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Abstract—In recent years, graph convolutional networks
(GCNs) have gained increasing attention in hyperspectral image
(HSI) classification due to their good ability to model the pairwise
relationships between two pixels. However, it is difficult to effec-
tively model more complex relationships among multiple pixels
with simple graphs. To solve this problem, we propose a novel ten-
sorized high-order hypergraph convolutional network (TH2GCN)
for HSI classification. Specifically, the hypergraph structure
is employed to effectively model complex spatial relationships
between pixels in HSIs, and we propose a new tensor-based
algebraic representation of hypergraphs as a powerful strategy
for describing the high-order interaction structures of the hyper-
graph. Besides, by extending the adjacency matrix-based GCN to
the tensor domain and exploiting the tensor decomposition, the
TH2GCN method is designed to efficiently extract high-order dis-
criminative information from the hypergraph at low complexity
for improving HSI classification performance. Furthermore, the
construction of the adjacency tensor on all the data requires a
huge amount of memory, especially for large-scale remote sensing
images. To this end, the TH2GCN is trained and tested for HSI
data in a minibatch fashion. Experimental results on three HSI
datasets prove that the performance of the proposed method
outperforms the comparison methods.

Index Terms—Hypergraph convolutional networks, hyperspec-
tral image (HSI) classification, tensor decomposition.

I. INTRODUCTION

W ITH the development of remote sensing technology,
hyperspectral sensors capture reflected radiation in

many narrow and contiguous the detailed spectral channels
along the wavelength axis. Therefore, hyperspectral images
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(HSIs) contain plenty of spectral and spatial information due
to their high spectral and spatial resolution. As a result,
HSIs have been successfully applied to a wide range of
applications, such as agriculture [1], [2], [3], [4], forestry [5],
and geology [6]. Classification task assigning each pixel to
a unique category with the spatial and spectral information
has been an interesting and popular research topic [7], [8],
[9], [10], [11]. HSI classification is greatly challenged by the
complex spatial distribution and the spectral heterogeneity of
objects.

Over the past few decades, a variety of conventional
methods and deep learning (DL) methods have been success-
fully designed for HSI classification. Specifically, conventional
methods, such as support vector machine (SVM) [12], [13],
random forest [14], sparse-collaborative representation [15],
[16], multinomial logistic regression [17], and so on, design
handcrafted features to solve problems with small labeled
samples, nonlinearity, and high dimensionality in HSI clas-
sification. However, the defects of these methods are the
dependence on the prior information and the loss of robustness,
leading to poor classification performance under different
scenarios. Due to the ability of DL models to automatically
extract complex and hierarchical features using multilayer
network architectures, many classical DL methods including
autoencoder networks [18], convolutional neural networks
(CNNs) [19], [20], [21], [22], generative adversarial networks
(GANs) [23], capsule networks [24], [25], and recurrent neural
networks (RNNs) [26], transformer [27], [28], have become
feasible options for HSI classification. CNNs are capable of
extracting discriminative spectral–spatial features, which have
predominantly served as the backbone for most DL-based
HSI classification methods [29]. Subsequently, to mitigate
the challenge of limited training samples, GANs have been
exploited for improving HSI classifiers with additional gener-
ated hyperspectral samples [30]. Nevertheless, these methods
adopt the max-pooling strategy to offer invariance, ignoring the
spatial relationship of significant features. To the end, capsule
networks implement a dynamic routing-by-agreement mech-
anism to explicitly model hierarchical relationships between
capsules, often yielding superior performance compared to
standard CNNs. Since HSIs can be considered as sequential
data, several RNN-based methods have emerged that can effec-
tively utilize sequential dependencies to extract features and
classify HSIs [31]. More recently, transformer models have
also been introduced to tackle the HSI classification problem
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by leveraging their powerful self-attention mechanisms [32].
The previous DL methods have achieved good performance
in HSI classification, which, however, neglect the intrinsic
geometric properties in HSIs.

In recent years, researchers have increasingly adopted graph
neural networks (GNNs) for HSI classification by transforming
HSI data into a non-Euclidean structure graph and then using
the irregular convolution on the graph for learning a better rep-
resentation [33], [34]. Currently, GNNs can be categorized into
spectral-based methods and spatial-based methods according
to graph theory and message propagation, respectively. Espe-
cially, the spectral-based GNN, called the graph convolutional
network (GCN), defines graph convolution from the spectral
perspective. The first attempt is to encode the HSI into a graph
and then process it with the GCN to propagate information
between adjacent pixels based on their spectral similarity and
spatial distance [35]. The spectral–spatial GCN was proposed
for HSI classification by combining the intrinsic spectral
information and the local spatial window information [36].
However, the above GCN-based methods cannot construct a
reliable initial graph. The proposed method considered the
graph generation of the graph convolution as a variable to
optimize, aiming to obtain a locally reliable initial graph
structure [37]. Due to the large number of pixels in HSIs,
treating each pixel as a graph node leads to a massive amount
of computation and limits its applicability. Wan et al. [38]
used superpixels instead of pixels as the nodes, significantly
reducing the size of the graph and enhancing the practicality
of GCN. Nevertheless, this method ignores the information
of HSI pixels, which limits the performance of models in
pixel-level classification tasks. Yang et al. [39] simultaneously
updated the pixel- and region-level information to capture
the information hidden in HSI pixels and spatial-contextual
knowledge within HSI regions. In addition, Huang et al. [40]
introduced an adaptive pixel-level and superpixel-level feature
fusion transformer network, which integrates pixel-level and
superpixel-level features with the transformer.

The spatial-based GNN, named graph attention network
(GAT), is another type of GNN that defines the convolutional
operation and typically involves updating the node represen-
tations based on the representations of its neighboring nodes.
It utilizes the attention mechanism to dynamically adjust the
weight between nodes during feature extraction. Dong et al.
[41] proposed weighted feature fusion of CNNs to explore
the complementary characteristics of superpixel-based GAT
and pixel-based CNN for HSI classification. A multistage
superpixel-guided sparse GAT was proposed to remove some
task-irrelevant edges and assign a unique attention coefficient
to each remaining edge by trimming the graph by spectral
sparsity [42]. To fully utilize the strengths of GNN and CNN,
Yu et al. [43] proposed a novel graph-polarized fusion network
consisting of two branches: the fused GNN classifier in the
GNN branch conducts feature learning on large, irregular
target regions using both GCN and GAT as feature extraction
operators. By discarding the redundant computing parts in
GAT, the computation complexity of the model is reduced
while maintaining its accuracy [44].

