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Abstract— The mining of meaningful features and effective
fusion of multisource remote sensing (RS) data have always
been the challenging research problems in the joint clas-
sification of hyperspectral image (HSI) and light detection
and ranging (LiDAR) data. In this article, we propose a
multifrequency graph convolutional network with cross-modality
mutual enhancement (MFGCN-CME) for multisource RS data
classification. Specifically, we design an adaptive multifrequency
graph feature learning module to capture the low- and high-
frequency multiscale features of HSI and LiDAR in parallel
and further adaptively aggregate them. Then, we propose a
bipartite graph (BG) enhancement learning module to obtain
the spatial-enhanced HSI features and spectral-enhanced LiDAR
features by propagating intermodality information. To the best
of our knowledge, the BG is first used to multisource RS
data classification task. Furthermore, compared with traditional
fusion methods, a gated fusion module is used to fully explore
the complementarity of two data sources. Finally, a joint loss
function combing a classification loss and a semisupervised
contrastive loss is developed to improve the model robustness.
Comprehensive experiments on different HSI and LiDAR
datasets demonstrate that our proposed method can yield better
performance compared with several state-of-the-art multisource
RS data classification methods.

Index Terms— Bipartite graph (BG), contrastive learning,
gated fusion, graph convolutional neural networks (CNNs), mul-
tifrequency, multisource remote sensing (RS) data classification.

I. INTRODUCTION

WITH the rapid development of satellite sensor technol-
ogy, remote sensing (RS) images, i.e., hyperspectral
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image (HSI) [1], [2], light detection and ranging (LiDAR),
multispectral image (MSI) [3], and synthetic aperture radar
(SAR), are acquired by various sensors, which could measure
different aspects of the same object on the Earth’s surface.
Multisource RS data classification task plays a significant
role in Earth observation mission applications, such as
plant monitoring [4] and urban development [5]. Among
these multisource RS data, HSI provides plenty of spectral
information of land covers, but its passive imaging mode
makes it susceptible to cloudy weather. LIDAR is an active
RS technology, providing elevation and spatial information
robust to weather and illumination variations. Currently, the
comprehensive utilization of HSI and LiDAR data has received
extensive attention for accurate land cover classification.

The HSI classification task, which assigns each pixel
to a unique category by using the spatial and spectral
information [6], [7], is useful for a variety of applications,
i.e., military target detection [8], vegetation monitoring [9],
and disaster prevention and control [10]. Due to the
complex spatial distribution and the spectral heterogeneity
of objects, the HSI classification is still a challenging task.
Some traditional methods for HSI classification, such as
support vector machine (SVM) [11], random forest [12],
sparse-collaborative representation [13], multiple logistic
regression [14], and spectral clustering [15], extract the
spatial-spectral features to improve the final classification
accuracy. However, these techniques are quite empirical and
depend heavily on professional expertise. Inspired by the
success of deep learning methods to automatically extract
discriminative and abstract features, deep neural networks,
such as autoencoder networks [16], [17], convolutional neural
networks (CNNs) [18], [19], [20], deep belief networks [21],
capsule networks [22], recurrent neural networks (RNNs) [23],
and long short-term memory networks [24], have been rapidly
introduced into the HSI classification task and have produced
satisfactory results. However, these deep learning methods
often ignore the intrinsic correlation between adjacent land
covers in HSIs.

To address the above problem, graph convolutional networks
(GCNs) aggregate and transform information from the
neighbors of each pixel in HSIs to better model the
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spatial contextual structure for HSI classification [25], [26].
According to the usage of labeled and unlabeled data, GCN-
based HSI classification methods can generally be divided into
three categories, i.e., the supervised GCN, the unsupervised
GCN, and the semisupervised GCN. In the supervised GCN
models, the labeled data are used to construct a downsampled
graph (or topological structure) for the training of the network
for HSI classification [27], [28]. Nevertheless, collection of
labeled data is a highly time-consuming, expensive, and a
complicated process. Unlabelled samples are largely available
at no cost. The unsupervised GCN learning framework is
trained by a given set of unlabeled data for HSI classification
task [29]. However, the two different types of GCN-based
HSI classification models mentioned above separately involve
labeled and unlabeled data in train stage, which fail to fully
utilize the effective sample information and result in the
poor generalization ability. This has motivated researchers to
develop the semisupervised GCN model for HSI classification
task, which encodes the set of labeled and unlabeled samples
into a graph based on their spectral similarity or spatial
distance to train the HSI classification model and improve the
classification performance [30], [31], [32], [33].

Although the above HSI classification methods have
achieved good performance, the presence of numerous mixed
pixels in the low-resolution HSI poses a significant challenge
in distinguishing objects with comparable spectral reflectance
due to the limitations of hardware imaging equipment. Unlike
HSI data, LiDAR data bring high-precision digital elevation
models and information on the target altitude [34], which
can provide complementary information for the HSI data
to satisfy different application requirements. Therefore, more
and more researchers take advantage of HSI and LiDAR to
interpret ground objects at more detailed and precise level.
Recently, GCNs have also been used to extract the structural
information of HSI and LiDAR for multisource RS data
classification task. For example, in [35], a dual GCN extracted
the spectral features with spectrum internal connection and
a dense network acquired the spatial feature, which are
fused by a fully connected network for HSI and LiDAR
classification. In addition, a dual-coupled CNN-GCN that
contains a coupled CNN and a coupled GCN was proposed
to achieve the complementarity of spatial-spectral features
and structural features from hyperspectral and LiDAR data
for classification task [36]. Xiu et al. [37] combined the self-
supervised feature extraction module and the semisupervised
graph attention network module to mitigate the dependence
on annotated samples in the joint land cover classification
with the HSI and LiDAR data. These GCN-based methods
are beneficial for feature extraction, but the effective fusion of
HST and LiDAR features is also a key issue for multisource RS
classification task. The feature fusion combines the features
from different data sources while preserving the sufficient
semantic information, and finally sends the fusion feature to
a classifier to complete classification. For instance, a graph
fusion strategy fused the graph features from different sources
by a transition graph [38]. By fusing the weight matrices of
HSI and LiDAR data, Du et al. [39] built a multimodal graph to
effectively fuse the feature information between multisource
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RS data for classification task. Zhang et al. [40] proposed
a novel SOTNet, which transmits structural information
and aligns physical properties, for effectively improving the
collaborative performance of multisource RS. In the unified
multimodal deep learning framework [41], a novel fusion
strategy, namely, cross fusion, was proposed to learn more
compact representations across modalities by interactively
updating the parameters of different subnetworks for better
classification performance.

Despite the fact that the above GCN-based multisource RS
data classification methods have obtained promising results in
the joint classification of HSI and LiDAR, four key issues still
need to be solved.

1) Existing methods which rely on low-pass filters produce
the poor classification accuracy on tiny objects and
boundary regions.

