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Multi-view clustering (MVC) can exploit the complementary information among multi-view 
data to achieve the satisfactory performance, thus having extensive potentials for practical 
applications. Although Nonnegative Matrix Factorization (NMF) has emerged as an effective 
technique for MVC, the existing NMF-based methods still have two main limitations: 1) They 
solely focus on the reconstruction of original data, which can be regarded as the decoder of 
an autoencoder, while neglecting the low-dimensional representation learning. 2) They lack 
the ability to effectively capture both linear and nonlinear structures of data. To solve these 
problems, in this paper, we propose a Dual Auto-weighted multi-view clustering model based on
Autoencoder-like NMF (DA2NMF), which enables a comprehensive exploration of both linear and 
nonlinear structures. Specifically, we establish an autoencoder-like NMF model that learns linear 
low-dimensional representations by integrating data reconstruction and representation learning 
within a unified framework. Moreover, the adaptive graph learning is introduced to explore 
the nonlinear structures in data. We further design a dual auto-weighted strategy to adaptively 
compute weights for different views and low-dimensional representations, thereby obtaining an 
enhanced consistent graph. An effective algorithm based on Multiplicative Update Rule (MUR) is 
developed to solve the DA2NMF with the theoretical convergence guarantee. Experimental results 
show that the proposed DA2NMF can effectively improve the clustering performance compared 
with the state-of-the-art MVC algorithms.

1. Introduction

In the fields of data mining and analysis [1–4], data often originates from multiple sources and exhibits different characteristics 
[5], leading to the generation of multi-view data [6]. For example, a single piece of news can be documented across several languages, 
an image can be characterized by diverse sets of features, and a signal can be displayed by distinct waveforms in the frequency and 
time domains. These examples all represent multi-view data, where each view holds unique attributes and offers supplementary 
information compared to that of other views. Therefore, to capture the complementary and consistent information inherent in multi-
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view data, multi-view clustering (MVC) has received widespread attention and research [1,7–9]. However, handling multi-view data 
poses challenges due to complex features, diverse data sources, large volumes, and high dimensionality within data [10,11].

In recent years, there are many methods to deal with multi-view data, such as spectral clustering [12–15,7], graph-based clustering 
[16–18,8,19], subspace-based clustering [20,9], and nonnegative matrix factorization (NMF)-based clustering [21,22]. Due to the 
advantages of NMF in dimensionality reduction and interpretability, we mainly focus on NMF-based clustering methods. Typically, 
NMF-based clustering involves two steps. Firstly, NMF is used to learn low-dimensional representations of data [23,24]. Then an 
additional post-processing step like K-means [25] is applied to obtain the final clustering results [26]. For example, Yang et al. [27]
introduced sparse NMF and proposed a document clustering algorithm by explicitly constraining the sparsity of the low-dimensional 
matrices. Wild et al. [28] developed an initialization technique for NMF to improve the speed of clustering tasks. One of the most 
representative works is Symmetric NMF (SymNMF) [29], which decomposed the data into a symmetric matrix containing pairwise 
similarity values and captured the clustering structure. Nevertheless, the above methods are only suitable for processing single-view 
data, which fails to effectively integrate feature information from different views.