Despite the promising performance of GNN-based HSI
classification methods, these methods can only capture the
relationships between paired pixels (the second-order relation-
ship), but cannot describe the relationships between multiple
pixels (the high-order relationship). For this reason, some
efforts have been made to generalize well-known graph signal
processing techniques to more complex graphs such as hyper-
graphs, which enable the capture of higher order relationships
among multiple pixels [45]. For example, Ma et al. [46]
proposed an improved hypergraph neural network (HGNN)
named feature fusion hypergraph neural network (F2HNN) to
input the HSI and the extracted hypergraph into the HGCNN
for effective learning. The active HGNN method used the
hypergraph to reveal the complex nonpairwise relationships
between the HSI pixels and introduced an active learning strat-
egy to alleviate the challenge of the limited labeled pixels for
HSI classification [47]. Duan et al. [48] designed a structure-
preserved HGNN to learn the structured semantic features of
HSI from multiple pixel nodes by integrating local regular
convolution and irregular hypergraph convolution. To learn the
hidden and important relations represented in the HSI data,
the dynamic HGNN was designed to dynamically update the
hypergraph model and capture the global spatial information
for HSI classification [49]. However, the above methods often
use the incidence matrix to represent the structure of the hyper-
graph, which may ignore the symmetry of the relationships
in the data, thereby losing structural information about the
original hypergraph [50]. Therefore, these HSI classification
methods still have potential for further improvement.

In this article, we propose a tensorized high-order hyper-
graph convolutional network (TH2GCN) for HSI classification.
The main contributions of this article are presented as follows.

1) To effectively capture the complex spatial relationships
among pixels in HSIs, we innovatively employ the
hypergraph structure, where hyperedges flexibly con-
nect multiple pixel nodes to model complex high-order
interactions. More importantly, we propose a novel
tensor-based algebraic representation for hypergraphs
that can fully describe the intrinsic high-order interaction
structure embedded in the constructed hypergraph.

2) The proposed TH2GCN is the high-order generalization
of the traditional GCN, which enhances the model’s
ability to efficiently extract high-order discriminative
information from the hypergraph, thereby substantially
improving HSI classification performance. Moreover,
to address the computational bottleneck caused by the
exponential complexity of directly processing high-order
outer product features, the canonical polyadic (CP)
decomposition is used to reduce the model’s compu-
tational complexity to a linear scale, thereby achieving
the balance between high-order feature representation
and computational efficiency.

3) The construction of the adjacency tensor on all the
data requires a massive amount of memory, especially
for large-scale remote sensing problems. To this end,
the TH2GCN is trained and tested for HSI data in a
minibatch fashion to reduce the need for experimental
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platforms. The experimental results on three public
HSI datasets show that the proposed method outper-
forms several comparison methods by 0.61%, 2.07%,
and 0.73% in terms of overall accuracy (OA) for the
Indian Pines, Houston, and Liao River Estuary datasets,
respectively.

The rest of this article is outlined as follows. Section II
reviews the related work. Section III describes the TH2GCN
method. Section IV compares TH2GCN with state-of-the-art
methods on three HSI datasets. Section V concludes this
article.

II. RELATED WORK

In this section, we summarize some related GCN,
hypergraph convolutional network, and CP decomposition.

A. Graph Convolution Network

GCNs have attracted increasing attention in recent years,
which map the graph to the frequency domain space via the
Fourier transform and realize the convolutional operation in
the time domain by performing multiplication of the frequency
domain space. Spectral graph theory, which focuses on the
fundamental properties of graphs and uses algebraic methods
to analyze the specification of the adjacency or Laplacian
matrices of graphs, has laid the foundation for GCNs. Then,
to avoid the high computational complexity arising from eigen
decomposition, Chebyshev GCN utilizes the truncated expan-
sion of Chebyshev polynomials to fit convolution kernels.
Motivated by a first-order approximation of spectral graph
convolutions, Kipf and Welling [51] further learned hidden
layer representations that encode both the local graph structure
and the features of the nodes.

In GCN, the graph is utilized to describe paired relationships
in non-Euclidean spaces. An undirected graph is formally
defined as G = (V , E, A), where V is the set of nodes, E
is the set of edges, and A is the adjacency matrix. The graph
Laplacian matrix L is represented as L = D − A where D is
a diagonal degree matrix with Dii =

P
j Ai j. The symmetric

normalized Laplacian matrix is L = I − D−1/2AD−1/2, where I
is the identity matrix. As a result, the convolution operation
of the GCN model can then be expressed as

Xl+1 = σ
�

D̃−
1
2 ÃD̃−

1
2 XlW

�
(1)

where X is the input feature matrix in the lth layer, W is the
weight matrix, Xl+1 is the output matrix in the lth layer, and
σ(·) is a nonlinear activation function.

B. Hypergraph Convolution Network

As discussed in the above GCN-based methods, pairwise
modeling in a simple graph structure is inadequate. However,
these existing GCN frameworks limit their applications in
dealing with the high-order correlation of complex data in
practice. To address this problem, hypergraphs are gener-
alizations of simple graphs, where hyperedges can connect
any number of vertices, thereby representing multiway rela-
tionships which are ubiquitous in many real-world networks

including neuroscience [52], social networks [53], [54], [55],
and bioinformatics [56], [57]. Furthermore, in order to deal
with high-order data correlation during representation learning,
Gao et al. [53] proposed HGNN for modeling and learning
beyond-pairwise complex correlations, where the hypergraph
Laplacian is first approximated and introduced into the deep
hypergraph learning method to accelerate learning. Hao et al.
[58] designed the HGNN to extract the local and global
structure information via the hyperedge (i.e., nonphysical
connection) constructions. Ma et al. [59] proposed a spatial,
temporal, and spatio-temporal HGNN to learn high-order
semantic information.

A hypergraph is defined as G = (V , E,H), which includes
a vertex set V , a hyperedge set E, and an incidence matrix H.
The hypergraph convolution layer of HGNN can be formulated
by

Xl+1 = σ
�

D−
1
2

(v) HWD−1
(e)H

T D−
1
2

(v) XlP
�

(2)

where P is a matrix to be learned during the training process,
D(e) j j =

P|v|
i=1 Hi j and D(v)ii =

P|v|
j=1 W j jHi j are diagonal degree

matrices of edges and vertices, respectively. Xl and Xl+1 are
the input and output of the lth layer, respectively. σ(·) is a
nonlinear activation function like ReLU.

C. CP Decomposition

Vectors are 1-D, matrices are 2-D, and tensors then represent
3-D and beyond. Therefore, tensors can be conceptualized
as higher order matrices [60], [61], [62]. Tensor analysis
is developed based on tensor operations. CP decomposition
[63] is the famous classical tensor decomposition, which
factorizes a higher order tensor into a sum of several
rank-1 tensor components. Given a k-order tensor X ∈

RN1×...×Nk , CP decomposition of X is denoted as

X ≈
RX

r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(k)
r

≈ I × 1A(1) × 2A(2)
· · ·× kA(k) (3)

where R is the CP rank. One significant challenge associated
with tensors is that their rank is not easily determined. In fact,
establishing the rank of a given tensor is NP-hard. ◦ denotes
the vector outer-product. I ∈ RR×R···×R is the identity tensor
where all diagonal elements Ii,...,i = 1. A(1) ∈ RN1×R, . . . , A(k) ∈

