
Information Sciences 658 (2024) 120024

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

A neural tensor decomposition model for high-order sparse data 

recovery

Tianchi Liao a, Jinghua Yang c, Chuan Chen b,∗, Zibin Zheng a

a School of Software Engineering, Sun Yat-sen University, Zhuhai 519000, China
b School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
c School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Tensor completion

Convolutional neural networks

Tensor-ring decomposition

Rank robustness

Tensor decomposition has attracted wide attention in the low-rank tensor completion (LRTC) 
problem because of its marvelous recovering ability to missing entries. However, previous LRTC 
methods are generally based on linear and shallow models, which are prone to overfitting when 
the data is sparse, resulting in significantly degraded performance. Meanwhile, the models are 
highly sensitive and suffer from the difficult rank selection problem. To address these issues, we 
propose an effective and novel tensor-ring (TR) decomposition method based on the convolutional 
computation (ConvTR), which can be regarded as a natural extension of deep learning models 
for the LRTC problem. Specifically, ConvTR employs a multi-layer convolutional neural network 
(CNN) to model the complex interactions between TR factors. Each element in the index vector 
of the observation tensor can be embedded as a corresponding tensor slice in the factor tensor 
decomposed by the TR model. These individual slice matrices are then concatenated to get a 
wider matrix used for extracting the nonlinear features by feeding them into a 2D convolutional 
layer. A fully-connected layer is utilized to aggregate the final convoluted features to a scalar 
value, which is the desired missing entry indexed by the original index vector exactly. Extensive 
experiments on various common datasets verified the effectiveness of the proposed method and 
demonstrated its superior to the traditional TR-based completion methods and other state-of-the-

art network-based methods.

1. Introduction

Tensors, also known as N-way arrays, provide a natural structure to high-order data [1]. Multi-modal and large-scale data dis-

played in the tensor form are common in various types, such as color images, video, social networks, knowledge graphs, etc. The 
definition and computation of tensor are not only popular in mathematics [2], but also a fundamental problem in many applications, 
such as computer vision [3], machine learning [4], data mining [5]. However, real-world tensors are often sparse and incompleteness 
due to unexpected human or natural factors. Recently tensor completion, which predicts missing entries from partial observations, 
has gained widespread interest. In the real world, many multi-modal data tend to exhibit low-rankness because of their inherent 
local similarity, global symmetry, and sample redundancy. Utilizing known observations to recover missing entries of targeted tensor 
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together with low-rank constraints is often called the low-rank tensor completion (LRTC) problem. LRTC has become the key issue 
in many applications, including visual image completion [6], recommender systems [7], and link prediction [8], etc.

Since the key to tensor completion is to find out the relationship between the observations and missed entries, which can be 
captured by possible latent factors decomposed from the target tensor. Therefore, the most commonly accepted method in LRTC 
problems is based on tensor decomposition or its variations. By assuming that the tensor has a compact underlying structure, tensor 
decomposition allows entries to be reconstructed from low-rank factors by multilinear multiplication, thus effectively transforming 
higher-order data into latent factors. Whereupon various among different tensor decomposition models are proposed by designing 
different latent factor structures. Among them, the classical decomposition methods include CANDECOMP/PARAFAC (CP) [9] and 
Tucker [10]. In CP decomposition, the target tensor is decomposed into linear combinations of rank-1 tensors, in which the rank 
is defined as the minimum number of outer products of the vectorized factors. Whereas, the CP rank is NP-hard to calculate in 
general and it is not flexible enough to portray the correlation between the different factors of the tensor [11]. Compared with 
CP, the Tucker decomposition can utilize more correlations, in this case, the rank is defined as the set of matrix ranks after the 
tensor matricization along all modes. However, the Tucker rank [12] remains unbalanced and the decomposition does not apply 
to high-order tensor, whose storage capacity grows exponentially with the number of data dimensions. Moreover, the advancement 
of information technology has led to increasingly abundant information and growing volume of data, posing great challenges for 
conventional decomposition methods to handle high-dimensional data, which results in their rapidly deteriorating performance.

Tensor networks [13][14], considered as a generalization of tensor decompositions, have emerged as a promising powerful tool 
for analyzing large-scale datasets. At the moment, the most popular tensor networks are based on the Tensor-Train (TT) [15] and 
Tensor-Ring (TR) [16] representations. TT decomposition has been widely used in research as a basic building block of complex 
tensor networks. It decomposes the target tensor into two matrices and several third-order tensors, which may not be the optimum 
for specific data [17]. As an improved version, TR decomposition can overcome this issue, where TR approximates a higher-order 
tensor using a cyclic multi-linear product of a sequence of third-order core tensors. Furthermore, TR decomposition is now shown to 
outperform other decomposition methods in capturing the relevance of real data [18]. Due to the excellent expressive performance 
for higher-order tensors, TR decomposition has been increasingly applied to LRTC problems in recent years. Nevertheless, the TR 
decomposition method inherits the inherent drawbacks of tensor decomposition. First, the optimal rank as the input of the algorithm 
needs to be determined in advance, while the optimal TR rank remains unknown in most realistic scenarios. Therefore, the model 
behaves sensitively and the performance is largely influenced by the rank [19]. Additionally, these mathematics-based low-rank 
decomposition methods rely more heavily on observed values. When faced with high missing ratios or sparse observed sets, the 
recovery results become less ideal [20]. More importantly, the nonlinear information in the data may obscure the low rankness and 
the model performance may be hindered by the multi-linear hypothesis in the decomposition, making it fail to capture the nonlinear 
features [21].

To learn the complex interaction within the tensor, the model needs to have the ability to capture and express the potential 
nonlinearity of data. Recently, many scholars have applied the existing deep learning methods to the tensor completion problem, 
and obtained better results than the multi-linear models [22]. Xu et al. [23] proposed a nonlinear Tucker model (InfTucker), which 
uses Tensor-variate Gaussian to extend the Tucker model to infinite feature space, so it has better performance in modeling complex 
nonlinear interactions. However, the Kronecker product involved in the solving process of InfTucker and its variant [24], is likely to 
bring about a high computational cost. Besides, due to parameter redundancy, existing tensor completion algorithms based on deep 
learning are often prone to overfitting in sparse or limited training data. Meanwhile, the model generalization is also suboptimal due 
to the inefficient parameters.

To tackle the above limitations, we propose a new nonlinear tensor decomposition model ConvTR (Convolutional Tensor Ring 
Decomposition). Exploiting the expressive power of Convolutional Neural Network (CNN), the model is parameter efficient and 
can avoid overfitting to sparse and limited training data. The CNN architecture is used to reconstruct the factors of TR decompo-

sition to model the non-linearity in relational data and eliminate the linear limitation of dot product used in conventional tensor 
decomposition. Specifically, the ConvTR model concatenates the resulting decomposition factors and relates the rank 𝑅 to the size 
of the convolution filter. In this way, while solving the problem of rank sensitivity, the model learns more nonlinear information. 
Therefore, ConvTR can be excellently used for tensor completion of sparse tensors with complex underlying structures. We evaluate 
the proposed model, and perform extensive experiments on a variety of common sparse tensors. Our model invariably outperforms 
state-of-the-art tensor completion models (both linear and nonlinear), while being robust for a different choice of rank. In summary, 
the contributions of this paper are as follows:

1. We define the generalized TR decomposition method and propose a new CNN-based nonlinear tensor decomposition model, 
ConvTR, to characterize the nonlinearity and correlation of decomposition factors.

2. ConvTR has excellent robustness and can always obtain a relatively stable solution even if the TR rank is improperly given.

3. Extensive completion experiments are conducted on three different standard datasets, demonstrating the leading performance 
capabilities regardless of the type of the data.

2. Related works

Recently, TR-based tensor decomposition models have been extensively studied and have shown the ability to handle high-order 
tensors. Many works [25][26] designed different completion algorithms based on TR and total variance regularization, all of them 
2

achieved good results on remote sensing images. Meanwhile, sparse regularization is also considered for model generalizability, and 
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Asante et al. [27] completed the data tensor by learning a core tensor with sparsely constrained TR representation. Wang et al. [17]

first extended alternating least squares (ALS) to TR decomposition (TRALS). Then, Yuan et al. [28] further proposed TR weighted op-

timization (TRWOPT), which deploys the gradient descent algorithm to optimize the model, resulting in slow convergence. Although 
ALS and gradient-based algorithms do not require tedious parameter tuning, the performance of these algorithms is quite sensitive to 
rank selection. A new rank selection method was proposed by Sedighin et al. [29] for automatically searching the optimal TR rank 
(TRAR). In fact, TRAR consists of an internal TRALS iteration and an external rank-increasing iteration, which reduces the efficiency 
of the model. To speed up the convergence, exploring data topologies using TR decomposition with tensor networks [30] is a current 
hot direction. Zheng et al. [12] proposed the fully connected tensor network (FCTN), which describes the correlation by establishing 
the relationship between any decomposition factors, but its computational complexity grows exponentially with the increase of the 
tensor order. Then, several works [31][32] improved the FCTN to reduce the computational complexity of the tensor network.