To handle multi-view data, a substantial number of MVC methods based on NMF and its variants [30,23] have emerged. Gao et al. 
[21] proposed a multi-view NMF (MultiNMF) model, where the clustering structures of different views are preserved during the joint 
factorization process, and the consensus representation is learnt by coefficient matrices of different views. Unlike most MVC methods 
that only consider the consistency among multiple views, Liu et al. [30] introduced a semi-supervised multi-view learning method 
to jointly explore both the consistent and complementary information across views. Cai et al. [31] proposed a semi-supervised MVC 
method based on orthonormality-constrained NMF, which utilized constrained NMF to learn low-dimensional representations of data 
and used co-regularization to integrate complementary information from different views. Though these NMF-based methods allow 
for data dimensionality reduction and achieve latent linear representation of data, they are hardly to preserve geometric structures, 
limiting their ability to capture complex nonlinear relationships in multi-view data. To preserve the geometric structure of data, 
graph regularization-based NMF has been proposed for MVC task. Zhang et al. [32] applied graph regularization on the coefficient 
matrices of each view to preserve the intrinsic structure of data. Xu et al. proposed a MVC via consistent and specific NMF with 
graph regularization (MCCS) method and designed a disagreement regularization term to learn a common representation, thus a 
same underlying cluster structure from multiple views can be ensured. Liu et al. [33] proposed deep manifold regularized semi-NMF 
for MVC and employed graph regularization at each layer of deep matrix factorization to extract complex structural information 
within data. The studies mentioned above use a fixed graph construction method that may produce clustering results sensitive to the 
predefined similarity matrix and potentially disrupt the local connectivity of the data [34]. Despite significant progress in NMF-based 
MVC, these methods still exhibit three limitations: 1) NMF-based methods primarily emphasize the decoder, which reconstructs the 
original data from its low-dimensional representation, neglecting the encoding process of directly projecting input data into a low-
dimensional representation. 2) The linear and nonlinear structures inherent in multi-view data have not been thoroughly explored. 
3) These methods do not adequately consider the contributions of different views, resulting in suboptimal clustering results.

To solve the above limitations, we propose a Dual Auto-weighted multi-view clustering model based on Autoencoder-like NMF 
(DA2NMF), which not only retains the linear information from specific views but also incorporates adaptive graph learning to explore 
the nonlinear structures of multi-view data, as illustrated in Fig. 1. Unlike traditional NMF-based algorithms that focus solely on 
reconstructing the original data through the decoder, our model introduces both an encoder and a decoder to learn low-dimensional 
representations. Moreover, we design a dual auto-weighted strategy to adaptively assign weights for each view and view-specific low-
dimensional representation, enabling DA2NMF to obtain a more discriminative fused graph. Throughout the optimization iterations, 
the three modules, i.e., low-dimensional representation learning, consistent graph learning, and dual auto-weighted strategy are 
simultaneously optimized and they enhance each other in our proposed method. The contributions of this work are as follows:

1) We propose a Dual Auto-weighted multi-view clustering model based on Autoencoder-like NMF (DA2NMF), which integrates 
the autoencoder-like NMF and adaptive graph learning into a unified framework. Moreover, by considering the dual auto-weighted 
strategy, the DA2NMF effectively accounts for the importances of different views and the weights of view-specific low-dimensional 
representations to learn a more discriminative consistent graph.

2) By considering both the reconstruction of multi-view data and representation learning, an autoencoder-like NMF is constituted 
to obtain the better latent representations in a low-dimensional space. Moreover, based on the view-specific low-dimensional repre-
sentations, we introduce the adaptive graph learning to adaptively explore the nonlinear structure of multi-view data. Our framework 
effectively integrates both the latent linear and nonlinear structures of multi-view data to obtain an enhanced consistent graph.

3) We develop an iterative algorithm based on Multiplicative Update Rules (MUR) to effectively solve the optimization problem 
of the DA2NMF model. We also theoretically prove the convergence of the algorithm. In the experiments, the proposed DA2NMF 
outperforms the comparative methods, showing the effectiveness of our method.

The paper is organized as follows: Section 2 provides a brief review of related works. In Section 3, the DA2NMF model and 
optimization algorithm are introduced. In Section 4, extensive experiments are tested to validate the effectiveness of DA2NMF. 
Section 5 involves a discussion on the experimental results. Section 6 concludes the paper.

2. Related work

MVC has been a popular topic which aims at exploring the inherent correlation and consistency among different views for 
clustering [35]. In this section, we review some related works about MVC, which consists of four parts: spectral MVC, graph-based 
2

MVC, subspace-based MVC, and NMF-based MVC.
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2.1. Spectral MVC

Spectral clustering transforms the clustering problem into a graph partitioning problem [36]. The input to spectral clustering is a 
similarity graph, whose optimization objective is to minimize the similarity relations between different components of the graph [37]. 
Kumar et al. [12] constructed a spectral clustering framework, which introduces pairwise co-regularization as well as centroid-based 
co-regularization to balance view-specific eigenvectors and consensus eigenvectors. To achieve a robust spectral clustering result, 
Huang et al. [13] proposed affinity aggregation spectral clustering (AASC) method for alleviating the impact of irrelevant features. 
Motivated by the same purpose, Xia et al. [14] used Markov chain method and proposed robust multi-view spectral clustering (RMSC) 
to explicitly handle the noise in the transition probability matrices among views. Considering the diversity of different views, Zong 
et al. [7] employed the spectral perturbation to model the weights of views, which allowed the clustering results among views to 
approximate the consensus clustering result and smoothes the weights.