RNk×R denote a series of factor matrices.
Over the past years, CP decomposition has been progres-

sively integrated with HGNN to reduce the temporal/spatial
complexity from exponential to linear using partially symmet-
ric CP decomposition. Recently, Hua et al. [64] proposed a
tensorized GNN leveraging the symmetric CP decomposition
to efficiently parameterize permutation-invariant multilinear
maps for modeling nonlinear high-order multiplicative inter-
actions among nodes. In order to improve computational
efficiency for large hypergraphs, Wang et al. [65] local-
ized the T-spectral convolution approach to formulate the
T-spatial convolution and further devised a novel tensor
message-passing algorithm for practical implementation by
studying a compressed adjacency tensor representation. Con-
sidering the relationships among vertices within a hyperedge,
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Fig. 1. Architecture of the tensorized third-order hypergraph convolutional network for HSI classification. First, the segmented HSI data is divided into several
batches. Then, the hypergraph is constructed to represent the high-order correlation of multiple pixels in HSIs, which is described by an adjacency tensor.
Furthermore, the adjacency tensor of the hypergraph is fed into the hypergraph convolution layer of a tensorized third-order hypergraph convolutional network
to obtain discriminative features from multiple pixel nodes. Finally, the model employs the loss function to train this network and obtain the classification
result.

Song et al. [52] converted the incidence matrix into a weighted
adjacency tensor to describe the structure of the brain hyper-
network and employed the hypergraph signal processing tools
to reveal high-order relationships in brain hypernetworks.
Besides, Wang et al. [66] designed a novel HGNN to utilize
partially symmetric CP decomposition to reduce time/space
complexity from exponential to linear. However, when the
high-order tensor is used to describe the hypergraph, a large
number of samples will increase the dimensionality of the
tensor, requiring enough storage space.

III. PROPOSED METHOD

A. Method Overview

The section gives detailed information about the TH2GCN
for HSI classification, aiming to establish a general framework
for representation learning on the given HSI. The third-
order TH2GCN is illustrated in Fig. 1. First, we divide the
segmented HSI data into several batches. Then, for each batch,
the hypergraph is employed to model the complex spatial
relationships among pixels in HSIs, and the adjacency tensor is
used to describe the intrinsic high-order interaction structure of
the constructed hypergraph. Furthermore, a novel TH2GCN is
designed to extract the high-order discriminative features from
the correlations among pixels of HSIs with low complexity.
Finally, the loss function is used to train the proposed model.
The details of these modules are described below.

B. Hypergraph Construction and Its Tensor Representation

Given HSI data Xo ∈ RH×W×D, H, W, and D are
the numbers of height, width, and spectral bands. To

reduce computational complexity, the simple linear iterative
clustering (SLIC) algorithm, which recursively grows the
local clusters using k-means algorithm and provides fast and
effective segmentation, segments the HSI into superpixels.
After segmentation by SLIC, the HSI is partitioned into N
superpixels, which are denoted as X = {x1, x2, . . . , xN}, where
the feature of each superpixel is computed by the average of
all pixels within that superpixel.

Previous GCN-based HSI classification methods directly
convert the HSI into a graph in the preprocessing process and
extract features based on this constructed graph [38]. However,
the simple graph can only model the pairwise interactions
between two nodes, which cannot capture high-order interac-
tions among multiple pixels. In recent years, hypergraphs have
emerged as high-dimensional generalizations of simple graph
structures, which can express more complex relationships
than pairwise relationships. To this end, the hypergraph is
constructed to discover the complex structure of HSI data,
where a hyperedge can connect an arbitrary number of pixels.
Specifically, considering that the neighboring pixels in HSIs
often belong to the same class, the hypergraph is constructed
to model the neighborhood relationships between the central
pixel and its neighboring pixels in terms of the spatial domain.
The hypergraph effectively represents the local homogeneity
of the HSI. As shown in Fig. 2(a), three pixels adjacent in
position are connected by a hyperedge.

Furthermore, we employ tensor-based descriptors to repre-
sent the hypergraph G = (V , E,A). V = {v1, . . . , vN} is the
set of vertexs composed of X, E = {e1, . . . , ek} is the set of
hyperedges. Similar to an adjacency matrix whose 2-D entries
indicate whether and how two nodes are pairwise connected
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Fig. 2. Construction of a hypergraph. (a) SLIC algorithm segments the entire
HSI into a small amount of compact superpixels, each of which is treated as a
hypergraph node. (b) Hypergraph is constructed by modeling the neighboring
information of the pixels, where the circles and lines represent the hypergraph
nodes and hyperedges, respectively.

Fig. 3. Interpretation of generalizing e2 in Fig. 2(b) to hyperedges with c = 3
nodes.

by a simple edge, we adopt an adjacency tensor whose entries
indicate whether and how corresponding subsets of M nodes
are connected by hyperedges to describe hypergraphs. Thus,
the adjacency tensor A of the hypergraph G is a high-order
extension of the adjacency matrix, which is characterized as
an Mth-order N-dimensional tensor. The entries of the above

adjacency tensor A ∈ R
N×, . . . ,×N„ ƒ‚ …

M of the hypergraph G are
defined as

A =
�
ai1,...,iM

�
, Ai1,...,iM ∈ R

1 ≤ i1, . . . , iM ≤ N (4)

where the entry ai1,...,iM indicates whether the nodes xi1 , . . . , xiM

are in the same hyperedge, i.e., whether a hyperedge ei =

{xi1 , . . . , xic } ∈ E exists. Let c be the number of vertices con-
tained in one hyperedge. Therefore, if the weight is nonzero,
the hyperedge exists; otherwise, the hyperedge does not exist.
In an undirected simple graph, ai j = ai j , 0 implies the
connection of the node v j to the node vi. Therefore, the indices
{i1, . . . , iM} for adjacency entries are chosen from all possible
permutations of {i1, . . . , iM} with at least one appearance for
each element of the hyperedge set.

To understand the physical meaning of the adjacency ten-
sor, we use a third-order adjacency tensor to represent the
hypergraph in Fig. 2(b) as an example. Notably, in Fig. 2(b),
different hyperedges may contain different numbers of nodes.
How to use the adjacency tensor to represent the hyperedges
with different numbers of nodes may become an issue. To
solve this problem, these hyperedges are divided into three
cases and processed as follows.

The Number of Nodes in the Hyperedges Is Smaller Than
the Order Number of the Adjacency Tensor (c < M): To
represent such hyperedge el = {xl1 , xl2 , . . . , xlc } ∈ E with the
number of vertices c < M in an Mth-order adjacency tensor,
the node exists in a node set would be added many times in

Fig. 4. Using a third-order adjacency tensor to represent the hyperedge with
three nodes.

one hyperedge until the number of nodes in the hyperedge is
equal to the order number of the adjacency tensor. As shown
in Fig. 2(b), the hyperedge e2 = {x8, x9} only contains two
nodes. To this end, we construct two sets of nodes {x8, x9, x8}

and {x8, x9, x9} by adding the node in the hyperedge, which
could be interpreted as generalizing the original hyperedge
with c = 2 to hyperedges with c = 3 nodes. Next, the entries in
the third-order adjacency tensor are calculated by all possible
permutations of {x8, x9, x8} and {x8, x9, x9}, which represent the
correlation of x8 and x9. Therefore, the hyperedge e2 = {x8, x9}

can be represented by the entries a889, a898, a988, a899, a989, a998
in the third-order tensor A, which is illustrated in Fig. 3.