Existing multisource RS data classification methods
often use the weight sharing strategy to explore the
shared feature representations, which are hard to achieve
the interaction of information from multisource data and
may obtain nondiscriminative feature representations.
The above multisource RS data classification methods
often use the additive, elementwise multiplicative, and
concatenation strategies to fuse the HSI and LiDAR data,
which are difficult to fully explore the complementarity
of these two different data.

Most methods only consider semantic matching on
corresponding positions and ignore topology and label
information of HSI and LiDAR data, leading to the
suboptimal classification results.

2)

3)

4)

Therefore, in this article, we propose a multifrequency
graph convolutional network with cross-modality mutual
enhancement (MFGCN-CME) for multisource RS data
classification task. Experiments demonstrate the effectiveness
of the proposed method. The main contributions of this article
are presented as follows.

1) We develop an adaptive multifrequency graph feature
learning module (AMGFLM) to learn the low- and high-
frequency multiscale features of HSI and LiDAR data
by graph convolutional and graph wavelet convolutional
operations, and further use attention mechanism to fuse
the multiscale features, respectively, which addresses the
above issue (1).

We design a bipartite graph enhancement learning
module (BGELM) to achieve cross-modality mutual
enhancement of HSI and LiDAR features, which
solves the limitation (2). The bipartite graph (BG)
is first introduced into multisource RS classification.
Furthermore, a gated fusion module is introduced to
fully integrate different types of information from HSI
and LiDAR data sources and attack the limitation (3).
We design a semisupervised contrastive loss to promote
representation learning by constructing positive and
negative sample pairs based on the geometrical and
label information between HSI and LiDAR data, thus
boosting MFGCN-CME effectiveness and robustness.
The module alleviates the above limitation (4).

2)

3)
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Tllustration of our proposed model. (a) Data preprocessing constructs HSI and LiDAR graphs. (b) AMGFLM is designed to capture the low-frequency

multiscale features by graph convolutional operation in the purple modules and high-frequency multiscale features by graph wavelet convolutional operation
in the blue modules, and further adaptively aggregate them. (c) BGELM is used to obtain the spatial-enhanced feature representations of HSI data by LiDAR
features and spectral-enhanced feature representations of LiDAR data by HSI features. (d) Gated fusion module adaptively integrates the features from HSI
and LiDAR. (e) Joint loss function that combines the classification loss and the semisupervised contrastive loss improves model robustness.

The remainder of this article is organized as follows.
In Section II, the proposed method is described in detail.
Comprehensive quantitative analysis and evaluation of this
method are implemented in Section III. This article is finally
concluded in Section IV.

II. PROPOSED METHOD
A. Method Overview

HSI data contain many bands carrying a lot of spectral
information, and LiDAR data are rich in height (spatial)
information. These motivate us to design an MFGCN-CME for
better joint HSI and LiDAR data classification performance.
The overall architecture of the proposed method is represented
in Fig. 1. Specifically, the input HSI and LiDAR data are cas-
caded and sent to the simple linear iterative clustering (SLIC).
HSI and LiDAR graphs are constructed in Section II-B.
After that, the AMGFLM in Section II-C learns the fusion
of low- and high-frequency multiscale features. Then, the
BGELM can enhance spatial representations of HSI data
using LiDAR features and enhance spectral representations of
LiDAR data using HSI features, as shown in Section II-D.
Next, the gated fusion module explores the complementarity
of different features from HSI and LiDAR in Section II-E.
Finally, Section II-F introduces the joint loss function to
optimize all of the parameters in the proposed method. The
details of these modules are described as follows.

B. Data Preprocessing

Assuming that X5y € RInexWnexBri and X, €
RArnexWrexBe represent the HSI and LiDAR data, respec-
tively, where Hy, and Wy, denote the height and width

of both data, By is the number of spectral bands in the
HSI data, and B, is the number of channels in the LiDAR
data. These data usually contain a large number of pixels
N = Hpr X Wy in the spatial dimension. In the construction
of HSI and LiDAR graphs, if each pixel of HSI and LiDAR
data corresponds to a graph node, the large-scale adjacency
matrix will require large storage space and high computational
complexity. Therefore, the input HSI and LiDAR data are
cascaded along the channel dimension. Next, the SLIC
segments the cascaded image into a small number of compact
homogeneous superpixels, which is defined as

X = fsc(Xnl|Xc) (1)

where X € RMNex(BntBo) (N, « N) represents the
segmentation results, fspic(-) denotes the SLIC, and || is the
concatenation operation.

As shown in Fig. 1(a), to determine the dual branch
MFGCN-CME for HSI or LiDAR data, X is split into
X3 € RNexBr and X, e RMexBc galong the channel
dimension. Graph structured data contain two matrices: a
feature matrix and an adjacency matrix. For HSI data, each
above-obtained HSI superpixel is regarded as a node in HSI
graph. The feature X4, of the ith superpixel is obtained by
the average of its all pixels, and Xy = (X Xrys o vos X3y )
is referred as the feature matrix of HSI. The adjacency matrix
Ay of HSI indicates the relationship between superpixels,
which is calculated as

A A 2
o027 =S¢,

if XAH], € N()?H,)

Ay, = 2)
7t [ 0, otherwise

where X7 represents the ith superpixel in HSI, and A (X3;,)
is the set of neighbors of X4,. In addition, the HSI graph is
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Fig. 2. Proposed AMGFLM utilizes graph convolutional and graph wavelet
convolutional operations to learn the low-frequency and high-frequency
multiscale features, and further introduces attention mechanism to adaptively
aggregate them. (a) Low frequency. (b) High frequency. (c) Attention
mechanism.

dynamically updated to explore the optimal graph and produce
the discriminative embedded features [31]. Similar to HSI data,
X is the feature matrix of LiDAR, and the adjacency matrix
A, of LiDAR data is obtained by (2).

C. Adaptive Multifrequency Graph Feature Learning Module

In general, the frequency information in the image reflects
the speed of changes in pixel values in the spatial domain. For
HSI and LiDAR data, the smooth areas in the spatial domain
represent their low-frequency components, corresponding to
the main body of each class in the image. The high-frequency
components imply a higher change of pixel in the image,
which can be considered as the class boundary. We design an
AMGFLM to capture the low- and high-frequency multiscale
features in HSI and LiDAR by graph convolutional operation
and graph wavelet convolutional operation, and use attention
mechanism to aggregate these multiscale features, respectively,
which is depicted in Fig. 1(b). Therefore, the proposed
module can correctly classify the main part and the boundary
of each class simultaneously, which can address the issue
(1) in Introduction. The detailed flowchart of our proposed
AMGFLM is described in Fig. 2.

