared methods. From top to bottom: splash with SR= 0.1, waterfall with SR= 0.2, house with SR= 0.3, and cat with 
SR= 0.4. From left to right: original data, observed data, the recovered results by TMac, MF-TV, HaLRTC, LRTC-TV, KLRTC, and TCV-LRTC.

Fig. 5. The recovered results of monarch by all compared methods. From top to bottom: SR= 0.1, 0.2, 0.3, and 0.4. From left to right: original data, observed data, the 
recovered results by TMac, MF-TV, HaLRTC, LRTC-TV, KLRTC, and TCV-LRTC.

vertical thorns, and LRTC-TV and KLRTC have too smooth effects. For all experiments on color images, our method has achieved the 
most excellent performance. While maintaining the edges of image, TCV-LRTC can also keep good contrast and corners. The detail 
features of the recovered results by TCV-LRTC are most similar to original images. Moreover, TCV-LRTC can obtain more accurate 
effects when the image has some objects with elongated structures, see the recovered results of tentacle of monarch with different SRs 
in Fig. 5.
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Table 2
Quantitative evaluation of the reconstructed results by all compared methods for videos with different SRs.

Video
SR 0.1 0.2 0.3

Method PSNR SSIM PSNR SSIM PSNR SSIM 
TMac 7.98 0.0572 9.41 0.0989 11.04 0.1687 
MF-TV 8.32 0.0686 11.74 0.1226 15.58 0.2394 

street HaLRTC 19.27 0.4781 22.45 0.6578 24.68 0.7680 
158 × 238 × 24 LRTC-TV 21.27 0.5888 23.99 0.7186 25.55 0.7943 

KLRTC 21.14 0.5866 23.70 0.7106 25.39 0.7895 
TCV-LRTC 21.98 0.6294 24.04 0.7458 25.58 0.8190

TMac 10.23 0.0841 11.31 0.1304 12.50 0.1860 
MF-TV 10.72 0.0983 13.05 0.1741 15.57 0.2671 

bus HaLRTC 18.04 0.4341 20.00 0.5750 21.66 0.6819 
256 × 256 × 30 LRTC-TV 19.23 0.4926 21.04 0.6406 22.69 0.7484 

KLRTC 18.62 0.4824 20.77 0.6302 22.25 0.7348 
TCV-LRTC 19.77 0.5105 22.29 0.6677 23.60 0.7641

TMac 14.11 0.1494 19.01 0.5538 25.30 0.8154 
MF-TV 15.06 0.1614 22.77 0.7089 26.23 0.8272 

salesman HaLRTC 20.06 0.5964 23.43 0.7679 26.22 0.8632 
144 × 176 × 75 LRTC-TV 22.45 0.6664 25.89 0.8264 28.25 0.8981 

KLRTC 20.52 0.5690 23.02 0.7155 24.76 0.8012 
TCV-LRTC 23.35 0.7141 26.48 0.8578 28.58 0.9111

TMac 15.32 0.2248 23.05 0.7143 32.11 0.8878 
MF-TV 21.03 0.3722 29.65 0.8082 34.00 0.9127 

suzie HaLRTC 23.33 0.6967 26.90 0.8001 29.49 0.8644 
144 × 176 × 75 LRTC-TV 26.59 0.7955 30.35 0.8833 32.81 0.9228 

KLRTC 26.50 0.7813 29.96 0.8692 32.21 0.9113 
TCV-LRTC 29.88 0.8682 32.87 0.9159 34.53 0.9385 

Fig. 6. The recovered results by all compared methods with SR= 0.3. The first (last) two rows are two frames of the recovered video salesman (suzie). From left to 
right: original data, observed data, the recovered results by TMac, MF-TV, HaLRTC, LRTC-TV, KLRTC, and TCV-LRTC.