Whereas, these TR-based completion methods encounter severe degradation problems when the chosen rank is far from the true 
rank. Thus, some robust TR completion methods have been widely proposed. To avert artificial rank selection, Long et al. [33]

proposed a Bayesian TR decomposition without parameter-tuning, where ranks can be acquired by Bayesian deduce. Methods based 
on rank minimization usually convert into convex surrogates to minimize tensor rank. In recent years, newly-designed norms have 
been used to approximate tensor rank functions. Yuan et al. [18] carved the relation between tensor rank and factor rank and 
proposed a new method called tensor ring lower-order factor (TRLRF), which effectively reduced the burden of rank selection by 
introducing nuclear norm regularization to the potential TR factor. Yu et al. [34] first designed a tensor circle unfolding method and 
applied the tensor nuclear norms to the model. Li et al. [35] combined TR rank and 𝓁𝑝,𝜖 -norm to form a robust tensor completion 
method that has strong generalization for all types of data. Huang et al. [36] proposed a robust tensor-ring completion method, 
which separates the data from potential low-order components and sparse components, and added nuclear norm and 𝓁1 norm to 
constrain the model, respectively. Yu et al. [37] used the Frobenius norm of the latent TR nuclear to express the target low rank 
and sparsity of the tensor, which makes the model more robust while reducing its computational effort. Nevertheless, to the best 
of our knowledge, most of the existing tensor norm-based completion methods claim expensive computational expenses for each 
iteration in the optimization process. Moreover, the aforementioned methods can only alleviate rank sensitivity to a fairly small 
extent, especially for large-scale tensors.

Since the above methods are linear-oriented regardless of TR decomposition or norm minimization based, they are powerless for 
processing the incomplete tensors with nonlinearity. Facing this challenge, many scholars apply deep learning to tensor completion. 
Wu et al. [38] proposed a deep tensor decomposition network with bias, which takes the horizontal and lateral vectors constructs 
to observation tensors as inputs, and constructing them into a multilayer perceptron (MLP) network, respectively. Liu et al. [21]

used convolution to perform CP decomposition accurately and efficiently, and proposing a completion method (CoSTCo) for large-

scale, highly sparse data. Wu et al. [39] proposed a neural network based tensor factorization model (NTF) by replacing the multi-

linear operation of CP decomposition with MLP. Chen et al. [40] proposed a novel nonlinear tensor machine, which establishes the 
relationship between neural network and tensor algebra to describe the nonlinear information of data. A series of network models 
based on tensor decomposition have been proposed, and they are widely used in various situations. However, the majority of these 
network models remind tuning abundant parameters to avoid overfitting. In addition, the above completion methods are mostly 
designed for a specific application, e.g., image/video recovery, link prediction, spatio-temporal analysis, etc., which leads to a lack 
of generalization of these models. Till now, few models can handle data of different types robustly.

Therefore, facing the common defects of traditional tensor decomposition methods and the overfitting problems caused by the 
complex parameters of network models, it is necessary to explore a valid and general completion method to address these limitations. 
In this work, we propose a neural tensor decomposition model ConvTR with a multi-layer convolution network, which is almost 
immune to rank fluctuation and robust to overfitting problems. Meanwhile, the proposed model does not demand to convert the 
objective function into a preview design neural, nor involves expensive computational optimization.

3. Tensors and notations

For the tensor completion, the details about some definitions and tensor properties can be found in [1]. Throughout this paper, 
Table 1 lists the relevant notations commonly used in this paper. And beyond that, for a third-order tensor  ∈ℝ𝐼1×𝐼2×𝐼3 , we denote 
its (𝑖, 𝑗)-th mode-1, mode-2, and mode-3 fibers as (∶, 𝑖, 𝑗), (𝑖, ∶, 𝑗), and (𝑖, 𝑗, ∶). We use the Matlab notation (𝑖, ∶, ∶), (∶, 𝑖, ∶), 
and (∶, ∶, 𝑖) to denote the 𝑖-th horizontal, lateral and frontal slice, respectively. Moreover, the superscript (𝑘) is used to denote the 
𝑘-th feature factor of the tensor decomposition, e.g.,  (𝑘) represents the 𝑘-th latent tensor of the TR decomposition.

3.1. Tensor decomposition

Definition 1 (CP Decomposition). [1] The CP decomposition factorizes a tensor into the sum of 𝑅 component rank-one tensors. For 
example, given an 𝑁 th-order tensor  ∈ℝ𝐼1×𝐼2×⋯×𝐼𝑁 , we write it as:

 =
𝑅∑
𝑟=1
𝑈 (1)
𝑟

◦𝑈 (2)
𝑟

◦,… ,◦𝑈 (𝑁)
𝑟
, (1)

where 𝑅 is an integer, 𝑈 (𝑘)
𝑟 ∈ ℝ𝐼𝑘 . The factor matrices refer to the combination of the vectors from the rank-one components, i.e., 
3

𝑈 (𝑘) = [𝑈 (𝑘)
1 , 𝑈 (𝑘)

2 , … , 𝑈 (𝑘)
𝑅

] ∈ℝ𝐼𝑘×𝑅. Therefore, the entry value of tensor  can be expressed as:
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Table 1

Tensor Notation.

Symbol Definition

 , 𝑋, 𝒙, 𝑥 tensor, matrix, vector, scalar

R rank of tensor decomposition

𝑥𝑖1 𝑖2⋯𝑖𝑛 tensor entry value at index
(
𝑖1, 𝑖2,⋯ , 𝑖𝑛

)
𝑈 (𝑘) 𝑘-th CP decomposition factor matrix ∈ℝ𝑅𝑘−1×𝐼𝑘×𝑅𝑘
 (𝑘) 𝑘-th TR decomposition factor tensor ∈ℝ𝑅𝑘−1×𝐼𝑘×𝑅𝑘
𝑈 (𝑘)
𝑟

, 𝑈
(𝑘)
𝑖𝑘

𝑘-th CP decomposition factor vector ∈ℝ𝐼𝑘 ,∈ℝ𝑅


(𝑘)
𝑖𝑘

,  (𝑘) (∶, 𝑖𝑘,∶) 𝑘-th TR decomposition factor matrix ∈ℝ𝑅×𝑅

▽ gradient operator with respect to 

𝜎 (⋅) activation function

◦ vector outer product

⊙ the entry-wise product

×𝑛 tensor n-mode product

 tensor entry index set‖‖𝐹 Frobenius norm of a tensor

𝑥𝑖1𝑖2⋯𝑖𝑛
=

𝑅∑
𝑟=1
𝑈

(1)
𝑖1 ,𝑟
𝑈

(2)
𝑖2 ,𝑟
,⋯ ,𝑈

(𝑁)
𝑖𝑛,𝑟
. (2)

Therefore, CP rank is defined as the minimum number of rank-1 tensors needed to represent  in the decomposition process, i.e., 
𝒓𝒂𝒏𝒌𝑪𝑷 =min𝑅 {𝑅|}.

Definition 2 (Tensor-Ring Decomposition). [16] Tensor-Ring decomposition represents a higher-order tensor by a sequence of third-

order latent tensors multiplied circularly.