The proposed AMGFLM utilizes graph convolutional
operation and graph wavelet convolutional operation to learn
the low-frequency and high-frequency multiscale features.
Specifically, GCN utilizes Laplacian smoothing filter to make
adjacent nodes on the graph similar, so the node features in the
graph domain should be smooth [42]. Thus, we employ GCN
to extract the low-frequency features. Moreover, considering
that the high-order neighbor information contains valuable
hidden relationship between nodes, a multiorder GCN is
proposed to effectively capture the low-frequency multiscale
features from multiorder neighbors. Further, only low-
frequency features are not enough, we introduce graph wavelet
convolutional operation, which defines the convolutional
operation via the wavelet transform to learn high-frequency
features [43]. Thus, by introducing multiscale wavelets, graph
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wavelet convolutional operation is used to obtain high-
frequency multiscale features.

In the Ith layer, the low-frequency features Hll(;w, and
the high-frequency features Hé;ghv of the sth scale can be
computed by

U _ pllyl
H, =P Z'W, 3)
where H! is the convolutional result on Z' when Z° is X
or X.. W! is the sth scale’s learnable parameter for feature

transformation. P! in (3) is described as

S |
l’;l — Ds ZA‘DS : (48.)
* W, Flw] (4b)

where D {1/ Z)Asﬁs_(l/z) denotes the normalized adjacency
matrix with self-connections in which D is the diagonal
degree matrix of A* = A’ + I. In addition, W, is a set of
wavelets as bases [43]. Ff indicates a learned diagonal filter
matrix. Egs. (4a) and (4b) are used to learn the low- and high-
frequency features, respectively.

The attention mechanism assigns different weights to
multiscale features so that their useful features are selectively
emphasized and useless features are suppressed [44]. The
low-frequency and high-frequency multiscale features are
obtained separately by (4a) and (4b). Therefore, as one of
the low-frequency multiscale features, we introduce attention
mechanism to obtain attention weights for the low-frequency
multiscale features, which are calculated as

)i . exp(Hli;wJ)
alOWJ - Clow 14
Zj:l exp<Hlowj)
where Cjoy is the number of scales.
Next, the low-frequency features of different order neigh-

bors are aggregated by the obtained weights to get the new
representation, which can be learned by

(&)

Ciow
Hllow = z:al[owl Hll(;ws . (6)
s=1
Similar to the fusion of low-frequency multiscale informa-
tion mentioned above, attention mechanism is also introduced
to calculate the weights of high-frequency multiscale informa-
tion and fuse them. To ensure the integrity of the information,
a communication mechanism is established between two fre-
quencies to compliment the diverse information corresponding
to low- and high-frequency features mutually

)

where A (0 < A < 1) is the ratio of these two types of features.
o (+) is defined as ReLU(-) in this equation.

ZH _ o (,\H{;W +(1- A)H{lggh)

D. Bipartite Graph Enhancement Learning Module

In this section, to achieve spatial enhancement from LiDAR
to HSI data and spectral enhancement from HSI to LiDAR
data, we design a BGELM based on the BG and graph
attention mechanism, as shown in Fig. 1(c). To the best of
our knowledge, it is the first attempt to introduce the BG to
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Fig. 3. Detailed architecture of the proposed BGELM. The proposed BGELM
introduces the BG to model the relationship between HSI and LiDAR data,
and uses BG convolution to propagate the spatial information of LiDAR
into the HSI domain for enhancing the spatial features of HSI, and then
employs residual learning to fuse the enhanced features and original features
for obtaining Z;{/. The same operation is used to obtain the spectral-enhanced
information of LiDAR data Z]C/. (a) Neighborhood BG. (b) Semantic BG.
(c) BG. (d) BG convolution.
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model the relationship between HSI and LiDAR data. Based
on the constructed BG, the proposed module can propagate
and aggregate intermodality information to enhance the spatial
features of HSI data by LiDAR features and enhance the
spectral features of LiDAR data by HSI features, thereby
achieving the interaction of information from multisource
data more effectively and obtaining discriminative feature
representations. The module is used to solve the problem (2)
in Introduction. The architecture of our proposed BGELM is
shown in Fig. 3.

This module combines HSI and LiDAR data into one BG
to emphasize the information with strong correlation and
suppresses the weak one. The BG edge aims to reveal such
underlying relationship between samples of HSI and LiDAR
data, and the edge weights are increased to highlight their
importance. Thus, we construct the BG in the following
neighborhood and semantic relationships.

The neighborhood BG is designed to model the local
neighborhood correlation between samples of HSI and LiDAR
data. Specifically, consider that the samples at the same
spatial position from different sources are the same object.
In addition, the adjacent samples in each source image are
also the same object. Based on these image characteristics,
each edge in the neighborhood BG connects the two samples
in the corresponding neighborhood from different sources.
As illustrated in Fig. 3(a), the construction of the neighborhood
BG is expressed as

1 f 1 1
A, = | b o, €N () (8)
0, otherwise

where Z%i; and zlﬁj are the output of the Ist layer from the
HSI and LiDAR branches, respectively. The weight between
the ith sample in HSI and its nearby jth samples in LiDAR
is set as 1.

In addition, as shown in Fig. 3(b), the semantic BG is
designed to learn the feature similarity of HSI and LiDAR
data, which is described as

As, = sim (zlﬂi : zlﬁl) 9)

5505914

where sim(-) defines the cosine
z%_([ and zlﬁj.

The elementwise multiplication operation fuses the neigh-
borhood BG A s and the semantic BG As. And the normalized

fusion graph is obtained by

similarity between

Ar=ANOAs

AJ—}; _ eXp(A]:U)

lecv{:l exp(A]:ik)
where © indicates the elementwise dot.

Finally, the proposed BGELM based on the predefined
BG fully takes advantage of the cross-modality reasoning
procedure for feature enhancement. Specifically, the BG
convolutional operation propagates spectral information from
the HSI to LiDAR domain and enhances the features of LiDAR
while propagating spatial information from the LiDAR to HSI
domain and enhance the features of HSI. When HSI and
LiDAR data are regarded as the main modality and as the
auxiliary modality, the main idea of this module is that the
spatial information of LiDAR data are mapped to the HSI
domain in order to enhance the spatial features of HSI data.
In particular, inspired by graph attention mechanism, the BG
convolutional operation fuses all the neighboring nodes in the
auxiliary modality with the learned weights to get the guidance
matrix V.

(10)

ve, =0 () Ar,2l)) (11

where v, is the features of the ith sample in V. Furthermore,
to avoid the degradation problem, residual learning is also
utilized to fuse the enhanced features and original backbone
features, which is expressed as

z = (23,0 Ve + Z3) Wi (12)

where Wy, is the trained weight matrix. Zn}/ is the spatial-
enhanced features of HSI data.