2.2. Graph-based MVC

Graph-based MVC achieves a fused graph by integrated graphs from multiple views. It can be noted that graph-based MVC 
and spectral MVC exhibit certain similarities; however, their distinction lies in the fact that spectral MVC typically identifies a 
low-dimensional embedding representation of the data, while graph-based MVC generates clusters on the constructed data graph 
rather than a new embedding representation [8]. Zhan et al. [16] pointed out most graph-based MVC need a predefined graph, 
the quality of which can significantly influence the clustering performance. Based on the concern, multiview clustering with graph 
learning (MVGL) [16] and multiview consensus graph clustering (MCGC) [17] methods were proposed to enhance the quality of 
the predefined graph. Different from MVGL, MCGC employed a specific disagreement cost for exploring consistency across different 
views. Moreover, Wang et al. [8] proposed a general graph-based MVC (GMC) method to construct the graph of each view and learn 
a fusion graph in a mutually reinforcing way. To reduce the computational complexity, Tang et al. [19] designed a parameter-free 
method and learnt a unified graph for MVC via cross-view graph diffusion.

2.3. Subspace-based MVC

Subspace-based MVC aims to obtain a shared low-dimensional space from different views, in which a consistent low-dimensional 
representation of multi-view data can be found for clustering. This method can reduce redundant information of data and has low 
computational complexity. Liu et al. [20] proposed multi-view subspace clustering algorithm, which preserves the locally consistent 
geometric relationship and ensure the consistency across different views. Wang et al. [9] pointed out that most subspace-based MVC 
methods suffer from cubic time complexity and are not suitable for dealing with large-scale datasets. Subsequently, a fast parameter-
free multiview subspace clustering method with consensus anchor guidance (FPMVS-CAG) was proposed to automatically learn an 
optimal anchor subspace graph without any extra hyper-parameters, which was suitable for large-scale multi-view data clustering.

2.4. NMF-based MVC

To handle the high-dimensional data clustering, NMF-based MVC derives a representation in low-dimensional spaces by decom-
posing original data into two nonnegative low-rank matrices, and the clustering results can be obtained by K-means. In recent years, 
many extensions of NMF-based MVC have been proposed, such as constrained NMF-based MVC [32] with additional constraint 
terms, structured NMF-based MVC [38] by altering the loss function structure, and generalized NMF-based MVC [33] by extending 
the decomposition form [23]. Generally, the constrained NMF-based MVC has been widely studied, which imposes additional con-
straint terms such as graph regularizer and orthogonality constraint [31]. For instance, by integrating concept factorization, manifold 
regularization and the consistency constraint into a unified framework, the multi-view concept clustering (MVCC) [22] method was 
proposed to learn a consistent representation across different views. Moreover, Luong et al. [39] proposed a MVC framework of 
deep NMF by applying diversity constraint, orthogonal constraint, and cut-type constraint to enhance the learning of shared and 
complementary information among the views.

Compared to the spectral MVC, graph-based MVC, and subspace-based MVC mentioned above, NMF-based MVC have the follow-
ing two advantages: 1) NMF-based MVC ensures that all elements in the generated decomposition matrix are nonnegative, making the 
results easier to interpret. 2) The computational complexity of NMF-based MVC is lower, especially on large-scale datasets. Inspired 
by the above, we further propose a new MVC framework that incorporates the inherent linear and nonlinear structures of multi-view 
data, taking into account the significance of different views and low-dimensional representations.