 =
𝑅1 ,⋯,𝑅𝑛∑
𝑟1,⋯,𝑟𝑛=1

 (1) (𝑟𝑛,∶, 𝑟1)◦ (2) (𝑟1,∶, 𝑟2)◦⋯◦ (𝑁) (𝑟𝑛−1,∶, 𝑟𝑛) , (3)

where  (𝑘) (𝑟𝑘 − 1,∶, 𝑟𝑘
)
∈ ℝ is the vertical fiber and the syntax [𝑅1,𝑅2,⋯ ,𝑅𝑁 ] denotes the TR-rank which controls the model 

complexity of TR decomposition. The TR factors are denoted by 
{
 (𝑘) ∈ℝ𝑅𝑘−1×𝐼𝑘×𝑅𝑘

}𝑁
𝑘=1, where 𝑅0 =𝑅𝑁 . Thus, the entries of the 

tensor  can be TR represented as:

𝑥𝑖1𝑖2⋯𝑖𝑛
=
𝑅1⋯𝑅𝑁∑
𝑟1⋯𝑟𝑛=1

 (1) (𝑟𝑛, 𝑖1, 𝑟1) ×⋯ × (𝑁) (𝑟𝑛−1, 𝑖𝑛, 𝑟𝑛). (4)

To further describe the concept, we can also rewrite it in the index form, which is

𝑥𝑖1𝑖2⋯𝑖𝑛
= 𝑇 𝑟𝑎𝑐𝑒

(
𝑛∏
𝑘=1

 (𝑘) (∶ 𝑖𝑘,∶)
)
, (5)

where  (𝑘) (∶, 𝑖𝑘,∶) ∈ ℝ𝑅𝑘−1×1×𝑅𝑘 for 𝑘 = 1 ⋯ 𝑁 can be regarded as a matrix  (𝑘)
𝑖𝑘

, which denotes the 𝑖𝑘-th lateral slice with 
dimensions 𝑅𝑘−1 ×𝑅𝑘. The 𝑇 𝑟𝑎𝑐𝑒(⋅) is the matrix trace operation. For convenience, we simply denote the TR decomposition of the 
tensor  by  =ℜ𝑇𝑅( (1), ⋯ ,  (𝑁)).

3.2. Generalized tensor decomposition

As shown in the equations above, the tensor decomposition model can interpret multi-directional interactions by its multi-linear 
multiplication. Here, taking CP decomposition as an example, we generalize the tensor decomposition model to learn nonlinear 
feature interactions.

Suppose we obtain the features of tensors by embedding, i.e., 
{
𝑈

(1)
𝑖1
,𝑈

(2)
𝑖2
,⋯ ,𝑈

(𝑁)
𝑖𝑛

}
∈ ℝ𝑅. We design an operation 𝜙(⋅), which 

converts a set of embedded information into a vector:

𝜙(𝑈 (1)
𝑖1
,𝑈

(2)
𝑖2
,⋯ ,𝑈

(𝑁)
𝑖𝑛

) =𝑈 (1)
𝑖1
⊙𝑈

(2)
𝑖2
⊙⋯⊙𝑈

(𝑁)
𝑖𝑛
, (6)

here ⊙ is the element-wise product. Clearly, the layer 𝜙(⋅) is a simple operation with no additional parameters introduced. Then, we 
can project the vector 𝜙 into the output layer of the neural network:

𝑥𝑖1𝑖2⋯𝑖𝑛
= 𝜎

(
𝒘
𝑇
(
𝜙(𝑈 (1)

𝑖1
,𝑈

(2)
𝑖2
,⋯ ,𝑈

(𝑁)
𝑖𝑛

) + 𝒃

))
, (7)
4

where 𝜎 denotes the activation function, 𝒘 and 𝒃 denote the weights and biases.
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Lemma 1. Traditional CP decomposition in Eq. (2) is a special case of generalized CP decomposition in Eq. (7)

Proof. Let 𝜎 be an identity function i.e., 𝜎(𝑥) = 𝑥, the weight 𝒘 be a uniform vector of 1 
(
𝒘 = [1,⋯ ,1]𝑇 ∈ℝ𝑅

)
, the bias 𝒃 be a zero 

vector, and 𝑈 (𝑁)
𝑖1 ,𝑟

be the r-th element in the column vector 𝑈 (𝑁)
𝑖1

. Therefore, we have Eq. (2) equals Eq. (7).

Lemma 2. CP decomposition can be viewed as a special case of TR decomposition.

Proof. Given an 𝑁 th-order tensor  with its CP decomposition as Eq. (1), it can also be written in TR decomposition form as,

 =
𝑅𝑐𝑝∑
𝑟=1
𝑈 (1)
𝑟

◦,⋯ ,◦𝑈 (𝑁)
𝑟

=ℜ𝑇𝑅( (1),⋯ , (𝑁))

𝑠.𝑡.  (𝑘) (∶, 𝑖𝑘,∶) = 𝑑𝑖𝑎𝑔 (𝑈 (𝑘)
𝑖𝑘

)
,∀𝑘 = 1,2,⋯ ,𝑁,

(8)

where 𝑑𝑖𝑎𝑔(⋅) is turning the vector into a diagonal matrix. Hence, CP decomposition can be viewed as a special case of TR decom-

position, where the factors  (𝑘), 𝑘 = 1, ⋯ , 𝑁 are of size 𝑅𝑐𝑝 × 𝐼𝑘 ×𝑅𝑐𝑝 and each lateral slice matrix 𝑈 (𝑘)
𝑖𝑘

is a diagonal matrix of size 
𝑅𝑐𝑝 ×𝑅𝑐𝑝. For detailed proof, see [16].

By applying the nonlinear scheme to tensor completion, the nonlinear TR decomposition is shown in Theorem 1.

Theorem 1. Assume that  is a 𝑁 th-order tensor. The TR decomposition of  can be written as the following generalized tensor decompo-

sition form:

𝑥𝑖1𝑖2⋯𝑖𝑛
= 𝜎

(
𝑊 𝑇

(
𝜙( (1)

𝑖1
,

(2)
𝑖2
,⋯ ,

(𝑁)
𝑖𝑛

) +𝐵
))
, (9)

where  (𝑘)
𝑖𝑘

= (𝑘) (∶, 𝑖𝑘,∶) is the factor tensor obtained by TR decomposition, 𝜎 denotes the activation function, and the matrix 𝑊 and 
matrix 𝐵 represent the weights and biases, respectively. Furthermore, 𝜙(⋅) is represented as a linear operation, which converts a set of 
embedded factors into a matrix as follows:

𝜙( (1)
𝑖1
,

(2)
𝑖2
,⋯ ,

(𝑁)
𝑖𝑛

) =
(1)
𝑖1

×
(2)
𝑖2

×⋯ ×
(𝑁)
𝑖𝑛

. (10)

Proof. According to Lemmas 1 - 2, since CP decomposition is a special case of TR decomposition and has the generalized tensor 
decomposition form, TR decomposition can also be described in the generalized form Eq. (9). □

Based on Theorem 1, we have the following definition.

Definition 3 (Generalized Tensor-Ring Decomposition). Given an 𝑁 th-order tensor  ∈ℝ𝐼1×𝐼2×⋯×𝐼𝑁 , the indexes of all entries in the 
 are represented by the set  , i.e.,  =

{(
𝑖1,⋯ , 𝑖𝑛

) |∀𝑖1 ∈ {
1,⋯ , 𝐼1

}
,⋯ , 𝑖𝑛 ∈

{
1,⋯ , 𝐼𝑁

}}
. The decomposition model consists of 

a non-linear mapping function 𝑓 ∶  →ℝ with the whole set of parameters Θ:

𝑥𝑖1𝑖2⋯𝑖𝑛
= 𝑓

(
𝑖1,⋯ , 𝑖𝑛; (1),⋯ , (𝑁);Θ

)
, (11)

where 
{
 (𝑘)}𝑁

𝑘=1 are TR decomposition factors.

4. The proposed model and algorithm

In this section, we first introduce a neural TR decomposition framework, which is capable of learning nonlinear interactions in the 
data and demonstrate the details of the ConvTR model. Then discuss the process of model optimization and show the pseudo-code 
of the algorithm. Finally, the complexity of the model is investigated.

4.1. The ConvTR model

The hard-core of ConvTR employs a convolutional neural network to implement the computational process of TR decomposition.

For an 𝑁 th-order tensor  ∈ ℝ𝐼1×𝐼2×⋯×𝐼𝑁 , the input to the ConvTR model is a set of vectors consisting of index values 𝒙 =
𝑖𝑛𝑑𝑒𝑥(𝑖1, 𝑖2, ⋯ , 𝑖𝑛). Each element of the index vector can be embedded as a corresponding tensor slice in a factor tensor decomposed 
by the TR method. These factor slices are stitched together into a convolutional neural network for operation, and the output is 
the tensor entry 𝑦𝑖1𝑖2⋯𝑖𝑛 corresponding to each index vector. The model improves the nonlinear processing capability by combining 
multiple convolutional layers. The master framework of the proposed model is shown in Fig. 1, which mainly contains three modules: 
5

including a TR decomposition module, an embedding module, and finally a nonlinear mapping module.
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Fig. 1. The main framework of ConvTR model.