4.2. Video completion

We test four gray videos2 with different sizes via TMac, MF-TV, HaLRTC, LRTC-TV, KLRTC and the proposed method TCV-LRTC 
in this subsection. Table 2 presents the average PSNR and SSIM values of all tested videos by different methods. Obviously, our 
curvature-based method consistently achieves highest quality evaluations for all videos with different sampling rates. Fig. 6 exhibits 
the recovered visual effects by different methods for videos salesman and suzie with SR= 0.3. We can see that the results reconstructed 
by TCV-LRTC outperform other comparative methods. MF-TV and LRTC-TV, which are TV-based method, cause undesirable staircase 
artifacts. The proposed method can avoid staircase artifacts caused by TV, while preserving sharp edges and fine details. Fig. 7 shows 

2 http://trace.eas.asu.edu/yuv/.
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Fig. 7. The PSNR and SSIM values of all frames of videos reconstructed by all compared methods with SR= 0.1. 

the PSNR and SSIM values of all frames of videos salesman and suzie reconstructed by different methods with SR= 0.1. It can be 
seen that all frames recovered by TCV-LRTC obtain the highest PSNR and SSIM values. In Fig. 8, we present the pixel values of one 
randomly selected tube recovered by different methods for suzie with SR= 0.1, it shows that the result recovered by TCV-LRTC is 
closer to the original data, which validates its ability to preserve image contrast.

4.3. MRI completion

We study the completion results of all methods on two MRIs3 of size 181 × 217 × 40. The SRs are taken as 0.1, 0.2, and 0.3. 
Table 3 reports the average PSNR and SSIM values of the recovered MRIs by different methods. For two MRIs with different SRs, the 
proposed method shows better performance than the comparative methods quantitatively. In particular, the PSNR values of MRIs 
reconstructed by TCV-LRTC are at least 3 dB higher than those recovered by other methods when SR= 0.1 and 0.2. Fig. 9 displays 
the recovered results of MRI-I by different methods. It is clear that, no matter how much SR is set, TCV-LRTC has obtained the best 
visual effect. The main reason is that these images are made up of surface patches which are piecewise smooth and curvatures used 
in our method are computed through small patches around the center point. So the proposed curvature-based regularization is a 
better choice to promote piecewise smoothness for local small patches and preserve significant geometric features of image, therefore 
gaining a competitive advantage. Fig. 10 shows the PSNR and SSIM values of all frames of MRI-II recovered by different methods 
with SR= 0.1 and 0.2. 

3 https://brainweb.bic.mni.mcgill.ca/brainweb/.
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Fig. 8. The pixel values of one selected tube reconstructed by all compared methods for suzie with SR= 0.1. 

Table 3
Quantitative evaluation of the reconstructed results by all compared methods for MRIs with different SRs.

MRI
SR 0.1 0.2 0.3

Method PSNR SSIM PSNR SSIM PSNR SSIM 

TMac 12.70 0.1295 16.26 0.3192 21.48 0.7064 
MF-TV 14.77 0.1736 22.38 0.5128 30.39 0.8484 

MRI-I HaLRTC 18.64 0.4822 22.79 0.6871 26.23 0.8206 
LRTC-TV 22.59 0.7380 27.22 0.8748 30.31 0.9305 
KLRTC 21.04 0.7019 25.34 0.8433 28.18 0.9069 
TCV-LRTC 26.73 0.8234 31.19 0.9356 33.56 0.9622

TMac 12.85 0.1818 17.44 0.4793 34.00 0.9382 
MF-TV 14.96 0.2550 26.74 0.7171 34.98 0.9456 

MRI-II HaLRTC 19.15 0.4511 22.84 0.6526 26.34 0.7926 
LRTC-TV 21.03 0.7228 26.04 0.8827 29.60 0.9394 
KLRTC 19.47 0.5655 23.81 0.7741 27.20 0.8673 
TCV-LRTC 26.18 0.8401 31.35 0.9483 35.37 0.9693 

Fig. 9. Reconstructed results of MRI-I by all compared methods. From top to bottom: one frame of the recovered MRI-I with SR= 0.1, 0.2, and 0.3, respectively. From 
left to right: original data, observed data, the recovered results by TMac, MF-TV, HaLRTC, LRTC-TV, KLRTC, and TCV-LRTC.
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Fig. 10. The PSNR and SSIM values of all frames of MRI-II reconstructed by all compared methods with SR= 0.1 and 0.2. 