Similarly, we also use the proposed BGELM to get
the spectral-enhanced LiDAR features. When LiDAR data
are considered as the main modality, our proposed module
propagates the spatial-spectral information of HSI to the
LiDAR domain to obtain the guide matrix V3¢, which is used to
enhance feature representation for LiDAR data. The enhanced
features are added to original features calculated as follows:

_ Ne AT 1
ij - U(Ei:lAf/;ZHi>

ZL = (ZLo Vi + Zh) W, (13)

where vy, is the features of the jth sample in V3, W, is
the trained weight matrix, and ZL' is the spectral-enhanced
information of LiDAR data.

E. Gated Fusion Module

After getting the output features from the HSI and LiDAR
branches, how to combine them becomes another critical
issue. However, most of the existing deep learning models
stack them together by using additive fusion, elementwise
multiplicative fusion, and concatenation fusion, which make
it challenging to explore the complementarity of HSI and
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Algorithm 1 MFGCN-CME for Multisource RS Data
Classification.
Input: The HSI data X,; The LiDAR data X ; Ground truth Y;
1: Segment the whole image into superpixels via SLIC algorithm;
2: Construct X4, Ay, Xz, and A, according to Egs. (1) and (2);
3: Parameter setting and weights initialization;
4: for epoch<10000 do
5:  Calculate Z}, and Z}. according to Eq. (7);
6: Obtain the spatial-enhanced representation Z;_t’ of HSI data
and the spectral-enhanced representation Z 'E/ of LiDAR data
by Egs. (11), (12), and (13);
7: Calculate Z3, and Z% by Eq. (7);
8: Obtian Z¢ and Z2 by fully connected layer and fuse Z3,
and Z% to gain Zy.r by Eq. (15);
9: Compute the HSI output O, the LiDAR output O,
and the fusion output Oy r;
Miniminze the joint loss function Eq. (16);
Back propagation and update the parameters by
Adam optimizer;
12:End for
Output: Classification map Oy -

10:
11:

LiDAR features. In order to solve the problem that also
is the issue (3) in Introduction, we propose a gated fusion
module to dynamically fuse the spatial-spectral features of
HSI data and spatial features of LiDAR data in our model
by designating contribution of each branch with regard to
their current characteristics. As a result, our model can pay
more attention to discriminative features and suppress noise.
As shown in Fig. 1(d), we first add the output features (i.e.,
Z% and Z%) of the 2nd layer from the HSI and LiDAR
branches to obtain the fusion features, and then input it to
a fully connected layer to generate the gated vector g, which
can be formulated as

g =0(Wo(Z3, + 27) + b,) (14)
where W, is the trainable parameter. b, is the bias.  means
the sigmoid function. The gate vector g is used to learn the
fusion features Z9_ . from HSI and LiDAR data sources as
follows:

20, =80Z5,+(1 -8 0OZ;. (15)

F. Loss Function

The proposed method requires an effective loss function to
guide model training. By combining contrastive learning [45],
[46], we propose a joint loss function that combines a
classification loss and a semisupervised contrastive loss to
improve model robustness during training step, which can be
described as

Loss = yLosSclas + (1 — 3)L0SScon (16)

where y is a balance factor to control the impact of LosSj,s
and Lossq, on the overall objective.

1) Classification Loss: All weights and biases in the
proposed model need to be learned. The output classification
results can be obtained by Softmax(-). Then, the cross-entropy
loss is used to calculate the classification error among the
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network output and the labels of the original labeled samples,
which is

c
Lossp = — Z Z Yeln O

8€yg f=1

a7)

where ys is the set of indices corresponding to the labeled
samples, C denotes the number of classes, ¥ represents the
label matrix, and Lossp is the classification loss. Similar
to [31], the network parameters are learned by using full-batch
gradient descent.

In the proposed MFGCN-CME, the network output is
composed of the HSI output Oz, the LiDAR output
Or, and the fusion output Op4p, which are entered
into (17) to obtain the three classification losses Lossg,,,
Losso,, and Losso,,, .. The total classification loss LosScias
can be expressed as

Lossclas = Lossg,, +Lossp, + Losso,,, .- (18)

2) Semisupervised Contrastive Loss: Contrastive learning
extracts feature representations by minimizing the distances
between features of similar samples and maximizing the
distances between those of dissimilar samples, which can
address the issue of small numbers of training samples in the
field of HSI classification [47], [48], [49]. However, existing
multisource RS data classification methods often only consider
semantic matching on corresponding positions. In this article,
a semisupervised contrastive loss is designed to explore the
rich contrastive relations of all of the samples (i.e., large
amounts of labeled and unlabeled samples) between HSI and
LiDAR based on the topological structure information and
label information between HSI and LiDAR data to learn
discriminative features

Losscon = Lossg + Lossyc (19)

where Lossgc and Lossi. are the graph contrastive loss
and label contrastive loss, respectively. Thus, the proposed
semisupervised contrastive loss is used to solve the issue (4)
in Introduction.

Considering that the characteristics of the same object
among different modalities are similar, we propose graph
contrastive loss Lossy. to construct extra positive pair based
on the topological information among different modalities and
minimize the cosine similarity between them. Specifically,
the samples in HSI as the anchor and its own neighboring
samples in LiDAR are considered as a positive sample pair,
while the nodes embedding and the other nodes are regarded
as the negative sample pair. sim(-) is used to pull closer
the representations of the positive sample pair and push the
representations of the negative sample pair, which can be
defined by

o 0

Lae(e§) = — log 2=t AN XR(simeti, Z2) /7)o,
Z?’il exp (sim (1701," ZZ/,)/t)
2iet Awiy exp(sim (22, 23, ) /7)
Lye(2Z,) = —log SRS @D
Z?’il exp (sim (zgi, Z%j)/t)
Lossye = o0 (Cue(ef) +£x(2) @)
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where Egc(z%i) and ,Cgc(zgi) are the two symmetric
losses, which represent graph contrastive on different data
sources. A,s connects each positive sample pair with edge
in Section II-D.

Further, in the proposed semisupervised model, a training
dataset includes both labeled and unlabeled samples. The
pseudo-labels of unlabeled samples can be obtained with
predicted labels in the training phase. Thus, a large number of
unlabeled samples are added to the training set for promoting
the performance of MFGCN-CME. A new contrastive loss
uses the label information between HSI and LiDAR to
construct positive and negative sample pairs. In particular, HSI
and LiDAR samples with the same label are treated as positive
sample pairs, while HSI and LiDAR samples with different
labels are treated as negative sample pairs. It is defined as

5505914

(b)
Fig. 4. (a) False-color map (using bands 25, 15, and 2) of the Trento HSI
data. (b) Grayscale representation of the Trento LiDAR data.
TABLE I

NUMBERS OF TRAINING AND TOTAL PIXELS OF
ALL CLASSES IN THE TRENTO DATASET

: 0
Lie(zF,) Lot PO (e, SL)/T)
421 exp (snn( /;j)/‘l.’)
0
,CIC (Zgi) _ g ZN 1 eXp(Slm(Z£ 70'[”,)/7") (24)
i exp (51m (zﬁ 7_[j)/r)
1
Lossje = EZ?EI (Lie(2%,) + Lic(22)) (25)

where zgm is a positive sample for Z7O-£,- and all other examples
are negatives. Similarly, z%m is a positive example for z., and
all other examples are negatives. The samples in a positive
pair have the same labels. Llc(z%i) and Elc(zgi) are the label
contrastive loss on different modalities. The implementation
details of our MFGCN-CME are shown in Algorithm 1.