The Number of Nodes in the Hyperedges Equals the Order
Number of the Adjacency Tensor (c = M): In order to use
the Mth-order adjacency tensor to represent the hyperedges
el = {xl1 , xl2 , . . . , xlc } ∈ E with the number of vertices
c = M, the possible combination of c nodes in the adjacency
tensor can represent the relationship of c nodes and various
possible subsets of these nodes are also used to represent the
relationship of nodes in these subsets. We take the hyperedge
e1 containing x1, x4, x6 in Fig. 2(b) as an example. The number
of nodes in e1 is 3, such that c = 3. When c = M,
the intuitive idea is that the hyperedge e1 is characterized
by a146, a164, a461, a416, a614, a641 in the adjacency tensor. The
third-order adjacency tensor only represents the relationship
between three different nodes in a hyperedge, resulting in
the loss of information. Thus, in the hyperedge e1, there is
a relationship between three nodes, which can also indicate
that there is a relationship between two nodes in the e1. This
situation is similar to that of c < M. For example, in order
to represent the relationship between two nodes {x1, x4} in
the third-order adjacency tensor, such that, x1 or x4 is added
to {x1, x4} to make the number of nodes reach 3. The above
operation is to preserve richer hypergraph information, which
is shown in Fig. 4.

The Number of Nodes in the Hyperedges Is Greater Than the
Order Number of the Adjacency Tensor (c > M): To represent
such hyperedge el = {xl1 , xl2 , . . . , xlc } ∈ E with the number
of vertices c > M in an Mth-order adjacency tensor, these
node subsets, where the number of nodes in subsets is less
than or equal to the order number of the adjacency tensor,
from the node set of hyperedge are used to represent this
hyperedge. For example, as shown in Fig. 2(b), the hyperedge
e3 = {x3, x5, x9, x10} contains four nodes. On the one hand,
the hyperedge e3 = {x3, x5, x9, x10} can be represented by
{x3, x5, x9}, {x3, x5, x10}, {x5, x9, x10}. On the other hand, these
subsets {x3, x5}, {x3, x9}, {x3, x10}, {x5, x9}, {x5, x10}, {x9, x10} are
obtained to represent the relation of two nodes. These node
subsets can be described in the adjacency tensor by the above
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Fig. 5. Using the third-order adjacency tensor to represent the hyperedge with four nodes.

methods. Fig. 5 shows the entries of the adjacency tensor for
the hyperedge e3 in Fig. 2(b).

Furthermore, GCN-based methods without feature normal-
ization can result in numerical instabilities because direct
application of the convolutional layer changes the scale of
the feature vectors. As a consequence of this, similar to the
degree-normalized adjacency matrix in GCN, we adopt the
famous normalized adjacency tensor extension. The value of
Ai1,...,iM indicates the weight of the hyperedge, which can be
calculated as

Ai1,...,iM =

8<:ei
c

(M − 1)!
, ei =

˚
vi1 , . . . , viM

	
∈ E

0, otherwise
(5)

where (M−1)! is the total number of permutations for length-
M hyperedge eM . c is the exact number of vertices contained
in one hyperedge. Equation (5) is a structural definition of
hyperedge weights, which ensures that the weight of the
hyperedge is larger when it contains more vertices.

C. Tensorized Third-Order Hypergraph Convolutional
Network

Most GCN-based methods focus on the simple pixel-to-
pixel structure between two pixels to learn representations for
HSI classification. The graph convolution operation is defined
by

Xl+1 = σ
�
AXlW l� (6)

where A ∈ RN×N is the adjacency matrix, which is constructed
to model the pairwise relationships of two pixels. Xl ∈ RN×D

is the input feature matrix in the lth layer. W l ∈ RD×D′ denotes
the weight matrix in the lth layer. Xl+1 ∈ RN×D′ is the output
feature matrix in the lth layer.

However, the graph convolution operation of (6) can only
extract features from the simple graph. Recently, the hyper-
graph has been used to model the complex spatial relationships
among multiple pixels in HSIs. And the adjacency tensor is
introduced for describing the intrinsic high-order interaction
structure of a hypergraph, which is shown in Section III-B.
Thus, how to develop the hypergraph convolution operation to
learn discriminative features from the adjacency tensor is a key

issue. Therefore, we design the TH2GCN via the CP tensor
decomposition of the adjacency and weight tensors to learn
more effective features from the relationship among multiple
vertices in the hypergraph at low complexity for gaining better
performance in the HSI classification task.

The proposed TH2GCN framework is the high-order gen-
eralization of traditional GCN, enabling the processing of
signals in a high-order hypergraph to capture the polyadic
relationships among the pixels. Specifically, similar to the
representation equivalence between the aggregation scheme
and the adjacency matrix formulation for GCN, as the rep-
resentation learning method, the proposed TH2GCN comes
with a message-passing mechanism capturing high-order inter-
actions in the hypergraph by generalizing graph convolution
to a hypergraph structure to learn more discriminative fea-
tures from multiple pixel nodes. The hypergraph convolution
operation can be defined by the generalization of the graph
convolution operation. The proposed TH2GCN is a more
general framework than traditional GCN. For example, a third-
order adjacency tensor is required to represent the interaction
of three nodes in the hypergraph. Therefore, the hypergraph
convolution operation based on the third-order adjacency
tensor is defined as

Xl+1 = σ
�
AXlXlW l� (7)

where A ∈ RN×N×N represents the normalized adjacency
tensor. Xl ∈ RN×D is the input feature of the lth layer.
W l ∈ RD×D×D′ is the learnable weight tensor. Xl+1 ∈ RN×D′ is
the output feature of the lth layer. σ(·) represents an activation
function, such as the ReLU(·).

In addition to the feature extraction capability, the number
of parameters and the time complexity are also important
evaluation indicators for the proposed TH2GCN method. For
the third-order hypergraph convolutional operation in (7), the
parameter space complexity is O(D2D′) and the computational
time complexity is O(N3D + N2D2 + ND2D′). It is very
clear that the size of the hypergraph adjacency tensor grows
exponentially with the order number, and such extremely large
storage and computational complexity is unacceptable. This
phenomenon is known as the curse of dimensionality, and
a proper tensor decomposition format can effectively solve
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this problem. Thus, the hypergraph convolution operation
in TH2GCN is defined via the CP tensor decomposition of
the adjacency tensor, resulting in a more expressive high-
order node interaction scheme. In particular, similar to the
eigenvalue decomposition for a matrix, CP decomposition ana-
lyzes tensors via factorization, which decomposes the tensor
representing the hypergraph adjacency tensor. Therefore, the
third-order adjacency tensor A in (7) can be decomposed into
a set of component rank-one tensors, which are represented as

A ≈ I×1A(0)
×2A(1)

×3A(2) (8)

where A(0), A(1), A(2) ∈ RN×R1 are a series of factor matrices.
Generally, we have the rank R1 ≤ N in an adjacency tensor.
I ∈ RR1×R1×R1 is an identity tensor.