4.1.1. Tensor-ring decomposition module

TR decomposition represents an 𝑁 th-order tensor  by multiple third-order tensors as shown in Eq. (5):

𝑦𝑖1𝑖2⋯𝑖𝑛
= 𝑇 𝑟𝑎𝑐𝑒

(
𝑛∏
𝑘=1

 (𝑘) (∶ 𝑖𝑘,∶)
)
, (12)

where  (𝑘) (∶, 𝑖𝑘,∶) ∈ℝ𝑅𝑘−1×1×𝑅𝑘 for 𝑘 = 1 ⋯ 𝑁 , and 𝑅 = [𝑅1, ⋯ , 𝑅𝑁 ] is called TR rank. Fig. 1(a) illustrates the TR decomposition 
process. Note that all 𝑅𝑘 with 𝑘 ∈ [1, 𝑁] can be different in the standard TR decomposition. In our work, the TR decomposition has 
the same rank, i.e., 𝑅1 =𝑅2 =⋯ =𝑅𝑁 =𝑅. Therefore there is  =ℜ𝑇𝑅( (1), ⋯ ,  (𝑁)).

4.1.2. Embedding module

The embedding module has 𝑁 third-order tensors  obtained by TR decomposition. The dimension of  is 𝑅 × 𝐼𝑘 ×𝑅, which 
is since the common rank 𝑅 is utilized in all factor tensors. Each tensor entry can be represented as an 𝑁 -way index vector. The 
embedding module extracts the corresponding embedding matrix  (𝑘)

𝑖𝑘
∈ℝ𝑅×𝑅 from the factor tensor based on each element in the 

index vector 𝒙 as input. Then, these embedding matrices are spliced to get the corresponding feature matrix of the index, where we 
define 𝐶𝑎𝑡(⋅) as the matrix splicing operation. More specifically, we have

𝑒𝑚𝑏 = 𝐶𝑎𝑡
(
 (1) (∶ 𝑖1,∶),⋯ , (𝑁) (∶, 𝑖𝑛,∶)) = [


(1)
𝑖1
,

(2)
𝑖2
,⋯ ,

(𝑘)
𝑖𝑘
,⋯ ,

(𝑛)
𝑖𝑛

]
∈ℝ𝑅×𝑁𝑅. (13)

Since a convolutional layer is required, we reshape 𝑒𝑚𝑏 into a tensor of size 1 ×𝑅 ×𝑁𝑅.

4.1.3. Nonlinear mapping module

The module is a multi-layer representation learning, which mainly includes convolutional and fully-connected layers.

Convolution layer: As CNNs are increasingly used to deal with complex nonlinearities in datasets [41], it has become more 
intuitive to explore nonlinear interactions in relational data. Arguably, two key contributors to CNNs are their nonlinearity and 
multilayer stacking. To prevent the CNNs from being affected by the change of internal covariance during training, we apply batch 
normalization (BN) [42] to each small batch of trained datas of CNNs to avoid performance degradation. Again, we denote by 𝜎
the activation function ReLU, 𝐶𝑜𝑛𝑣(⋅) represents the 2D convolution operation, and the convolution filter as 𝜃𝑛, 𝑛 = 1 ⋯ 𝐿, stacking 
multiple 2D convolutional blocks:

1
𝑐𝑜𝑛𝑣

= 𝜎
(
𝐶𝑜𝑛𝑣

(
𝑒𝑚𝑏;𝜃1

))
,⋯ ,

𝐿
𝑐𝑜𝑛𝑣

= 𝜎
(
𝐶𝑜𝑛𝑣

(
(𝐿−1)
𝑐𝑜𝑛𝑣

;𝜃𝐿
))
.

(14)

Suppose 𝐶 is the channel number in the convolution layer. The mapping module consists of two filters that model the TR recon-

struction process. One is a filter of size 1∕𝑘(𝑅, 𝑅), where 𝑘 is the coefficient that controls the size of the square filter so that the 
filter size can be adjusted to better learn the interaction between the data. Note that for the first convolution, we need to set the 
step size to 𝑅∕𝑘. Correspondingly, the size of the other filter is set to (1, 𝑁). We further utilize Dropout [43] as a regularization to 
the convolution layer to avoid the overfitting. Alternating the two filters during the convolution process is intended to eventually 
produce an output of size 𝐶 × 1 × 1.

Fully-Connected layer: The resulting 𝐶 × 1 × 1 tensor is used as the next input, which is flattened into a vector of length 𝐶 , 
denoted as
6

𝑓𝑙𝑎𝑡 = 𝐹 𝑙𝑎𝑡𝑡𝑒𝑛(𝐿
𝑐𝑜𝑛𝑣

) ∈ℝ1×𝐶 . (15)
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It is aggregated by a fully-connected layer and a scalar is obtained as the output. For purpose of learning the nonlinear structure 
in the tensor more efficiently, two fully connected layers are chosen here, and again, ReLU is used as the activation function. 𝜃𝑓 is 
denoted as the parameter. Thus, we have

𝑓𝑐 = 𝐹𝐶
(
𝜎
(
𝐹𝐶(𝑓𝑙𝑎𝑡;𝜃𝑓 )

))
∈ℝ, (16)

where 𝐹𝐶(⋅) is fully-connected layer operation. In summary, the output of the nonlinear mapping module can be written as 𝑦̂=𝑓𝑐 .

It follows that the ConvTR model is a generalized TR decomposition model with the factor tensor stored in the embedding module 
and represented by a neural network. Here we should mention that, when 𝐿=2, the model can be completely degraded to simulate 
the TR reconstruction process, denoted as follows

1
𝑐𝑜𝑛𝑣

= 𝜎
(
𝐶𝑜𝑛𝑣

(
𝑒𝑚𝑏;𝜃1

))
∈ℝ𝐶×1×𝑁,

2
𝑐𝑜𝑛𝑣

= 𝜎
(
𝐶𝑜𝑛𝑣

(
1
𝑐𝑜𝑛𝑣

;𝜃2
))

∈ℝ𝐶×1×1.

The 2-layer convolution will lead to unsatisfactory results due to the large filter size, so we set 𝐿=4 here, and the convolution process 
is shown in Fig. 1(b). Furthermore, in case the factor tensor is reduced in size to a matrix, i.e.,  (𝑘) ∈ℝ𝑅×𝐼𝑘×𝑅 → 𝑈 (𝑘) ∈ℝ𝐼𝑘×𝑅, the 
model degenerates to the CoSTCo [21].

To simplify the model, the nonlinear module is represented by having a mapping function

𝑦̂ = 𝑓
(
𝒙; (1),⋯ , (𝑁);Θ

)
, (17)

here we employ a set Θ =
{
𝜃1,⋯ , 𝜃𝐿, 𝜃𝑓

}
to represent all the parameters of the model.

4.2. Optimization of ConvTR

Suppose  is the tensor of observed missing entries, ̂ is the tensor approximated by the core tensor, and the number of all 
observed entries is 𝑀 . Define the index set of the observed entries as  =

{(
𝑖𝑚1 , 𝑖

𝑚
2 ,⋯ , 𝑖𝑚

𝑛

) |𝑚 = 1,⋯ ,𝑀
}

. Since 𝒙 is an entry of the 
set that represents the index vector, we have 𝑦𝑚 =(𝒙), 𝑦̂𝑚 = 𝑓 (𝒙; ⋅).

The loss function is the Frobenius norm of the difference between the reconstructed tensor ̂ and the target tensor  , i.e., ‖̂ −‖2
𝐹

. Under the sparse observation condition, the training set only observes part of the tensor entries, whereupon we have the 
same loss function as the mean square error, denoted as

 = ‖̂ −‖2
𝐹
=

𝑀∑
𝑚=1

(
𝑦̂𝑚 − 𝑦𝑚

)2
. (18)

We express the reconstruction loss of factor tensor as  
(
 (1),⋯ , (𝑁),Θ

)
in regularized form.


(
 (1),⋯ , (𝑁),Θ

)
=

𝑁∑
𝑘=1

‖‖‖ (𝑘)‖‖‖2𝐹 + ‖Θ‖22 . (19)

We introduce the reconstruction loss of the factor tensor as a regularization term . This regularization helps prevent overfitting 
arising from the model complexity and thereby improves the model’s generalization capability. Thus, the overall objective function 
of ConvTR is

 =
𝑀∑
𝑚=1

(
𝑦̂𝑚 − 𝑦𝑚

)2 +( (1),⋯ , (𝑁),Θ). (20)

The ConvTR can be taught by minimizing the loss function between the prediction term obtained from the interaction and the tensor 
term obtained from the observation.