3. Method

In this paper, matrices are denoted as uppercase letters such as 𝐗. We use 𝐱𝑖 and 𝑥𝑖𝑗 to denote the 𝑖-th column and the 𝑖𝑗-th entry 
of 𝐗, respectively. The trace of 𝐗 is denoted by 𝑇 𝑟(𝐗). We use ‖𝐗‖𝐹 and ‖𝐗‖2 to describe the Frobenius norm and the 𝑙2 norm 
of 𝐗, respectively. Assuming a multi-view dataset has 𝑑 views, and 𝐗𝑣 = {𝐱𝑣1 , ..., 𝐱

𝑣
𝑛
} ∈ ℝ𝑚×𝑛 is the 𝑣-th view data, where 𝑚 is the 

dimension of features and 𝑛 denotes the number of instances. Table 1 presents a comprehensive list of mathematical symbols in this 
3

paper along with their corresponding descriptions.
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Table 1

Some notations and definitions used in DA2NMF.

Notations Definitions

𝑚 The dimension of features
𝑛 The number of instances
𝑐 The number of clusters
𝑑 The number of views
𝑘 The reduced feature dimensionality
𝐗,𝐱𝑖 , 𝑥𝑖𝑗 The matrix, the 𝑖-th column, the 𝑖𝑗-th entry
𝐗𝑣 ∈ℝ𝑚×𝑛 The 𝑣-th view data
𝐔𝑣 ∈ℝ𝑚×𝑘 The 𝑣-th view basis matrix
𝐕𝑣 ∈ℝ𝑛×𝑘 The 𝑣-th view representation matrix
𝐒 ∈ℝ𝐧×𝐧 The fused graph
𝑇 𝑟(𝐗) The trace of 𝐗‖𝐗‖𝐹 The Frobenius norm of 𝐗‖𝐗‖2 The 𝑙2 norm of 𝐗
𝝈
𝑣, 𝝎𝑣 The auto-weighted parameters
𝛼, 𝛽 The hyperparameters

3.1. The proposed DA2NMF model

In this section, we present the DA2NMF model and the optimization algorithm in detail. Our DA2NMF model consists of three 
components: autoencoder-like NMF, adaptive graph learning, and dual auto-weighted strategy, which are unified within a framework, 
as shown in Fig. 1.

3.1.1. Autoencoder-like NMF

The core of NMF is to reconstruct the data 𝐗𝑣 from basis matrix 𝐔𝑣 and low-dimensional representation 𝐕𝑣 [40], which can be 
seen as a decoding process. The objective function is

min
𝐔𝑣,𝐕𝑣

‖𝐗𝑣 −𝐔𝑣(𝐕𝑣)𝑇 ‖2
𝐹

𝑠.𝑡. 𝐔𝑣 ≥ 0,𝐕𝑣 ≥ 0.
(1)

However, Eq. (1) neglects the encoding process, which involves the transformation of 𝐗𝑣 into a more optimized 𝐕𝑣. Hence, we 
introduce an autoencoder-like NMF to jointly consider the reconstruction of original data and the learning of low-dimensional 
representations. The optimization problem is given by

min
𝐔𝑣,𝐕𝑣

𝑑∑
𝑣=1

(‖𝐗𝑣 −𝐔𝑣(𝐕𝑣)𝑇 ‖2
𝐹
+ 𝛽‖𝐕𝑣 − (𝐔𝑣)𝑇𝐗𝑣‖2

𝐹
)

𝑠.𝑡. 𝐔𝑣 ≥ 0,𝐕𝑣 ≥ 0,

(2)

where the first term in Eq. (2) is decoder, which reconstructs the input matrices from low-dimensional representations. The encoder 
can directly project the input data into low-dimensional representations, as indicated in the second term of Eq. (2). According to Eq. 
(2), the linear low-dimensional representation of each view can be adequately learnt.

Remark 1. Autoencoder-like NMF refers to a variant of NMF that is inspired by the architecture and principles of the autoencoder, 
which comprises an encoder and a decoder. The encoder projects the original data into a low-dimensional representation, while the 
decoder reconstructs the original data based on this representation. In contrast to conventional NMF algorithms that primarily focus 
on the decoder, the autoencoder-like NMF can obtain the better latent representations in a low-dimensional space.