Next, by plugging (8) into (7), the hypergraph convolution
operation using the CP decomposition can be reformulated as

Xl+1 = σ
�

I×1A(0)
×2A(1)

×3A(2)XlXlW l
�
. (9)

Equation (9) can be simplified as

Xl+1 = σ
�

A(0)
×2A(1)

×3A(2)XlXlW l
�
. (10)

Another third-order tensor is the learnable weight tensor
W l. So, we also apply the CP decomposition structure with
the rank R2 to decompose the weight tensor W l, which can
be expressed as

W l ≈ I×1W l(0)
×2W l(1)

×3W l(2)
(11)

where W l(0)
,W l(1)

∈ RD×R2 , and W l(2)
∈ RD′×R2 are a set of

factor matrices. I ∈ RR2×R2×R2 is an identity tensor. Thus, (10)
can be expressed as

Xl+1 = σ
�

A(0)
×2A(1)

×3A(2)XlXlW l(0)
×2W l(1)

×3W l(2)
�

(12)

where W l(0)
,W l(1), and W l(2) are learnable weight matrices in

the lth layer.
We could also rewrite (12) with the element-wise dot

aggregation function form as

Xl+1

= σ
n

A(0)
×2

n�
A(1)T
×3 XlW l(0)

×2

�
�

�
A(2)T XlW l(1)

×3

�o
W l(2)T

o
(13)

where � denotes the componentwise product.
Low-order information can also be very important in some

cases. However, (13) considers more on the second-order
interactions and ignores some first-order information. We
concatenate the original feature vector with a scalar 1 to
help TH2GCN with low-order information modeling. By using
homogeneous coordinates, i.e., appending an entry equal to
one to each of the input feature Xl, (13) can be written as

Xl+1 = σ

�
A(0)
×2

��
A(1)T
×3

�
Xl

1

�
W l(0)

×2

�
�

�
A(2)T

�
Xl

1

�
W l(1)

×3

��
W l(2)T

�
. (14)

Since the dot product of many vectors would lead to the
numerical insatiability empirically, a new activation function
σ′ is added in (14). In experiments, the commonly used

Fig. 6. Hypergraph convolution operation based on the Mth-order adjacency
tensor.

activation function Tanh(·) is used. The final expression of
the third-order hypergraph convolution operation with the CP
decomposition is represented as

Xl+1 = σ

�
A(0)
×2σ

′

��
A(1)T
×3

�
Xl

1

�
W l(0)

×2

�
�

�
A(2)T

�
Xl

1

�
W l(1)

×3

��
W l(2)T

�
. (15)

After exploiting the CP decomposition of the adjacency
and weight tensors as shown in (15), the parameter space
complexity and computational time complexity can be reduced
into O((2D + D′)R2) and O(2R1D(N + R2) + NR2(R1 + D′)),
respectively. In summary, the proposed TH2GCN method can
efficiently extract high-order discriminative information from
the hypergraph with low complexity, thereby improving HSI
classification performance.

D. Tensorized Mth-Order Hypergraph Convolutional
Network

In Section III-C, the hypergraph convolution operation of
the tensorized third-order HGCN is introduced in detail to
facilitate understanding. In addition, when many data are
constructed as hypergraphs in practical applications, the hyper-
edges often contain more than three nodes. Therefore, the
higher order tensors will be utilized to represent these hyper-
graphs more accurately. The hypergraph convolution operation
of TH2GCN based on the Mth-order adjacency tensor is
defined as

Xl+1 = σ
�
AXl[M−1]W l

�
(16)

where A ∈ R
N×, . . . ,×N„ ƒ‚ …

M represents the normalized adjacency
tensor. Xl [M−1] is M−1 times outer product of the input feature
Xl ∈ RN×D in the lth layer. W l ∈ RD×...×D×D′ is a learnable
weight tensor in the lth layer. The output features are defined
as Xl+1 ∈ RN×D′ . The CP decomposition is used to decompose
A and W l. The hypergraph convolution operation based on
the Mth-order adjacency tensor is shown in Fig. 6, which is
written as

Xl+1 = σ

�
A(0)
×2σ

′

��
A(1)T
×3

�
Xl

1

�
W l(0)

×2

�
�. . . �

�
A(M−1)T

�
Xl

1

�
W l(M−2)

×M

��
W l(M−1)T

�
. (17)
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Algorithm 1 Training TH2GCN for HSI Classification
Input: HSI data X, Ground truth Y;

1: Segment the whole image into superpixels via SLIC
algorithm;

2: Split hyperpixels into multiple batches;
3: Construct a set of adjacency tensors {As|s =

1, . . ., d(N/K)e};
4: These adjacency tensors As can be decomposed into a set

of component rank-one tensors according to Eq. (8);
5: Parameter setting and weights initialization;
6: for epoch≤ 3000 do
7: for s=1 to d(N/K)e do
8: Calculate the features X1 of the lst layer by

Eq. (15);
9: Calculate the features X2 of the 2nd layer by

Eq. (15);
10: Minimize the loss function by Eq. (19);
11: Back propagation and update the parameters by Adam

optimizer;
Output: Classification map O.

E. Batch Strategy

Most GCN-based networks are trained and tested by using
full-batch gradient descent, where all samples are utilized to
perform gradient descent in each iteration. If the proposed
method directly applies the same full-batch strategy, sufficient
storage space is required. Since the reduction of the order
number breaks the structure of the hypergraph, we adopt the
dimension reduction of each order. A feasible solution to
address this issue is to use batch processing.

Specifically, given a segmented HSI data, superpixels are
denoted as X = {x1, x2, . . . , xN}. We construct a node sampler
with a budget K(K � N) and repeatedly apply the sampler
to HSI data until each node is sampled. Next, we input
these sampled batches to construct a set of hypergraphs
Gs = {(Vs, Es,As)|s = 1, . . . , d(N/K)e}, where de denotes the
ceiling operation. Our TH2GCN can perform the hypergraph
convolution operation in batches. By collecting the outputs
of all batches, the final output in the (l + 1)th layer can be
reformulated as

H =
h
X1+1

1 , . . . , X1+1
N/K

i
. (18)

Finally, the output classification results of TH2GCN can
be learned by O = Softmax(H). To train this network, the
commonly used cross-entropy loss function is employed to
minimize the discrepancy between the predicted labels gener-
ated by the network and the ground-truth labels of the training
samples. Hence, the objective function of TH2GCN can be
formulated as

Loss = −
X
g∈yG

CX
f =1

Yg f lnO (19)

where yG is the set of indices corresponding to the labeled
examples, C denotes the number of classes, and Y denotes
the true label. The implementation detail of our TH2GCN is
shown in Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, we conduct numerical experiments on three
different HSI datasets (i.e., Indian Pines, Houston, and Liao
River Estuary datasets) to evaluate the effectiveness of the
proposed TH2GCN. In particular, the detailed information of
these HSI datasets and several baseline models are described
in Sections IV-A and IV-B, respectively. In addition, hyperpa-
rameter experiments are conducted in Section IV-C to gain a
better knowledge of the proposed model. Next, Section IV-D
presents the experimental results to verify the effectiveness
of the proposed TH2GCN method. Section IV-E provides
the impact of different numbers of training samples on the
proposed method. Finally, a number of ablation experiments
are carried out in Section IV-F to confirm the impact of each
component of our method.