Thus, ConvTR is trained by measuring all observed variables and the entry value of each completion. Algorithm 1 presents the 
pseudo-code of the model training process. The index set and observations are used as inputs, and the number of convolutional 
channels 𝐶 and the rank 𝑅 of TR decomposition are the model parameters. The parameters of the TR potential tensor and the 
convolutional layer are first initialized randomly before training. During the training process, a small batch 𝐽𝑏𝑎𝑡𝑐ℎ of size 𝑚𝑘 is 
sampled, each observation is considered for training. Specifically, for each index vector and observation in the 𝐽𝑏𝑎𝑡𝑐ℎ, the algorithm 
obtains the embedding matrix of the index vectors after Eq. (13). Then, the nonlinear operation is used to calculate the predicted 
values Eq. (17), and further Eq. (20) is applied to calculate the loss. Finally, the model parameters Θ update according to the 
calculated loss gradient.

4.3. Complexity analysis

The core idea of ConvTR is to construct an efficient nonlinear mapping module to emulate the interaction function between 
factor tensors, and the computational complexity of the model primarily comes from the TR decomposition module and the nonlinear 
mapping module. For an 𝑁 -th order tensor  ∈ ℝ𝐼1×𝐼2×⋯×𝐼𝑁 , we simply assume that the rank of the tensor decomposition is 𝑅. ( )
7

It is straightforward to know the complexity of the TR decomposition as  𝑁𝐼𝑅2 . The nonlinear module mainly consists of 
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Algorithm 1 Training Algorithm for ConvTR.

Input: training set  , original data  , 𝑛𝑒𝑝𝑜𝑐ℎ , 𝑚𝑘 ;
Parameters: channels 𝐶 , TR-ranks 𝑅;

Initialization: TR factors tensors 
{
 (𝑘)}𝑁

𝑘=1 and model parameters Θ ;

1: for 𝑡 = 1, 2, ⋯ , 𝑛𝑒𝑝𝑜𝑐ℎ do

2: Sample a batch-size 𝑏𝑎𝑡𝑐ℎ ⊆  of size 𝑚𝑘 ;

3: Loss function  = 0;

4: for (𝑖1, 𝑖2⋯ , 𝑖𝑛) ∈ 𝑏𝑎𝑡𝑐ℎ do

5: Index vector 𝒙 = (𝑖1, 𝑖2, ⋯ , 𝑖𝑛);
6: Gather embeddings for all dimensions by Eq. (13), 𝑈 (𝑘)

𝑖𝑘
= (𝑘) (∶, 𝑖𝑘,∶) for 𝑘 = 1 ⋯ 𝑁 ;

7: Calculation of nonlinear layers by 𝑓 (𝒙; ⋅) Eq. (17);

8: Calculation of the loss function  by Eq. (20);

9:  =  +(𝑓 (𝒙; ⋅), (𝒙));
10: end for

11: Update TR factors tensors and parameters of convolution. w.r.t the gradients using ▽;

12: end for

convolutional and fully connected layers, where the convolutional layer is composed of convolutional filter of size (𝑅,𝑅) and (1,𝑁), 
their complexity can be denoted as 1 ×𝐶 ×𝑅 ×𝑅, and 𝐶 ×𝐶 × 1 ×𝑁 , respectively, and the complexity of the fully-connected layer 
is 𝐶 ×𝐶 . Hence, the overall complexity of the model is  

(
𝑁𝐼𝑅2 +𝐶𝑅2 +𝑁𝐶2).

Compared with ConvTR, the three typical TR completion methods TRWOPT, TRALS and TRLRF require computational complexity 
of  

(
𝑁𝑅2𝐼𝑁 +𝑁𝑅4𝐼𝑁−1),  

(
𝑃𝑁𝑅4𝐼𝑁 +𝑁𝑅6) and  

(
𝑁𝑅2𝐼𝑁 +𝑁𝑅6), respectively, where 𝑃 is the sampling rate. Although, 

the computational complexity of these three algorithms is comparable, the practical application often increases the workload in rank 
selection since the real rank size usually remains unknown. It can be seen that among the above TR decomposition models, ConvTR 
has the lowest model complexity. Meanwhile, ConvTR has better rank robustness, which can effectively reduce the workload caused 
by rank selection, thus reducing the computational cost of the algorithm.

5. Numerical experiments

In this section, we validate the performance of the proposed ConvTR model and compare it with the existing advanced linear/non-

linear tensor decomposition models.

All experiments are performed in pytorch 1.9.0 in Linux, using an Intel(R) Core(TM) i9-10940X CPU at 3.30GHz and 128GB RAM. 
To speed up the operation, we ran the ConvTR model on the graphics (GPU) GeForce RTX 3090 processing unit.

5.1. Experimental setup

5.1.1. Datasets

We test our ConvTR model with seven popular color image datasets (e.g., Lena, Peppers, Starfish, etc.) and six video datasets 
(e.g., Akiyo, Container, News, etc.).1 Meanwhile, four publicly available datasets with different specifications collected from real 
traffic systems are selected to evaluate our proposed model to show the generality of the ConvTR model. Two small-scale data 
are Guangzhou city traffic speed data2 and Hangzhou subway passenger flow data.3 To demonstrate the advantages of ConvTR in 
handling large-scale high-order traffic data, we specifically select another two publicly available datasets collected from the California 
Transportation System (i.e., PEMS)4 as our benchmark datasets. All the above datasets are normalized to [0, 1].

5.1.2. Metrics

For model evaluation, we mask the tensor entries according to the proportion of missing rates, and then estimate the completion 
of these missing entries. We calculate the metrics root mean square error (RMSE) and mean absolute percentage error (MAPE) [44]

using the true values of these entries, i.e.,

𝑅𝑀𝑆𝐸 =

√√√√1
𝑛

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑦𝑖

)
, 𝑀𝐴𝑃𝐸 = 1

𝑛

𝑛∑
𝑖=1

||||𝑦𝑖 − 𝑦𝑖𝑦𝑖

|||| × 100.

Lower values of these two quality metrics indicate better reconstruction performance. For both image and video data, we weigh the 
performance of each method using the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) [45]. Conversely, 
higher values of these two quality measures reflect better completion scores.

1 https://media .xiph .org /video /derf/.
2 https://doi .org /10 .5281 /zenodo .1205229.
3 https://tianchi .aliyun .com /competition /entrance /231708 /information.
8

4 https://github .com /wanhuaiyu /ASTGCN /tree /master /data.

https://media.xiph.org/video/derf/
https://doi.org/10.5281/zenodo.1205229
https://tianchi.aliyun.com/competition/entrance/231708/information
https://github.com/wanhuaiyu/ASTGCN/tree/master/data
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Fig. 2. The RMSE and PSNR values of recovered color images by ConvTR with different C values and the missing rate 85%.

5.1.3. Baselines

Several state-of-the-art tensor decomposition methods are compared under different experimental settings, which contain both 
linear and nonlinear models.

TRWOPT [28]: The gradient descent algorithm is used to find out the potential factor of the incomplete tensor so as to complete 
the missing entries of the tensor.

TRALS [17]: It is mainly through the alternating optimization of each core in turn until the optimization process reaches a certain 
convergence condition.

TRLRF [18]: The nuclear norm regularization is applied to the TR decomposition factor, each step is optimized by SVD decom-

position, and the whole model is solved by ADMM algorithm.

GETD [8]: A generalized model unites Tucker decomposition and Tensor Ring decomposition. After Tucker nonlinear decom-

position, the core tensor is decomposed by TR, to alleviate the dimensional disaster caused by the Tucker decomposition of the 
higher-order tensor.

CoSTCo [21]: This model designs a shallow neural network structure based on CP decomposition and uses CNN expression to 
simulate the CP decomposition process. Such an approach can guarantee the low rank of the model while handling high-order sparse 
data.

5.1.4. Implementation

In the model ConvTR training, the detailed settings of the network hyperparameters are determined as follows. The batch size 
of all data training samples is fixed at 256. In addition, batch normalization and dropout are used to control overfitting. In addition 
to the TR decomposition embedding size, the initial learning rate during network training is varied from 0.001, with learning rate 
decay in the range {0.90,0.995,1} and dropout in the range [0.0, 0.5]. The entire number of epochs is set to 200 for network training 
and the Adam [46] technique is used as the gradient descent algorithm for backpropagation. We use the Python language and the 
Pytorch platform to train and test our network in a Windows 10 environment and GPU acceleration mode.

We assume all values of TR rank are identical, i.e., 𝑅1 =⋯ = 𝑅𝑁 = 𝑅, where the TR factors are randomized from the standard 
Gaussian distribution  (0, 1). All the methods are stopped when the maximum number of iterations or convergence criterion is 
reached, and the parameters are set according to the corresponding papers to attain the best results.