III. EXPERIMENTAL RESULTS

In this section, the performance of the proposed method
is evaluated on three multisource datasets consisting of
HSI and LiDAR data. Specifically, we first describe the
characteristics of three multisource datasets, i.e., Trento,!
Houston,> and MUUFL? datasets, eight baseline methods,
and four quantitative evaluation indicators. We analyze the
parameter settings of the proposed MFGCN-CME. Next, the
quantitative and qualitative comparisons between our method
and these baseline methods are used to verify the effectiveness
of the proposed MFGCN-CME. Finally, a series of ablation
studies is conducted to analyze the influence of each module
in our method.

A. Experimental Datasets

For the comprehensive comparison, three multisource
datasets are used to evaluate the performance of our model,
whose detailed information is described as follows.

1) Trento: These data were captured by the AISA Eagle
sensor for the HSI data and the Optech ALTM 3100EA sensor
for the LiDAR data over a rural area in the south of Trento,
Italy. The dataset consists of 166 x 600 pixels with the spatial
resolution of 1 m per pixel, including six categories of land

Thttps://download.csdn.net/download
Zhttps://hyperspectral.ee.uh.edu
3https://github.com/GatorSense/MUUFLGulfport

NO.  Color Class Training Total
1 Apple trees 129 4034
2 Buildings 125 2903
3 Ground 105 479
4 Wood 154 9123
5 Vineyard 184 10501
6 Roads 122 3374

Total 819 30414

(b)

Fig. 5. (a) False-color map (using bands 57, 27, and 17) of the Houston
HSI data. (b) Grayscale representation of the Houston LiDAR data.

TABLE I

NUMBERS OF TRAINING AND TOTAL PIXELS OF
ALL CLASSES IN THE HOUSTON DATASET

NO.  Color Class Training Total
1 Healthy grass 198 1251
2 Stressed grass 190 1254
3 Synthetic grass 192 697
4 Tree 188 1244
5 Soil 186 1242
6 Water 182 325
7 Residential 196 1268
8 Commercial 191 1244
9 Road 193 1252
10 Highway 191 1227
11 Railway 181 1235
12 Parking lot 1 192 1233
13 Parking lot 2 184 469
14 Tennis court 181 428
15 Running track 187 660

Total 2832 15029

cover. The number of spectral bands for the hyperspectral data
is 63, covering the wavelength from 0.42 to 0.99 um. Fig. 4
shows the false-color map of the Trento HSI data and the
gray image of the Trento LiDAR data. The numbers of labeled
pixels and total pixels for different classes are listed in Table I.

2) Houston: These data were gathered with the Compact
Airborne Spectrographic Imager (CASI) sensor over the Uni-
versity of Houston, Houston, TX, USA, and the surrounding
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)
(a) False-color map (using bands 31, 16, and 6) of the MUUFL HSI
data. (b) Grayscale representation of the MUUFL LiDAR data.

(a)
Fig. 6.

TABLE III

NUMBERS OF TRAINING AND TOTAL PIXELS OF
ALL CLASSES IN THE MUUFL DATASET

NO.  Color Class Training Total
1 Trees 150 23096
2 Mostly grass 150 4420
3 Mixed ground surface 150 6882
4 Dirt and sand 150 1826
5 Road 150 6687
6 Water 150 466
7 Building shadow 150 2233
8 Building 150 6240
9 Sidewalk 150 1385
10 Yellow curb 150 183
11 Cloth panels 150 269

Total 1650 53687

area on June 2012, which were introduced in the 2013 IEEE
Geoscience and Remote Sensing Society (GRSS) Data Fusion
Contest. Both HSI and LiDAR data have a spatial size of
349 x 1905 pixels with a spatial resolution of 2.5 m. For
the hyperspectral data, there exist 144 spectral bands with
the wavelength ranging from 0.38 to 1.05 um. The Houston
dataset contains 15 land cover classes, such as “Tree,” “Water,”
and “Commercial,” as shown in Fig. 5. In addition, Table II
reports the numbers of training pixels and total pixels for each
class.

3) MUUFL: The MUUFL dataset was obtained over the
campus area of Gulf Park University of Southern Mississippi,
Long Beach, MS, USA, by the Reflective Optics System
Imaging Spectrometer sensor in November 2010. In the
MUUFL dataset, the HSI data comprise 72 spectral bands
ranging from 0.38 to 1.05 um, while the LiDAR data contain
two rasters with a 1.06 um wavelength. The first and last
eight spectral bands were removed due to excessive noise. This
dataset consists of 325 x 220 pixels, totaling 11 different land-
cover classes. Fig. 6 shows the false-color map of the MUUFL
HSI data and the gray image of the MUUFL LiDAR data.
Table III lists the distribution of training and total samples for
the MUUFL dataset.

To verify the classification performance of the proposed
method, some classical and state-of-the-art classification
methods are selected as the comparison methods.

a) SVM [11]: SVM is the most classical classification
method, which is performed on the well-known libsvm
toolbox3 in our case.

b) CapsNet [22]: The 3-D capsule network first
introduces the maximum correntropy criterion for address-
ing the noise and outlier problem in HSIs, in which

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

the spatial-spectral information of HSI and the elevation
information of LiDAR can be efficiently fused to extract the
discriminative features for the classification.

c) SSCL3DNN [50]: The SSCL3DNN extends ConvL-
STM to the 3-D version for better preserving the intrinsic
structure of HSI data. In the model, the local 3-D cube is
decomposed into a spectral sequence and then input to each
memory cell band by band to the effectively fused spatial and
spectral features.

d) FGCN [49]: The FGCN integrates multiscale spatial
features, directional texture features, frequency variation
features, and spectral features for accurate multisource joint
classification.

e) ACLNN [51]: The model develops an effective three-
level fusion strategy and a novel stepwise training strategy to
fully integrate the spatial and spectral information contained
in the HSI and LiDAR data, exploiting their complementarity.

f) SepDGC [52]: The SepDGC automatically learns
a multistream network structure within a single-stream
architecture for multisource RS data classification.

g) AMPNet [53]: The AM>Net uses the spectral-spatial
feature learning module, the spectral-spatial mutual-guided
module, and the adaptive multistage feature fusion module for
realizing the fusion and classification of multisource RS data.

h) NNCNet [54]: The NNCNet integrates a nearest
neighbor-based data augmentation scheme into the contrastive
learning framework to capture intermodal semantic alignments
more accurately and uses a bilinear attention module to exploit
the second-order feature interactions between the HSI and
LiDAR data.