3.1.2. Adaptive graph learning

Despite addressing some drawbacks of traditional NMF, autoencoder-like NMF remains with two limitations: 1) it ignores the 
nonlinear structure within the original data, and 2) it lacks consistency information descriptions. To address the aforementioned 
limitations, inspired by [41], we incorporate the idea of adaptive graph learning into our model for preserving nonlinear structures. 
Adaptive graph learning obtains the similarity relationships between samples by optimizing the following problem:

min
𝐒

𝑁∑
𝑖,𝑗

(‖𝐱𝑖 − 𝐱𝑗‖22𝑠𝑖𝑗 + 𝛾𝑠2𝑖𝑗 )
𝑠.𝑡.∀𝑖, 𝐬𝑇

𝑗
𝟏 = 1,0 ≤ 𝑠𝑖𝑗 ≤ 1,

(3)

where 𝑠𝑖𝑗 is the 𝑖𝑗-th entry of a similarity matrix, and it can describe the distance between data points 𝑥𝑖 and 𝑥𝑗 , reflecting the 
4

relationship between the data points. Specifically, a smaller distance ‖𝐱𝑖 − 𝐱𝑗‖22 implies that 𝑥𝑖 is closer to 𝑥𝑗 , resulting in a larger 
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Fig. 1. Overview of the DA2NMF. DA2NMF comprises three crucial components: A. autoeoder-like NMF, B. graph learning, and C. dual auto-weighted strategy. 
Specifically, autoencoder-like NMF explores the linear latent representations {𝐕1, ..., 𝐕𝑣} of data {𝐗1 , ..., 𝐗𝑣}. Graph learning focuses on capturing the nonlinear 
structures within the low-dimensional representations and obtaining a consistent graph 𝐒. And dual auto-weighted strategy dynamically allocates weight 𝜎𝑣 to each 
view 𝐗𝑣 . Simultaneously, when constructing the consistent graph, the auto-weight 𝜔𝑣 is assigned to each low-dimensional representation 𝐕𝑣 , enabling the generation 
of an enhanced consistent graph.

value of 𝑠𝑖𝑗 . Based on Eq. (3), we perform adaptive graph learning on view-specific representations and obtain a consistent graph. 
The objective function is

min
𝐔𝑣,𝐕𝑣,𝐒

𝑑∑
𝑣=1

(‖𝐗𝑣 −𝐔𝑣(𝐕𝑣)𝑇 ‖2
𝐹
+ 𝛽‖𝐕𝑣 − (𝐔𝑣)𝑇𝐗𝑣‖2

𝐹
) +

𝑑∑
𝑣=1

𝑛∑
𝑖,𝑗

‖𝐯𝑣
𝑖
− 𝐯𝑣

𝑗
‖22𝑠𝑖𝑗 + 𝛼‖𝐒‖2𝐹

𝑠.𝑡. 𝐔𝑣 ≥ 0,𝐕𝑣 ≥ 0, 𝐬𝑇
𝑗
𝟏 = 1,0 ≤ 𝑠𝑖𝑗 ≤ 1.

(4)

The last two terms in Eq. (4) represent the adaptive graph learning, whose basic idea is that a large probability value 𝑠𝑖𝑗 should be 
assigned when the distance between two data points is small.

Remark 2. Adaptive graph learning is employed to explore nonlinear relationships within view-specific low-dimensional represen-
tation 𝐕𝑣. By automatically updating the edges for each data point (i.e., vertex 𝑣𝑖), a similarity graph 𝐒 is dynamically constructed 
to capture more flexible nonlinear relationships.