5.2. Parameters analysis

As embedding size is an important factor in connecting predictive models with expressivity [47], and the number of convolutional 
channels 𝐶 and the rank 𝑅 of the TR decomposition are the only hyperparameters of ConvTR that determine the complexity and 
performance of the model, we now study the impact of these parameters.

5.2.1. Effect of C
The number of channels inside the convolutional layer represents the depth of the layer, which illustrates how many counts are 

used to represent each pixel point. In considering the sensitivity of the channel 𝐶 of the convolution layer, experiments are conducted 
on color images with different 𝐶 values. We select three color images with a random missing rate (MR) of 85%, and the results are 
shown in Fig. 2. In the beginning, the RMSE/PSNE values decrease/increase with increasing 𝐶 . This is attributed to the increase of 
parameters in the convolution process, which makes the captured information increase accordingly, indicating that the amount of 
𝐶 affects the model. However, as 𝐶 continues to increase, the RMSE/PSNR values tend to stabilize. In the later experiments of this 
paper, the number of convolution layer channels 𝐶 can be adjusted according to this result.

5.2.2. Effect of R
Optimal rank selection is a momentous problem in tensor decomposition, particularly for TR decomposition. Usually, tensor 

decomposition models are extremely sensitive to rank and the choice of rank often has a great influence on the effectiveness of the 
9

algorithm. Whereas, the true rank of the real datasets is unknown. It usually requires a large number of experiments to determine 



Information Sciences 658 (2024) 120024T. Liao, J. Yang, C. Chen et al.

Fig. 3. Recovered results of the TRWOPT, TRALS, TRLRF, GETD, CoSTCo, and ConvTR (proposed) on image “Lena” with different TR-ranks for the missing rate are 
90%. From the first row to the last row, the selected TR-ranks are 3, 5, 10, 20, and 40, respectively.

the appropriate rank. Therefore, rank robustness is a crucial feature for tensor decomposition. We will demonstrate that ConvTR has 
excellent robustness in the next experiments.

We evaluate the rank robustness of the model ConvTR on an image named “Lena”. Fig. 3 visualizes the completion results of each 
model on example “Lena” when the chosen rank varies from 3 to 40. Clearly, the proposed method remains stable and gives the best 
visualization of the recovered image when the selected rank increases.

Obviously, the traditional TR-based completion methods (i.e., TRALS and TRWOPT) cannot maintain sound stability performance 
with increasing the selected rank since the algorithm does not have any regularization term, resulting in a sharp drop in recovery 
performance. Such a result is due to the overfitting of the model when the selected rank is larger than the true one. In contrast, the 
proposed method invariably provides the optimal recovery results while the model can ignore the effects of inappropriate choice of 
rank due to the excellent tuning capability of the convolutional layer of the model ConvTR.

Fig. 4 further shows the recovery performance of various algorithms at high missing rates, with different ranks. It is known 
that the higher the deletion rate is, the easier it is for the model to overfitting, so we set the image missing rate to 0.9 and 0.95 
respectively. As you can see in Fig. 4(a), the RMSE value of the TRWOPT and TRALS algorithms is the lowest when 𝑟𝑎𝑛𝑘 = 3, 
which is the expected value of the algorithm. As the TR-rank increases, the recovery ability of TRWOPT and TRALS decreases due 
to redundant model. As a network, GETD and CoSTCo learn more features with the increase in rank, and the performance improves 
gradually until it is stable. In Fig. 4(b), we find that TRWOPT and TRALS algorithms have lost their effectiveness under high sparsity, 
and GETD needs more features in the completion process. No matter what the TR rank is, TRLRF, CoSTCo, and ConvTR are robust, 
whereas ConvTR is optimal in most cases. Therefore, ConvTR has stronger robustness to rank selection, which can extremely reduce 
computational costs.

In addition, we run ConvTR on the color image “Lena”, using RTX 3090 GPU. With the MR of 90%, regardless of the value of 𝑅
and 𝐶 , each epoch training takes approximately 0.48 s, the total training takes approximately 2 min, and the inference takes only 2 
10

s. The outcomes show that the ConvTR method has high prediction efficiency and robustness in color images.
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Fig. 4. The RMSE values of the recovered color image “Lena” by all algorithms with different ranks when the missing rate is 90% and 95%.

Table 2

Evaluation results of recovered color images by different methods, bold and underline indicate optimal and sub-optimal results, respectively.

Image MR

PSNR SSIM

TRWOPT TRALS TRLRF GETD CoSTCo ConvTR TRWOPT TRALS TRLRF GETD CoSTCo ConvTR

Lena

256 × 256 × 3

85% 21.064 21.723 23.018 19.222 19.280 26.224 0.8608 0.8813 0.9019 0.8101 0.8436 0.9537

90% 19.971 20.034 20.651 16.243 18.154 24.223 0.8398 0.8412 0.8486 0.6510 0.7790 0.9303

95% 11.950 16.860 17.177 15.042 15.349 20.512 0.5769 0.7457 0.7173 0.5952 0.7210 0.8545

Airplane

256 × 256 × 3

85% 19.751 19.870 20.872 17.427 20.738 23.119 0.5384 0.5426 0.5510 0.2826 0.6181 0.8231

90% 17.077 17.131 18.952 16.407 17.877 21.096 0.3902 0.4439 0.4845 0.2033 0.4599 0.7341

95% 14.918 14.750 17.358 15.023 15.323 18.983 0.2251 0.2186 0.3527 0.1603 0.2529 0.5882

Peppers

256 × 256 × 3

85% 19.895 20.142 20.989 18.185 18.478 25.899 0.8518 0.8558 0.8719 0.7928 0.8141 0.9587

90% 18.051 17.762 17.896 16.934 15.774 23.045 0.8023 0.7886 0.7731 0.7185 0.7245 0.9248

95% 14.328 14.413 14.915 13.576 13.199 17.956 0.6445 0.6677 0.6555 0.5539 0.5513 0.8049

Starfish

256 × 256 × 3

85% 19.684 19.872 20.628 18.132 17.307 24.211 0.7968 0.8068 0.8142 0.7203 0.7077 0.9311

90% 18.002 18.094 17.898 16.300 16.324 22.334 0.7315 0.7366 0.7236 0.6362 0.6940 0.9047

95% 11.225 13.990 15.617 14.324 14.319 17.793 0.4072 0.5418 0.5967 0.5440 0.5174 0.7833

House

256 × 256 × 3

85% 22.224 21.104 25.180 19.696 21.472 27.642 0.7985 0.7901 0.8678 0.6978 0.8001 0.9345

90% 19.881 19.914 20.621 16.083 19.810 26.031 0.7518 0.7531 0.7708 0.5548 0.7220 0.9005

95% 18.160 18.268 17.819 15.375 17.813 21.194 0.6244 0.6273 0.5253 0.3702 0.6059 0.8082

Baboon

256 × 256 × 3

85% 19.751 19.998 19.871 17.378 18.737 21.987 0.6433 0.6448 0.6320 0.4843 0.5396 0.7474

90% 18.792 18.884 18.410 16.215 17.827 20.994 0.5985 0.5995 0.5983 0.4290 0.5072 0.6846

95% 17.277 16.674 15.538 14.977 16.792 18.705 0.4918 0.4655 0.3151 0.3242 0.4217 0.5657

Fruits

256 × 256 × 3

85% 18.842 18.572 19.838 17.651 18.064 23.171 0.7290 0.7093 0.7403 0.6157 0.7157 0.9015

90% 17.331 17.094 17.605 15.988 17.658 21.396 0.5763 0.5858 0.5306 0.5196 0.6643 0.8484

95% 14.586 14.494 15.063 14.788 15.615 17.919 0.5342 0.5522 0.5422 0.4867 0.5853 0.7076

5.3. Color image completion

In this subsection, we test our ConvTR against the state-of-the-art algorithms on seven benchmark images. The size of each Color 
image is 256 × 256 × 3 which can be considered as a third-order tensor.

Before starting the experiment, we perform missing processing on the original image. Specifically, all elements in the color image 
will be erased randomly according to a certain ratio to obtain the observed data. For traditional TR-based mathematical methods, 
TR-rank can be selected from [2, 20] by a cross-validation method, and the parameters are tuned according to the corresponding 
literature (The following video experiments are identical to the Spatio-temporal traffic experiments).