A. Experimental Data

In our experiments, three HSI datasets are adopted to evalu-
ate the performance of our model, whose detailed information
are described as follows.

1) Indian Pines Dataset: The dataset was recorded by the
airborne visible-infrared imaging spectrometer (AVIRIS)
over the Indian Pines test site in North-Western Indiana
in 1992. It contains 145 × 145 pixels with a spatial
resolution of 20 m/pixel and 220 spectral bands in the
wavelength range from 0.4 to 2.5 µm. By removing 20
water absorption and noisy bands, 200 bands are used
for all experiments. This image contains two-thirds of
agricultural lands, one-third of forests, and other natural
perennial vegetation, for a total of 16 land-cover classes.

2) Houston Dataset: The data was gathered with the com-
pact airborne spectrographic imager (CASI) sensor over
the University of Houston, TX, USA, and the surround-
ing area in June 2012, which were introduced in the
2013 IEEE Geoscience and Remote Sensing Society
(GRSS) Data Fusion contest. Both hyperspectral and
LiDAR data have a spatial size of 349 × 1905 pixels
with a spatial resolution of 2.5 m. For the hyperspectral
data, there exist 144 spectral bands with the wavelength
ranging from 0.38 to 1.05 µm. The Houston dataset
contains 15 land cover classes, such as “Tree,” “Water,”
and “Commercial.”

3) Liao River Estuary Dataset: The dataset was recorded
by GF5-AHSI on the Liao River Estuary wetland, Panjin
City, Liaoning Province. This image contains 680 ×
640 pixels with the spatial resolution of 30m and 330
spectral bands. The image is comprised of nine differ-
ent land-cover classes, such as “Phragmites australis,
“Paddy fields,” “Suaeda salsa,” and “Intertidal muds.”
The number of labeled samples in the Liao River Estuary
dataset is small and discrete.

For the three datasets described above, we randomly select 30
labeled pixels in each class for training. Classes containing
fewer than 30 samples are limited to 15 training samples.
Meanwhile, the remaining samples are used as the test set
to evaluate the classification performance of the proposed
TH2GCN method. Besides, the number of training samples
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TABLE I
NUMBER OF TRAINING SAMPLES AND TOTAL SAMPLES FOR INDIAN PINES, HOUSTON, AND LIAO RIVER ESTUARY DATASETS

and all pixels of different classes in the Houston dataset are
represented in Table I.

B. Baseline Models

To verify the effectiveness and classification accuracy of
the proposed method, some classical classification methods
are adopted as comparison methods. We compare our model
with the following methods.

1) SVM [13]: SVM is the most classical classification
method, which is performed on the well-known libsvm tool-
box3 in our case.

2) CNN [19]: The model is composed of three 2-D convo-
lutional blocks and a softmax layer. Each convolutional block
involves a 2-D conventional layer, a BN layer, a max-pooling
layer, and a ReLU activation layer.

3) GCN [51]: GCN applies a localized first-order spectral
filter on graphs, which can be considered a convolutional
neural network for processing graph-structured data.

4) FuNet [33]: The method combines features from CNNs
and GCNs by additive fusion, element-wise multiplicative
fusion, and concatenation fusion to improve classification
results in HSIs.

5) MDGCN [38]: The MDGCN constructs graphs with
different neighborhood scales to leverage the hidden spatial
context at various scales. In addition, the method gradually
refines the graphs during the convolution process to reduce
the influence of a poorly predefined graph.

6) HCGN [67]: The HCGN method captures pixel-level
fine information and superpixel-level long-distance structural
information for HSI classification.

7) F2HNN [46]: The F2HNN network generates hyper-
edges from features of different modalities to construct
a hypergraph representing multimodal features in HSIs.

Subsequently, three feature fusion strategies are employed to
integrate these multimodal features for HSI classification.

8) MF-RHCN [45]: The MF-RHCN method automatically
updates the hyperedge weights to construct a hypergraph by
fusing spectral and spatial features for HSI classification.

9) HGCN-MHF [68]: The HGCN-MHF proposes a CNN
branch for capturing spatial and spectral pixel-level features,
designs an HGCN branch to extract the superpixel-level fea-
ture, and develops a score-weighted feature fusion strategy to
enhance the integration of features from both branches for HSI
classification.

10) CSFGNet [69]: CSGNet utilizes an HGCN branch
for superpixel-level high-order feature extraction and a CNN
branch for pixel-level local feature enhancement.

In addition, four mainstream evaluation indexes [70], i.e.,
per-class accuracy, OA, average accuracy (AA), and kappa
coefficient (κ), are adopted for the sake of evaluating and
analyzing the performance of the proposed method presented
in this article and other related works.

C. Experimental Settings

In the section, the effects of several crucial parameters, such
as the order number of the adjacency tensor M, the batch size
K, the rank R1, the rank R2, and the training epoch in the
proposed TH2GCN method, are evaluated in the following.

1) Analysis of the Order Number M: The adjacency tensor
is the high-order extension of the adjacency matrix. The order
number of a tensor M is the number of its dimensions. The
comparison results of the proposed method using different
orders are shown in Table II, from which the classification
accuracies of the proposed method increase with the larger
value of M. The results demonstrate that the proposed method
benefits from higher order information modeling. Considering
that both the number of network parameters and the time
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TABLE II
OA (%) RESULTS OF THE PROPOSED METHOD USING DIFFERENT

ORDER NUMBERS M ON THREE DATASETS

TABLE III
OA (%) RESULTS OF THE PROPOSED METHOD USING DIFFERENT

BATCH SIZES ON THREE DATASETS

Fig. 7. OA (%) results of the proposed TH2GCN method under different
ranks. (a) OA (%) results of the proposed TH2GCN method under different
ranks of adjacency tensors. (b) OA (%) results of the proposed TH2GCN
method under different ranks of weight tensors.

complexity increase as the value of M increases, the third-
order adjacency tensor is chosen to represent the hypergraph
structure (M = 3) in our experiments.

2) Analysis of Batch Size K: The batch size refers to the
number of samples in each batch, which also affects the con-
struction of the hypergraph. Table III shows the classification
accuracies of the proposed model under different batch sizes
in the range of {32, 64, 128, 256, 512}. As can be seen, OA
results initially increase and then plateau as the batch size
increases on three datasets. This improvement is attributed to
the fact that more samples result in more complex correlations,
emphasizing the effectiveness of high-order relations. In order
to strike a balance between experimental accuracy and time
complexity, 128 is selected for all datasets in the following
experiments.