4.4. Discussions

In this subsection, we analyze the algorithmic parameters and their influence on model performance, as presented in this work. In 
all the experiments, the weights 𝛼𝑘 = 1∕𝑁 , the maximum numbers of outer and inner iterations, denoted as 𝑙𝑚𝑎𝑥 and 𝑐𝑚𝑎𝑥 respectively, 
were set to 500 and 300. We mainly analyze the influence of parameters 𝜆, 𝛾 , 𝛽 and 𝜔 in 𝜙(𝜅). The tested data is suzie with SR= 0.3. 
Fig. 11 displays the Relcha, PSNR and SSIM values in terms of the iteration number for different regularization parameter 𝜆. It can 
be seen that when 𝜆 is respectively selected from {0.001,0.01,0.1}, the corresponding PSNR and SSIM values of recovered results are 
almost the same. So we select a fixed 𝜆 = 0.1 in all our experiments to improve the experimental efficiency. As shown in Fig. 12, the 
selection of parameter 𝛾 follows a similar rationale to that of parameter 𝜆. When 𝛾 = 0.001 or 0.01, the algorithm requires nearly 
the same number of iterations to converge. Therefore, we opt for 𝛾 = 0.01 to achieve marginally higher PSNR and SSIM values. In 
Fig. 13, we display the change curves of the Relcha, PSNR and SSIM values in regard to the initial penalty parameter 𝛽0 . We can 
see this conclusion, a larger 𝛽0 could produce poorer result, and a smaller 𝛽0 = 10 results almost the same PSNR and SSIM values as 
𝛽0 = 50. Moreover, a smaller 𝛽0 can lead to increasing the number of iteration. Therefore, we empirically select 𝛽0 from {50,100}. 
The parameter 𝜔 in function 𝜙(𝜅) is selected from the candidate set {5,15,20,25,30}. Fig. 14 illustrates the curves of RelCha, PSNR 
and SSIM values of the proposed method in regard to parameter 𝜔 during the iteration process. Evidently, different 𝜔 yields nearly 
identical final PSNR and SSIM values, with the biggest difference being the number of iterations. Consequently, in all our experiments, 
𝜔 is empirically set to 25 to minimize the required number of iterations. According to the curve charts of RelCha in Fig. 11-14, we can 
see that RelCha rapidly decrease to the tolerance 𝜀 no matter which 𝜆, 𝛾 , 𝛽, and 𝜔 we choose, and this can also prove the numerical 
convergence of the proposed method.
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Fig. 11. The RelCha, PSNR and SSIM values of the proposed method in regard to parameter 𝜆. 

Fig. 12. The RelCha, PSNR and SSIM values of the proposed method in regard to parameter 𝛾 . 

Fig. 13. The RelCha, PSNR and SSIM values of the proposed method in regard to parameter 𝛽 . 

Fig. 14. The RelCha, PSNR and SSIM values of the proposed method in regard to parameter 𝜔. 

5. Conclusions

In this work, we first design a total curvature variation regularization which is based on curvature and total variation. By inte

grating this regularization term with low-rank matrix factorization, we propose a model for LRTC problem which can capture global 
and local prior information of high-dimensional image. An efficient PAM-based algorithm is used to solve the proposed model. It is 
demonstrated that the sequence formed by the proposed algorithm can converge to a critical point. Moreover, numerical experiments 
reveal that: 1) quantitatively, the proposed method obtains higher PSNR and SSIM values than the compared methods. 2) qualita

tively, our method can not only preserve sharp edges, but keep contrast and details of images. In the future work, one remaining 
challenge for the proposed method is to optimize the parameter adjustment strategy and develop efficient algorithms for large-scale 
high-dimensional data processing.
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