We test these algorithms on all the seven benchmark images with different missing rates: 85%, 90%, and 95%. We report the 
PSNR and SSIM values of the recovery results of different algorithms for 7 color images in Table 2. ConvTR performs the best and 
stable, followed by TRLRF, which establishes the relationship between the multilinear tensor rank and TR factor rank, allowing the 
low-rank constraint to be implicitly carried out on the TR latent space, thus ensuring that the model has better recovery results in the 
case of robustness. Considering the PSNR, the ConvTR outperforms the TRLRF by about 3 dB. It is observed that the model degrades 
substantially when the missing rate changes from 90% to 95%, compared to increasing the missing rate from 85% to 90%. When the 
missing rate reaches 95%, the baseline models appear to be overfitted and the completion performance drops significantly due to too 
few observations. However, our method still provides the best accuracy in entries of PSNR and SSIM at high sparsity.

Fig. 5 shows the results of the recovery of color images for all compared models with an 85% missing rate. Obviously, the images 
11

reconstructed by our method are the clearest with the best visual effect. GETD uses Tucker to decompose the target tensor, and 
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Fig. 5. The recovered color images by different methods with the missing rate 85%. From (a) to (h): original image, observed image, recovered images by TRWOPT, 
TRALS, TRLRF, GETD, CoSTCo, and ConvTR, respectively.

then the resulting core tensor is decomposed by TR. Although this algorithm reduces the complexity of Tucker decomposition, the 
lack of a convolutional layer makes the learned features worse than ConvTR. CoSTCo is a convolutional network method that uses 
CP decomposition and the image looks darker because the reconstruction produces more negative entries. Although both are in the 
form of convolutional networks, the best recovery performances of CoSTCo are significantly lower than that of ConvTR based on 
TR decomposition, which can indicate that the expressiveness of CP decomposition is inferior to that of TR decomposition. Among 
the traditional TR-based completion methods (i.e., TRWOPT, TRALS, and TRLRF), TRLRF complements most effectively but does not 
mitigate the blurring due to the fact that using only the global low-rank prior is not sufficient to recover the underlying image. The 
gradient descent-based TRWOPT algorithm is unstable during optimization and the reconstruction performance is inferior to that of 
TRALS, but they all outperform the network-structured GETD and CoSTCo models. In contrast, the ConvTR proposed in this paper 
can capture the intrinsic structure of multidimensional visual data, and thus has clean and sharp spatial details with the best visual 
results.

5.4. Video completion

The video completion task is to reconstruct the frames of a video based on a given partial observation. In the experiments, we test 
six grayscale videos, each named “Akiyo”, “Container”, “News”, “Suzie”, and “Seafish”, with size denoted as (ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ ×𝑓𝑟𝑎𝑚𝑒). 
Unlike color images with only three channels, gray video data usually consists of a dozen or hundreds of frames. As a result, the 
relationship between different frames is much tighter and the adjacent frames of the video sequence are highly similar, so there is 
12

also more redundant information.
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Table 3

Evaluation results of recovered videos by different methods, bold and underline indicate optimal and sub-optimal results, respectively.

Video MR

PSNR SSIM

TRWOPT TRALS TRLRF GETD CoSTCo ConvTR TRWOPT TRALS TRLRF GETD CoSTCo ConvTR

Akiyo

144 × 176 × 30

90% 30.811 30.420 30.189 26.298 27.736 33.022 0.8881 0.9137 0.8921 0.7801 0.9062 0.9616

95% 26.728 26.861 28.572 24.675 27.260 31.486 0.7639 0.7867 0.8485 0.7643 0.8336 0.9366

99% 20.448 11.033 19.134 22.391 21.604 24.725 0.4511 0.1201 0.5896 0.5994 0.5532 0.7792

Container

144 × 176 × 30

90% 28.485 27.582 29.018 22.624 26.466 31.663 0.8671 0.8538 0.9144 0.7269 0.8745 0.9386

95% 23.572 23.383 25.864 21.841 24.021 27.508 0.7321 0.7282 0.8234 0.6463 0.7985 0.8985

99% 17.192 12.212 17.621 20.394 20.017 21.978 0.4251 0.2061 0.3541 0.5665 0.5845 0.7218

News

144 × 176 × 30

90% 29.286 29.287 29.813 24.388 25.143 32.893 0.8628 0.8729 0.9038 0.7418 0.8313 0.9642

95% 24.965 25.724 26.089 22.522 23.566 28.306 0.7183 0.7551 0.7903 0.6818 0.7528 0.9229

99% 11.727 11.567 19.392 18.085 18.721 21.747 0.2263 0.1218 0.4634 0.4442 0.4353 0.7435

Suzie

144 × 176 × 30

90% 30.146 30.169 30.954 27.988 28.287 32.808 0.8127 0.8224 0.8312 0.7723 0.8125 0.9013

95% 27.435 27.896 26.105 26.468 25.919 29.901 0.7299 0.7532 0.7237 0.7073 0.7209 0.8469

99% 19.735 16.269 20.095 23.548 21.799 24.569 0.4421 0.1364 0.4501 0.6035 0.5071 0.6519

Seafish

185 × 290 × 30

90% 24.285 24.661 25.718 18.018 18.497 26.813 0.8207 0.8323 0.8708 0.5378 0.5646 0.8874

95% 20.177 20.483 20.697 17.067 18.158 23.521 0.6388 0.6571 0.6633 0.4143 0.4717 0.8201

99% 13.855 15.231 14.836 14.602 14.352 16.968 0.1182 0.1835 0.1883 0.1675 0.1938 0.4087

Bus

256 × 256 × 30

90% 19.444 19.705 19.108 18.618 18.740 21.135 0.4588 0.4817 0.4238 0.3896 0.3835 0.6186

95% 18.357 18.446 18.183 17.348 17.734 19.223 0.3534 0.3531 0.3348 0.3281 0.3315 0.4838

99% 15.626 16.217 15.669 15.733 16.873 17.239 0.1646 0.1948 0.1859 0.1760 0.2120 0.3017

We randomly remove 90%, 95%, and 99% data from 6 videos. In the experiment, the average PSNR and SSIM of 30 bands are 
used to evaluate all methods. Table 3 shows the PSNR and SSIM values of the completed videos with different missing rates. Despite 
the increased dimensionality of the tensor data compared to the images, the same range of rank selection yields excellent PSNR 
values. Unlike the baseline, for different deletion rates, our method achieves optimal results in all cases. Grayscale videos have high 
linear correlation, so GETD and CoSTCo are less effective than traditional mathematical methods in video completion. In addition, 
the TRLRF method is almost similar to TRWOPT and TRALS in entries of PSNR and does not show outstanding recovery as color 
images.

When MR=90%, the first frame visualization results are displayed in Fig. 6. The proposed method recovers the best results under 
all videos, which is consistent with the results shown in Table 3. Our ConvTR recovers the edges well in successive videos, with the 
most pronounced effect on the “Bus”. It can be clearly seen that ConvTR recovers coral bush details on “Seafish”, boat outlines on 
“Container”, and facial expressions on “Akiyo” and “Suzie”.

Fig. 7 plots the numerical PSNR curves for each frame of the six video datasets, respectively. The complete method based on TR 
decomposition works better than the other decomposition methods, indicating that the TR structure has advantages in representing 
grayscale video data. Numerically, our method obtains the highest value in entries of PSNR on each frame.

Choose the “News” dataset as an example. The results are shown in Fig. 8, where the random missing rate is 90%, 95%, and 
99% respectively. Intuitively, ConvTR performs the best among these models, while GETD performs the worst. In particular, when 
the missing rate reaches 99%, the video images recovered by the baseline methods are all obscured, while ConvTR is still able to 
delineate the boundaries of the edges of the people in the video frame and has higher quality results. All these results show that 
ConvTR can capture more information from incomplete videos than its comparison methods regardless of data sparsity, reflecting 
the superiority of ConvTR in video data completion.

5.5. Spatio-temporal traffic data completion

Spatio-temporal traffic prediction is an essential task with wide application prospects [44]. In this subsection, we test all methods 
on the following four traffic data. Guangzhou city traffic speed data (GZ), which collects the average traffic speed of 214 road 
sections in Guangzhou, China for two months (from August 1 to September 30, 2016) with a interval of 10 minutes i.e., 144 data 
per day. Hence, we constitute it as a third-order tensor of size 214 × 61 × 144. Hangzhou metro passenger flow data (HZ) provides 
the inbound passenger flow for 80 metro stations for 25 days (from January 1, 2019, to January 25, 2019), which is collected every 
10 minutes. Unlike the GZ dataset, metro passenger flow data is meaningless from 0:00 a.m. to 6:00 a.m., i.e., only 108 intervals are 
considered in a day, so group it into a third-order tensor of 80 × 25 × 108. Essentially, both datasets follow the same tensor structure 
𝑠𝑒𝑛𝑠𝑜𝑟 × 𝑑𝑎𝑦 ×𝑚𝑖𝑛𝑢𝑡𝑒.