Moreover, four evaluation indexes, i.e., per-class accuracy,
overall accuracy (OA), average accuracy (AA), and kappa
coefficient (x), are adopted to evaluate and analyze the
classification results of the proposed method and other related
works, whose higher values indicate better classification
performance.

B. Experimental Settings

All experiments are ran on a computer with an Intel* Xeon*
CPU ES5-1650 V4 with 3.6 GHz, 64 GB, and an NVIDIA
GeForce RTX 2080 Ti graphical processing unit (GPU).
For software system configuration, we adopt Windows 10
X64 as our operating system for all experiments. CUDA
9.0 and cuDNN 7.0.5, Tensorflow-GPU with 1.12, and Python
3.5.6 are the main programming environment. Especially,
all methods involved in our experiments are completed in
Anaconda 4.5.11.

We run each method ten times and report the average
results. In the proposed model, the Adam optimization is
selected to train the architecture for optimal performance.
The training epoch number is 10000. The learning rate is
reduced by 0.1 every 500 epochs, starting with an initial
learning rate of 0.001. The classification performance is
also affected by two specific parameters in exception to
the basic parameters mentioned above. One of the factor in
MFGCN-CME is the ratio A, which represents the balance

“Registered trademark.
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Fig. 7. Classification accuracy of the proposed method using different A on
three datasets.
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Fig. 8. Classification accuracy of the proposed method using different y on
three datasets.

between the low-frequency and high-frequency multiscale
features. The parameter y is an additional component that
establishes the classification loss’s relative importance in
relation to the semisupervised contrastive loss. The details of
parameter analysis are presented as follows.

First, we study the effects of the parameter A for
the proposed method. Fig. 7 exhibits the OA results on
three datasets when A in the range {0.1,0.2,...,0.8,0.9},
where the abscissa represents different values of A, and the
ordinate represents the classification accuracy. We observe
that lower values result in the loss of low-frequency
multiscale features, which seriously affects the classification
performance. In addition, a high A leads to the loss of
high-frequency multiscale information, making it difficult to
classify object boundaries. As shown in Fig. 7, the optimal
results can be obtained in the Trento, Houston, and MUUFL
datasets when A is set to 0.3, 0.4, and 0.5, respectively.

In addition, the proposed method uses the hyperparameter y
to control the magnitude of contrastive learning. To investigate
its influence, we conduct experiments on these three datasets
with y values from 0.1 to 0.9 at 0.1 intervals. As shown in
Fig. 8, our model performs best on the Trento and Houston
datasets when the y value is 0.4, while for the MUUFL
dataset, the best performance can be obtained with y=0.7.
Moreover, we observe that the OA results gradually improve
with y values ranging from 0.1 to 0.3 in the Trento and
Houston datasets and from 0.1 to 0.6 in the MUUFL dataset,
because a suitable value of y allows the classification and
semisupervised contrastive learning constraint in (16) to learn
the more discriminative intermediate representations.
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C. Experimental Results

To evaluate the performance of the proposed model,
Tables IV-VI present detailed classification results on three
benchmark datasets. The best result for each column is
bolded to draw attention to it. We can see that the proposed
method outperforms eight baseline methods on the Trento,
Houston, and MUUFL datasets. This appearance can be
summarized by the following factors. First, different from the
compared methods, the designed feature extraction module
simultaneously learns the low-frequency features and high-
frequency features. Second, the proposed BGELM enhances
the spatial representations of HSI data by LiDAR features
and the spectral information of LiDAR data by HSI features.
In addition, not simply fusing HSI and LiDAR data, a novel
combination strategy with the gate attention mechanism can
adaptively explore the complementary information of HSI and
LiDAR data. To further realize the potential of our model,
we introduce semisupervised contrastive loss across different
modalities to enrich the self-supervision signals during the
optimization.

More specifically, from Tables IV-VI, we can see that,
for the Trento, Houston, and MUUFL datasets, the proposed
model yields highly competitive classification accuracies of
99.40%, 95.60%, and 93.17%, respectively, with a gain over
6% with respect to that achieved by the SVM. And it can also
be found that the classification performance of deep learning
methods is superior to SVM in terms of OA, AA, and « in most
cases. The above experimental results show that for traditional
models, such as SVM, the way of converting the HSI and
LiDAR data into vectors leads to the loss of the spatial and
geometric structure information. In addition, the OA results
of the proposed model on three datasets have significantly
improved compared with CapsNet, which is due to the fact that
CapsNet may not fully learn the spectral and scale information
contained in different classes. From Tables IV-VI, the
proposed model can improve the model accuracy by 4.55%,
20.56%, and 6.16% on three benchmark datasets compared
with FGCN, respectively. FGCN is theoretically robust to
changes in semantic information, such as shift, rotation, sensor
noises, or distortions. However, it fails to focus on the latent
representation extraction by using the relationship of the paired
multimodal data (i.e., HSI and LiDAR). In contrast to these
above comparison methods, SSCL3DNN and A3CLNN are the
ConvLSTM-based models for joint learning of spatial-spectral
features by modeling long-term dependencies in the spectral
field. In particular, compared with SSCL3DNN, the dual-
channel A3CLNN model can improve the classification
accuracy in almost all cases, respectively, benefiting from the
developed three-level fusion and stepwise training strategies.
Our method represents 5.09%, 12.41%, and 4.96% relative
improvements over SepDGC on the Trento, Houston, and
MUUFL datasets, respectively. Moreover, on three datasets,
our approach outperforms AM>Net by about 1.05%, 2.58%,
and 14.91% on OA, respectively. This improvement in the
performance of MFGCN-CME is due to the multifrequency
feature extraction method. In addition, the classification
accuracies of our method and NNCNet are higher than other
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TABLE IV
CLASSIFICATION RESULTS FOR THE TRENTO DATASET

Class SVM CapsNet ~ SSCL3DNN  FGCN A3CLNN  SepDGC AM®Net NNCNet MFGCN-CME
1 97.69 97.15 98.32 93.04 98.92 94.57 99.21 99.94 100.00
2 87.36 99.07 96.88 98.94 99.14 96.00 99.13 96.58 99.28
3 87.06 97.29 82.19 81.28 98.12 76.82 97.86 100.00 100.00
4 99.80 100.00 99.81 92.55 100.00 95.72 99.98 99.98 100.00
5 93.36 94.62 96.74 99.41 99.95 96.79 99.25 99.79 99.17
6 69.34 91.71 85.34 86.41 90.57 82.82 88.82 89.54 97.70