3) Analysis of Rank R1: R1 is the rank from the CP
decomposition of the adjacency tensor, which controls the
tradeoff between parameter efficiency and expressiveness. We
evaluate the influences of rank R1 on model performance by
setting its value of R1 to between 5 and 125 in increments
of 10 for the Indian Pines, Houston, and Liao River Estu-
ary datasets when the dimension of the adjacency tensor is
128 × 128 × 128. These results of TH2GCN using different
ranks are shown in Fig. 7(a), where the classification result
initially improves and then gradually becomes more consistent
as the value of R1 increases. In the Indian Pines dataset, similar
features are distributed continuously over a large area in
space, and the pixel values in the spatial neighborhood change

Fig. 8. OA (%) results of the proposed TH2GCN method with different
network layers on three datasets.

smoothly. Therefore, when the optimal CP decomposition
rank is small, it can effectively capture the main features
of the constructed adjacency tensor and obtain the optimal
classification result. In contrast, the Houston and Liao River
Estuary datasets exhibit significant spatial heterogeneity, small
target sizes, and complex feature distributions, with more
complex data structures. Therefore, it is necessary to choose a
higher rank in CP decomposition for accurate representation of
the constructed adjacency tensor and satisfactory classification
results. In subsequent experiments, we set R1 to 35, 115, and
95 for the Indian Pines, Houston, and Liao River Estuary
datasets, respectively.

4) Analysis of Rank R2: In the proposed method, the
network depth is fixed at two layers, with each layer containing
a weight tensor for feature transformation. For computational
convenience, we set the CP decomposition ranks of both
weight tensors to the same value. To evaluate the impact of the
CP decomposition rank R2 on model performance, experiments
are conducted by varying R2 within the set {5, 10, 15, 20, 25,
30, 35, 40, 45, 50}. The OA results of TH2GCN using different
ranks R2 are shown in Fig. 7(b). The classification performance
of TH2GCN initially improves with increasing rank before
plateauing beyond a certain point. The Houston and Liao River
Estuary datasets exhibit stronger spatial heterogeneity than
the Indian Pines dataset, requiring more parameters to learn
effective features. Therefore, R2 is set to 25 for the Indian
Pines. In addition, R2 is set to 45 for the Houston and the
Liao River Estuary datasets.

5) Analysis of Network Layer: To investigate the effect
of layer depth on the classification performance of the pro-
posed TH2GCN method, experiments are performed across
the Indian Pines, Houston, and Liaohe Estuary datasets with
depths ranging from 1 to 6 layers. As depicted in Fig. 8,
classification accuracy initially increases with greater layer
depth, but subsequently declines beyond a certain threshold.
For the Indian Pines dataset, the highest accuracy is achieved
with five layers. In contrast, the best performance on the
Houston and Liaohe Estuary datasets is achieved with a depth
of two layers. To balance performance and computational
efficiency, a network depth of two layers is selected for
subsequent experiments on three datasets.

6) Analysis of Epoch: To analyze the empirical con-
vergence of the proposed method, Fig. 9 presents the
cross-entropy loss values over training samples at different
epochs on three HSI datasets. For both the Indian Pines and
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TABLE IV

CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE INDIAN PINES DATASET

TABLE V

CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE HOUSTON DATASET

Fig. 9. Empirical convergence analysis of the proposed method on three HSI
datasets.

Liao River Estuary datasets, it is evident that the training
loss rapidly decreases before iteration 3000, then the rate of
decrease slows noticeably thereafter. For the Houston dataset,
the training loss significantly reduces during the first 1000
epochs and then remains stable with negligible variation from
1000 to 5000 epochs. We set the training epoch as 3000 to
ensure that the model has a sufficient chance to converge.

D. Classification Results

To evaluate the effectiveness of the proposed TH2GCN
method, we compare the proposed method with the base-
line methods on the Indian Pines, Houston, and Liao River
Estuary datasets. Tables IV–VI record the per-class accuracy,
OA, AA, and κ of our method and all baseline methods.
Furthermore, the visualizations of all methods on the Indian
Pines, Houston, and Liao River Estuary datasets are displayed
in Figs. 10–12. The experimental analysis is detailed as
follows.

1) Results on the Indian Pines Dataset: The classification
results of all baseline methods and TH2GCN on the Indian
Pines dataset are shown in Table IV, where the best results in
each category (i.e., each row) are marked in bold. As shown
in Table IV, we can find that compared with the second best
method, the proposed TH2GCN method achieves gains of
0.61%, 1.65% and 0.69% in OA, AA, and κ, respectively.
Besides, TH2GCN maintains the best performance in the
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Fig. 10. Classification maps for the Indian Pines dataset. (a) Ground-truth map. (b) SVM. (c) CNN. (d) GCN. (e) FuNet. (f) MDGCN. (g) HCGN.
(h) F2HNN. (i) MF-RHCN. (j) HGCN-MHF. (k) CSGNet. (l) TH2GCN.

Fig. 11. Classification maps for the Houston dataset. (a) Ground-truth map. (b) SVM. (c) CNN. (d) GCN. (e) FuNet. (f) MDGCN. (g) HCGN. (h) F2HNN.
(i) MF-RHCN. (j) HGCN-MHF. (k) CSGNet. (l) TH2GCN.

majority of cases, such as class 1, class 4, class 5, class 7,
class 8, class 9, class 13, class 15, and class 16. This superior
performance is due to the effectiveness of our method in
extracting high-order information from the hypergraph. Specif-
ically, the OA of F2HNN is 89.69%, while the accuracy of
GCN is 69.71%. The GCN model performs worse than the
hypergraph GCN because the hypergraph structure can con-
vey complicated high-order correlations among data. Besides,
TH2GCN offers an absolute improvement of 5.72% in OA over
F2HNN, which proves that the tensor-based representation of
the hypergraph can better model the high-order interaction
between pixels compared to the incidence matrix.

2) Results on the Houston Dataset: Table V shows the
classification accuracies of the baseline methods and TH2GCN
on the Houston dataset. The OA, AA, and κ of our proposed
method are 85.99%, 87.95%, and 84.79%, respectively. The
classification performance of TH2GCN outperforms all base-
line methods. In particular, the SVM and CNN methods lag
behind TH2GCN by margins of 7.2% and 8.12%, respectively,
in OA. This is attributed to their predominant focus on local
information, which leads to a reduced capacity for balancing
sample processing by disregarding global information. Signif-
icantly, the OA of TH2GCN surpasses that of four GCN-based
methods, such as GCN, FuNet, MDGCN, and HCGN, and four
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Fig. 12. Classification maps for the Liao River Estuary dataset. (a) Ground-truth map. (b) SVM. (c) CNN. (d) GCN. (e) FuNet. (f) MDGCN. (g) HCGN.
(h) F2HNN. (i) MF-RHCN. (j) HGCN-MHF. (k) CSGNet. (l) TH2GCN.