For large-scale data, we adopt the reference [48] provided flow datasets PEMS, including PEMS04 and PEMS08. PEMS04 is the 
flow data collected by 307 detectors for 59 consecutive days since January 1, 2018, and it is collected every 5 minutes. The shape 
after reading all the original traffic data is 16992 ×307 ×3. Each tensor index is a tuple of (sequence-length, sensor, features), of which 
the three-dimensional features are flow, occupy, and speed. Similarly, PEMS08 is the traffic data of 170 nodes for 62 consecutive 
days in San Bernardino since July 1, 2016, and its data shape is 17856 × 170 × 3. To simulate the periodicity of traffic data, the 
original 3rd-order ordered tensor is reconstructed into a 5th-order tensor by decomposing the time index into the daily index, hour 
13

index, and minute index. The advantage of this division is that the information under each dimension is easier to distinguish, so the 
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Fig. 6. The 1-th frame of recovered videos by different methods with the missing rate 90%. From (a) to (h): original video, observed video, recovered videos by 
TRWOPT, TRALS, TRLRF, GETD, CoSTCo and ConvTR, respectively.
14

Fig. 7. The PSNR values of recovered frames form six videos by different methods with the missing rate 90%.
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Fig. 8. The 1-th frame of recovered “News” by all methods for different missing rates. From (a) to (h): original image, observed image, recovered images by TRWOPT, 
TRALS, TRLRF, GETD, CoSTCo and ConvTR, respectively. From the top down: missing rate 90%, 95% and 99%, respectively.

Table 4

Evaluation results of recovered spatiotemporal traffic by different methods, bold and underline indicate optimal and sub-optimal results, respectively.

Traffic MR

RMSE MAPE(%)

TRWOPT TRALS TRLRF GETD CoSTCo ConvTR TRWOPT TRALS TRLRF GETD CoSTCo ConvTR

HZ

80 ×25 ×108

90% 0.0138 0.0132 0.0168 0.0211 0.0152 0.0096 25.34 25.61 57.42 45.55 55.67 22.86

95% 0.0383 0.0236 0.0304 0.0198 0.0184 0.0136 35.33 30.33 68.82 42.79 46.11 23.27

99% 0.0712 0.0565 0.0436 0.0562 0.0310 0.0263 190.71 108.69 97.99 102.59 107.91 52.01

GZ

214 × 61 × 144

90% 0.0338 0.0341 0.0336 0.0397 0.0416 0.0315 10.11 10.01 10.23 11.97 11.75 8.67

95% 0.0374 0.0371 0.0367 0.0398 0.0431 0.0342 10.98 10.85 10.96 11.87 12.59 9.91

99% 0.0485 0.0750 0.0479 0.0447 0.0489 0.0437 14.47 16.67 14.61 13.14 14.41 12.27

PEMS04

59 ×24 ×12 ×307 ×3
99.9% 0.7985 0.1311 0.3116 0.0986 0.0668 0.0595 112.78 44.56 86.18 51.08 46.89 44.11

99.99% 0.5411 0.4288 0.4685 0.2928 0.1040 0.0885 168.98 153.13 100.01 83.49 77.53 58.48

PEMS08

62 ×24 ×12 ×170 ×3
99.9% 1.0454 0.1721 0.2403 0.3187 0.0585 0.0492 118.62 52.03 393.75 99.18 31.48 23.29

99.99% 0.5256 0.7714 0.3425 0.4214 0.0878 0.0672 142.73 186.12 647.95 149.56 65.90 50.20

interaction between factors is easier to capture. Each tensor is indexed as a tuple(day, hour, minute, sensor, variable), and it is not 
difficult to see that both datasets are massively high-dimensional.

We choose RMSE and MAPE to quantitatively measure the quality of the results, and lower RMSE and MAPE values indicate 
better reconstruction. A random sampling of data with different specifications is performed, and Table 4 gives the results of different 
methods at different sampling rates. We note that the ability of the models TRWOPT, TRALS, and TRLRF of traditional mathematics is 
limited, especially on large-scale data. When the missing rate increases and the sampling rate is too weak, the RMSE/MAPE values of 
the traditional methods increase sharply. The network structure has better adaptability to different data sizes, which shows that the 
network structure has better model extensibility. GETD is less effective than CoSTCo in the process of feature learning due to the lack 
of a corresponding convolutional structure. Although CoSTCo and ConvTR have similar network structures, the TR decomposition 
we use in the embedding layer has better expressibility than the CP decomposition and is stronger than the CP decomposition in this 
periodic sequence.

With a missing rate of 90%, we visualize the GZ traffic data recovery using a heat map, showing the observed 1st side slice in 
Fig. 9. As can be seen, the effect we recovered is the closest to the original data. The three traditional TR mathematical models are 
more effective in small data recovery. Since GETD and CoSTCo mainly use low-rank constraints, the low-rankness of the complete 
results is too abrupt. Overall, the effect of our method on small-scale traffic data is excellent in entries of completion, a phenomenon 
that is consistent with the demonstrated results shown in Table 4.

We mask a certain amount of observations as missing values in the PEMS dataset (i.e., 99.9%, 99.99%), and the remainder of 
the observations are used as input data to estimate these masked entries. In general, the completion issue becomes increasingly 
challenging as the missing rate increases. Next, we examine the capabilities of various models under severe and extreme missing 
scenarios. When the missing rate increases, the traditional mathematical methods show severe overfitting, and the network structure 
approach can still guarantee a better complementary effect under parameter control. We visualize the time series with an extreme 
missing rate of 99.9% by picking two weeks of data from PEMS08. Fig. 10 shows the corresponding time series recovered by 
ConvTR, and we demonstrate the recovery structure of the 3 features flow, occupy, and speed in the 5th-order tensor. It can be seen 
that ConvTR can achieve very high accuracy for PEMS08 with only 0.1% input. This can be attributed to our ingeniously designed 
network architecture. Our model can not only efficiently extract nonlinear interactions within the data, but also better characterize 
15

the similarities between neighboring data points by exploiting low-rank information. Take PEMS08 as an example. Despite the 
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Fig. 9. The reconstructed 1-th road by different methods on the GZ traffic data (MR = 90%). The picture contains 61 days with 144 intervals per day.

Fig. 10. Example of the recovered PEMS08 traffic dataset (MR=99.9%). Selecting the sensor data visualization with number 123, the red curve is the predicted value, 
while the blue curve is the ground fact.

massive dataset size with nearly 10 million data points, ConvTR’s low-rank representation can well capture the periodicity in the 
data. With only 0.1% observed values, there are still nearly 10,000 data points remaining, sufficient for convolutional neural networks 
to fully extract distinctive features from the data and complete missing values.

In summary, the above experimental results show that the ConvTR proposed in this paper is more capable of capturing higher-

order tensor intrinsic information compared with other tensor decompositions.

5.6. Convergence analysis

In Fig. 11, we show the test error of our algorithm in each iteration on three different types of datasets (i.e., image, video, 
and spatio-temporal traffic data). Here, the total error is defined as the RMSE value of the convergence condition in the algorithm. 
According to Fig. 11, we can see that the error decreases rapidly as the number of iterations increases. On both image and video 
datasets, our algorithm can converge within 50 iterations. Even on two larger-scale traffic datasets, it similarly converges within 
100 iterations. At the same time, the error after the algorithm converges does not increase with the number of iterations, indicating 
that the model does not exhibit overfitting and confirms very excellent robustness. The experiments also verify that our algorithm 
ConvTR not only has a fast convergence rate but also has a good complementary effect.

6. Conclusions

We propose a convolutional expressive TR decomposition model for tensor completion, ConvTR. Based on the expressiveness 
and flexibility of TR decomposition, we define a new convolutional neural network model to fit large-scale sparse data with fast 
convergence guarantee. ConvTR can effectively capture nonlinear interactions, thus expressing the underlying information between 
data even when there are few observations. Extensive experiments on different datasets show that ConvTR outperforms current 
16

state-of-the-art linear/nonlinear methods in high-order sparse tensor completion, and achieves the satisfied performance on standard 
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Fig. 11. The convergence behavior regarding the number of iterations for color images, grayscale videos, and spatio-temporal traffic data, respectively.

color image datasets and grayscale video datasets. Also, the model has higher effectiveness and speed in large-scale spatio-temporal 
traffic data completion than the compared methods.

For future work, we will study the theoretical properties of the ConvTR model and explore its relationship with deep-seated neural 
networks. At the same time, we will extend the model to more applications, such as recommendation system, knowledge graph and 
so on.
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