OA 92.69 96.75 96.46 94.85 98.73 94.31 98.35 98.50 99.40
AA 89.10 96.64 93.21 91.94 97.78 90.45 97.37 97.64 99.36
K 90.22 95.69 95.30 93.14 98.31 92.46 97.80 98.00 99.20
TABLE V
CLASSIFICATION RESULTS FOR THE HOUSTON DATASET

Class SVM CapsNet ~ SSCL3DNN  FGCN A3CLNN SepDGC AM®Net NNCNet MFGCN-CME
1 82.53 81.39 82.05 80.81 81.73 80.73 92.21 80.91 94.85
2 84.77 83.08 80.98 68.98 84.43 86.36 90.69 99.90 94.68
3 86.93 97.43 89.44 62.30 91.49 96.97 98.61 97.02 93.86
4 95.83 88.64 90.85 87.97 96.72 82.95 88.25 98.48 100.00
5 97.54 100.00 99.78 97.91 99.97 100.00 94.59 100.00 90.81
6 88.81 95.10 87.18 85.91 97.90 95.37 95.74 98.60 100.00
7 81.16 91.23 91.51 88.05 87.06 75.55 78.99 84.04 97.38
8 44.92 92.40 93.32 79.96 96.93 76.28 88.68 9221 99.74
9 86.40 80.64 78.88 73.08 87.88 74.52 98.29 93.48 99.86
10 59.75 65.54 55.60 48.06 70.82 71.80 97.58 98.35 89.44
11 71.82 88.99 90.83 54.36 98.13 80.97 97.72 93.07 92.33
12 92.41 87.42 91.80 80.01 94.65 83.06 94.14 98.65 94.97
13 85.96 62.46 85.96 71.57 96.02 81.02 100.00 85.61 97.47
14 83.00 95.95 78.41 83.80 97.30 92.05 100.00 97.16 100.00
15 74.21 96.41 94.86 61.68 96.05 95.74 99.36 100.00 96.82

OA 80.15 86.61 86.01 75.04 90.55 83.19 93.02 94.18 95.60
AA 81.07 87.11 86.10 74.98 91.81 84.89 94.32 94.50 96.15
K 78.58 85.50 84.84 72.88 89.75 81.87 92.42 93.68 95.23
TABLE VI
CLASSIFICATION RESULTS FOR THE MUUFL DATASET

Class SVM CapsNet ~ SSCL3DNN  FGCN ASCLNN  SepDGC AM®Net NNCNet MFGCN-CME
1 85.78 87.06 89.76 90.05 89.93 93.37 91.16 91.34 96.56
2 76.26 4752 83.22 84.41 83.25 76.39 80.33 81.79 89.57
3 74.40 80.70 75.69 78.72 83.89 79.30 63.27 81.77 91.31
4 90.87 95.34 96.06 94.26 93.19 88.82 79.16 96.65 94.89
5 81.56 90.14 88.15 80.41 87.22 92.24 62.92 93.80 88.45
6 99.68 99.05 100.00 99.18 100.00 80.20 99.68 100.00 99.05
7 92.31 63.94 91.83 93.57 89.82 80.41 77.42 83.82 90.85
8 82.69 96.10 92.46 89.46 96.73 96.13 76.67 93.79 94.64
9 76.68 69.31 73.19 81.01 77.65 71.28 35.89 57.81 69.83
10 96.96 69.69 81.81 91.56 84.84 39.64 56.25 93.93 75.75
11 91.59 86.55 91.59 98.22 91.59 88.70 100.00 98.31 94.95

OA 82.97 83.53 87.49 87.01 88.95 88.21 79.26 89.08 93.17
AA 86.25 80.49 87.62 89.17 88.92 80.59 74.80 88.46 89.62
K 77.92 78.44 83.66 83.13 85.56 84.79 72.15 85.63 90.91

seven baseline methods because these two methods introduce
contrastive learning to solve the problem of limited training
samples. Finally, as shown in Tables IV-VI, the OA results of
MFGCN-CME on three datasets are 0.9%, 1.42%, and 4.09%
higher than the suboptimal results, respectively. The reason
is that our method can extract frequency-sdomain features
for HSI and LiDAR, and achieve mutual enhancement and
effective fusion of the two types of features.

For visual comparison, the classification maps on the Trento
dataset obtained by all methods are displayed in Fig. 9,
respectively. We observe that the classification maps of the
proposed method show more consistent agreement with ground
truth than other methods. In particular, from Fig. 9, it is
clear that SVM fails to maintain spatial continuity in the
classification maps because of the lack of spatial information.

In addition, as expected, other deep learning methods generally
obtain smooth classification maps. As shown in Fig. 9, the
proposed method can suppress the misclassification and noisy
scattered points in classification by performing convolution
operations to learn the spatial neighborhood information.
We can find that our method obtains better boundaries between
different objects from the enlarged partial view, especially for
classes 3 and 6. The main reason is that the proposed method
can adopt graph wavelet convolutional operation to achieve
satisfactory results on tiny objects and boundary regions.

D. Ablation Study

Each module in the proposed model plays a pivotal role.
In this section, we conduct a series of ablation studies on
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Fig. 9.
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Classification maps obtained by different methods for the Trento dataset. (a) Ground-truth map (OA; AA; k). (b) SVM (92.69; 89.10; 90.22).

(c) CapsNet (96.75; 96.64; 95.69). (d) SSCL3DNN (96.46; 93.21; 95.30). (¢) FGCN (91.27; 89.23; 88.39). (f) A3CLNN (98.73; 97.78; 98.31). (g) SepDGC
(94.31; 90.45; 92.46). (h) AM>Net (98.35; 97.37; 97.80). (i) NNCNet (98.50; 97.64; 98.00). (j) MFGCN-CME (99.40; 99.36; 99.20).

TABLE VII
ABLATION RESULTS WITH/WITHOUT THE AMGFLM

| Trento Houston MUUFL
Method
|OA AA s |OA AA &k |OA AA &
GCN | 9020 8637 87.05|50.48 54.67 46.85|79.57 80.94 73.85
MGCN | 96.89 92.19 95.83| 51.53 56.29 47.90| 87.47 83.46 83.40
GWCN | 85.40 86.59 81.18|7239 7434 70.27| 71.29 75.75 64.19
MGWCN | 88.82 93.92 85.61|82.89 86.16 81.42|79.28 81.54 73.47

MFGCN-CME ‘ 99.40 99.36 99.20‘ 95.60 96.15 95.23‘ 93.17 89.62 90.91

three datasets to discuss the rationality of these proposed
components, i.e., the AMGFLM, the BGELM, the gated
fusion module, and two contrastive losses, in improving the
performance.