TABLE VI

CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE LIAO RIVER ESTUARY DATASET

HGCN-based methods, such as F2HNN, MF-RHCN, HGCN-
MHF, and CSGNet, by margins ranging from 2.07% to 8.19%.
This underscores the efficacy of the hypergraph convolution
operation based on the CP decomposition in enabling the
model to learn complex discriminative features from high-
order correlations between multiple pixels, thereby obtaining
better classification results.

3) Results on Liao River Estuary Dataset: The experimen-
tal results on the Liao River Estuary dataset are presented
in Table VI. The proposed model yields highly competitive
classification accuracies of 95.15%, 95.21%, and 94.41%,
which also achieves superior performance than the baseline
methods. In particular, it can be found that the classifica-
tion performance of CNN, GCN, FuNet, MDGCN, HCGN,
F2HNN, MF-RHCN, HGCN-MHF, and CSGNet is superior
to SVM in terms of OA, AA, and κ in most cases. The above
experimental results show that for traditional models, such
as SVM, the way of converting the HSI data into vectors
leads to the loss of the spatial and geometric structure infor-
mation. Besides, it can be observed that TH2GCN achieves
the best OA, AA, and κ values, outperforming superpixel-
based methods, MDGCN, HCGN, HGCN-MHF, and CSGNet.
The reason is that the proposed TH2GCN via the CP tensor
decomposition of the hypergraph adjacency tensor achieves
a message-passing mechanism from high-order interactions
in the adjacency tensor, which extracts more discriminative

features from multiple pixel nodes in HSI and yields higher
classification accuracy.

The classification maps of different methods on the Indian
Pines dataset are shown in Fig. 10. We can see that the
classification map of TH2GCN is closer to the ground-truth
than other baseline methods. Specifically, the classification
maps obtained by CNN, GCN, and FuNet suffer from noise
mistakes within certain regions due to the lack of spatial
context. Comparatively, the results of the proposed TH2GCN
method, MDGCN, HCGN, HGCN-MHF, and CSGNet yield
smoother visual effects and show fewer misclassifications
than other compared methods, which can obtain satisfactory
performance in these small regions. This is because SLIC, as a
preprocessing tool, can better capture contextual information.
Furthermore, the proposed method can produce better clas-
sification results, demonstrating its effectiveness. In addition,
Figs. 11 and 12 show the visual and qualitative comparison
of different methods on the Houston and Liao River Estuary
datasets. The classification map of TH2GCN is evidently
less noisy and smoother, demonstrating the superiority of
TH2GCN.

E. Impact of the Number of Labeled Examples

When given sufficient training samples, most HSI clas-
sification methods can achieve satisfactory performance.
However, in most cases, the labeled samples are very limited
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Fig. 13. OA (%) of all methods with different numbers of training samples for three HSI datasets. (a) Indian Pines. (b) Houston. (c) Liao River Estuary.

TABLE VII

ABLATION RESULTS WITH/WITHOUT THE SCALAR 1

due to expensive human and material resources. Therefore,
small-sample learning capability, i.e., the performance of
HSI classification methods with very few training samples,
becomes another important evaluation index. In order to
evaluate the classification performance of TH2GCN and other
HSI classification methods in the case of different training
conditions, we perform experiments varying the number of
training samples per class from 5 to 30 with an interval of
5. Notably, specifically for the Indian Pines dataset, when
the number of pixels in certain classes does not reach the
number of training samples, 15 samples per class are chosen
as the training set. The OA results of some HSI classification
methods on three datasets are reported in Fig. 13. Compared
to other methods, too few samples, such as 5 or 10 training
samples, result in poor performance in HSI classification. This
reason is that the semisupervised TH2GCN model is difficult
to train well due to the presence of fewer training samples
in some batches which leads to performance degradation.
Besides, we can observe that the proposed method generally
achieves higher classification results than the other baseline
methods when the training samples are between 20 and 30
per class. These results benefit from the valuable high-order
correlation information between multiple samples exploited in
a hypergraph and the discriminative information extracted by
the proposed hypergraph convolution operation, which makes
up for the deficiency of prior information in the small training
set and enhances its small-sample learning ability.

F. Ablation Study

Each component in the proposed method plays a pivotal
role. In this section, a series of ablation studies is conducted
to evaluate the performance of each module of the proposed
model.

1) Influence of Connecting Scalar 1: The proposed
TH2GCN employs the technique of concatenating the scalar 1
to highlight low-order information. To test its effectiveness, an
ablation model, called w/o scalar 1, is designed by removing
the scalar 1. Table VII reports the classification results of

TABLE VIII

EXPERIMENTAL RESULTS OF THE PROPOSED METHOD WITH DIFFERENT
ACTIVATION FUNCTIONS ON THREE DATASETS

the ablation model and the proposed model for the Indian
Pines, Houston, and Liao River Estuary datasets. We can
observe that the proposed model achieves gains of 0.72%,
6.76%, and 2.48% on three datasets compared to the model
without the scalar 1 in terms of OA, respectively. These results
demonstrate that the technique of concatenating the scalar 1
effectively improves the expressiveness of the model.

2) Influence of the Activation Function: The activation
function Tanh(·) in (15) is used to avoid numerical instabilities
during training caused by the repeated products. To evaluate
its contribution, an ablation model is designed by removing
the activation function, called w/o AF. Furthermore, we also
replace tanh with another common activation function, such
as ReLU, Softplus, and Sigmoid, while maintaining all other
settings the same. Table VIII reports the classification results
of the proposed method with different activation functions. The
proposed method with Tanh outperforms the w/o AF model by
margins of 0.32%, 13.2%, and 1.11% in OA for three datasets.
In addition, the proposed method, employing either Tanh
or Sigmoid activation functions, demonstrates significantly
superior performance compared to the variant utilizing ReLU
or Softplus. These results indicate that bounded activation
functions, such as Tanh and Sigmoid, are more effective
than the unbounded activation functions, such as ReLU and
Softplus, in improving the classification performance of the
proposed method on three datasets.

V. CONCLUSION

This article proposes a novel tensorized high-order hyper-
graph convolutional network, called TH2GCN, which general-
izes the traditional GCN to achieve high-order discriminative
information extraction from hypergraphs for HSI classification.
Specifically, we use the hypergraph to effectively model com-
plex spatial relationships between pixels in HSIs, and apply
the adjacency tensor to better describe the intrinsic high-order
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interaction information of the hypergraph structure. In addi-
tion, the hypergraph convolution operation based on adjacency
tensors can effectively extract more discriminative features
encoded in hypergraphs to improve HSI classification per-
formance while reducing computational complexity by using
tensor decomposition. Furthermore, the HSI data are divided
into multiple batches to train and test the proposed TH2GCN
in a minibatch fashion. Extensive experimental results on three
HSI datasets show that the proposed TH2GCN method is
superior to other comparison methods. In future research, we
will develop a distributed framework for efficiently training
the proposed network with a particular focus on address-
ing ultralarge HSI classification tasks. Considering that the
construction of hypergraphs and the CP decomposition of
adjacency tensors are unsupervised processes, we will further
integrate these components into networks and use attention
mechanisms for dynamic hypergraph construction to boost the
feature extraction.
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