1) Influence of the AMGFLM: One difference between our
method with standard GCN-based HSI classification methods
is that the proposed method can learn the effective fusion of
low-frequency and high-frequency features. To quantitatively
investigate the effectiveness of the multifrequency feature
learning strategy, the AMGFLM is replaced with GCN, mul-
tiorder graph convolutional network (MGCN), graph wavelet
convolutional network (GWCN), and multiscale graph wavelet
convolutional network (MGWCN) to build four methods (i.e.,
GCN, MGCN, GWCN, and MGWCN). The experimental
results of these four variants above and the MFGCN-CME

TABLE VIII
ABLATION RESULTS WITH/WITHOUT THE BGELM
Method \ Trento Houston MUUFL
OA AA &k |OA AA &k | OA AA &«
w/o BGELM | 99.28 93.05 99.04| 91.98 93.56 91.30| 84.96 83.72 80.59
MFGCN-CME | 99.40 99.36 99.20| 95.60 96.15 95.23| 93.17 89.62 90.91

are reported in Table VII. We can find from Table VII
that compared with GCN, MGCN achieves the average
gains of 6.69%, 1.05%, and 7.9%, respectively, because the
extracted low-frequency multiscale features contain the high-
order neighbor information. MGWCN outperforms GWCN by
an increase of at least 3%, which suggests the usefulness
of incorporating the multiscale information into the graph
feature extraction. In addition, compared with the four ablation
models, the proposed MFGCN-CME method achieves decent
performance improvements for multisource RS classification
task. The results in Table VII demonstrate that simultaneously
considering frequency features (i.e., low-frequency features
and high-frequency features) boosts the model performance.
2) Influence of the BGELM: To examine the effect of
the BGELM that aims for the mutual enhancement of HSI
and LiDAR data, we compare the classification accuracies
of the proposed method and a variant of MFGCN-CME
without the BGELM module (i.e., w/o BGELM) on the Trento,
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TABLE IX
ABLATION RESULTS WITH/WITHOUT THE GATED FUSION MODULE
Method \ Trento Houston MUUFL
OA AA K ‘ OA AA K OA AA K

MFGCN-CMEAF

MFGCN-CMEEF

MFGCN-CMECF
MFGCN-CME

88.06 88.18 84.58] 94.84 95.60 94.43
90.77 91.91 87.96| 88.25 89.10 87.25
98.97 91.26 98.63| 94.30 95.04 93.81
99.40 99.36 99.20| 95.60 96.15 95.23

83.53 80.34 78.11
83.79 80.90 77.65
80.54 79.67 74.76
93.17 89.62 90.91

TABLE X

ABLATION RESULTS WITH/WITHOUT THE GRAPH CONTRASTIVE
Loss AND LABEL CONTRASTIVE LOSS

\ Trento Houston MUUFL
Method

|OA AA k |OA AA «k |OA AA &
wio GCL | 86.78 75.59 81.57]87.93 90.38 86.89] 85.07 85.25 80.72
w/o LCL | 94.17 90.77 92.19]92.83 91.13 92.22| 89.28 85.78 85.82

w/o GCL+LCL | 83.58 79.85 78.47| 85.15 83.50 84.02| 83.59 82.02 78.56
MFGCN-CME | 99.40 99.36 99.20| 95.60 96.15 95.23| 93.17 89.62 90.91

Houston, and MUUFL datasets. As listed in Table VIII, the
proposed BGELM brings performance gains of 0.12%, 3.62%,
and 8.21% for the three datasets in terms of OA results,
respectively. One possible explanation is that the BGELM
can implement the mutual enhancement of LiDAR and HSI
features.

3) Influence of the Gated Fusion Module: The proposed
MFGCN-CME method adopts the gated fusion module to
adaptively fuse the spatial-spectral features of HSI and the
spatial features of LiDAR. We carry out the experiments
for analyzing its influence on the classification performance,
whose results are reported in Table IX. Here, MFGCN-
CMEAF, MFGCN-CMEEF, and MFGCN-CMECF are three
ablation models by using the additive fusion, elementwise
multiplicative fusion, and concatenation fusion instead of the
gated fusion module. The OA results show that the proposed
method applying the gated fusion module achieves the highest
accuracy, which yields at least 0.43%, 0.76%, and 9.38% gains
for the three datasets compared with these ablation methods,
respectively. It demonstrates the effectiveness of the gated
fusion module in exploring the complementary of HSI and
LiDAR data.

4) Influence of Graph Contrastive Loss and Label Con-
trastive Loss: In our method, graph contrastive loss and label
contrastive loss can optimize the parameters of the model
by maximizing the consistency between HSI and LiDAR
data. To study the effectiveness of these two contrastive
losses, we design three variants: w/o GCL refers to the
proposed MFGCN-CME method removing graph contrastive
loss; w/o LCL denotes the proposed MFGCN-CME method
excluding label contrastive loss; and w/o GCL+LCL is the
proposed MFGCN-CME method simultaneously removing
graph contrastive loss and label contrastive loss. As observed
from Table X, compared to w/o GCL, the proposed MFGCN-
CME increases the OA results by 12.62%, 7.67%, and 7.67%
for the Trento, Houston, and MUUFL datasets, respectively.
In addition, the proposed MFGCN-CME improves the OA
values by 5.23%, 2.77%, and 3.89% for the three datasets
compared with w/o LCL, respectively. In addition, the
proposed MFGCN-CME yields 15.82%, 10.45%, and 9.58%
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gains in OA for the Trento, Houston, and MUUFL datasets
compared with w/o GCL+LCL, respectively. The OA,
AA, and « results of MFGCN-CME significantly increase
compared with three variants, which indicate the positive
impact of the graph contrastive loss and label contrastive loss
in improving classification performance.

IV. CONCLUSION

This article proposes an MFGCN-CME for the classification
of multisource RS data. In the proposed method, the
AMGFLM is designed as the feature extractor to fully
capture the low- and high-frequency multiscale features of
HSI and LiDAR data in parallel and further adaptively
aggregate them. Furthermore, the BGELM is proposed to
enhance the spatial features of HSI data by LiDAR features
and the spectral features of LiDAR data by HSI features,
aiming at obtaining more comprehensive and discriminative
feature representation. In addition, the gated fusion module
is introduced to explore the complementarity of two different
data sources in an adaptive way. Finally, a joint loss function
combines a classification loss and a semisupervised contrastive
loss, which leverages the geometric relationships and label
information between HSI and LiDAR to improve the model
robustness. Extensive experiments show that our method is
more efficient than some baseline methods and produces state-
of-the-art classification results. However, the proposed method,
as the semisupervised method, requires a certain labeled
samples for the joint classification of HSI and LiDAR data.
In the future, extending the proposed method for unsupervised
learning requires more research. In addition, we will extend the
proposed method to other multisource RS data classification
tasks, such as HSI and MSI, and HSI and SAR.
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