3.1.3. Dual auto-weighted strategy

Furthermore, there is diversity among each view, so it is essential to distinguish the importance of different views in multi-view 
learning [42]. We introduce the concept of auto-weighting to design a dual auto-weighted strategy. Eq. (4) can be transformed into

min
𝐔𝑣,𝐕𝑣,𝐒,𝐅,𝜎𝑣,𝜔𝑣

𝑑∑
𝑣=1
𝜎𝑣(‖𝐗𝑣 −𝐔𝑣(𝐕𝑣)𝑇 ‖2

𝐹
+ 𝛽‖𝐕𝑣 − (𝐔𝑣)𝑇𝐗𝑣‖2

𝐹
)

+
𝑑∑
𝑣=1
𝜔𝑣

𝑛∑
𝑖,𝑗

‖𝐯𝑣
𝑖
− 𝐯𝑣

𝑗
‖22𝑠𝑖,𝑗 + 𝛼‖𝐒‖2𝐹

𝑠.𝑡. 𝐔𝑣 ≥ 0,𝐕𝑣 ≥ 0, 𝐬𝑇
𝑗
𝟏 = 1,0 ≤ 𝑠𝑖𝑗 ≤ 1,

(5)

where 𝜎𝑣 and 𝜔𝑣 represent auto-weighted parameters, 𝜎𝑣 is assigned to balance the importance of each view to learn the discrimina-
tive low-dimensional representation, and 𝜔𝑣 is allocated to measure the significance of each latent low-dimensional representation 
when constructing the consistent graph.

Remark 3. The dual auto-weighted strategy is crucial as it takes into account the significance of different views and different low-
5

dimensional representations, learning a discriminative consistency graph. Specifically, 𝜎𝑣 is automatically assigned to different views 
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with the aim of obtaining reliable view-specific low-dimensional representations. Similarly, 𝜔𝑣 is allocated adaptively to measure 
the importance of different low-dimensional representations.

3.1.4. Objective function

Eq. (5) is capable of adequately capturing both linear structures and nonlinear relationships within data. Building upon this 
foundation, we introduce a rank constraint on the Laplacian matrix of the consistent graph. This constraint ensures that the learned 
consistent graph contains 𝑐 connected components, corresponding to 𝑐 clusters, thereby directly obtaining the clustering results and 
avoiding post-processing steps. The objective function is

min
𝐔𝑣,𝐕𝑣,𝐒,𝐅,𝜎𝑣,𝜔𝑣

𝑑∑
𝑣=1
𝜎𝑣(‖𝐗𝑣 −𝐔𝑣(𝐕𝑣)𝑇 ‖2

𝐹
+ 𝛽‖𝐕𝑣 − (𝐔𝑣)𝑇𝐗𝑣‖2

𝐹
)

+
𝑑∑
𝑣=1
𝜔𝑣

𝑛∑
𝑖,𝑗

‖𝐯𝑣
𝑖
− 𝐯𝑣

𝑗
‖22𝑠𝑖,𝑗 + 𝛼‖𝐒‖2𝐹

𝑠.𝑡. 𝐔𝑣 ≥ 0,𝐕𝑣 ≥ 0, 𝐬𝑇
𝑗
𝟏 = 1,0 ≤ 𝑠𝑖𝑗 ≤ 1, 𝑟𝑎𝑛𝑘(𝐋𝑠) = 𝑛− 𝑐,

(6)

where 𝐋𝑠 =𝐃 − (𝐒 + 𝐒𝑇 )∕2 is the graph Laplacian matrix, 𝐃 ∈ℝ𝑛×𝑛 is a diagonal matrix with the 𝑖th diagonal element calculated by 
𝑑𝑖𝑖 =

∑
𝑗 (𝑠𝑖𝑗 + 𝑠𝑗𝑖)∕2. However, Eq. (6) is difficult to solve. Based on the Ky Fan’s Theorem [43], the rank constraint 𝑟𝑎𝑛𝑘(𝐋𝑠) = 𝑛 − 𝑐

can be equivalently replaced by minimizing 𝑇 𝑟(𝐅𝑇𝐋𝑠𝐅) subject to 𝐅 ∈ ℝ𝑐×𝑛 and 𝐅𝑇𝐅 = 𝐈. Mathematically, the overall objective 
function of DA2NMF is

min
𝐔𝑣,𝐕𝑣,𝐒,𝐅,𝜎𝑣,𝜔𝑣

𝑑∑
𝑣=1
𝜎𝑣(‖𝐗𝑣 −𝐔𝑣(𝐕𝑣)𝑇 ‖2

𝐹
+ 𝛽‖𝐕𝑣 − (𝐔𝑣)𝑇𝐗𝑣‖2

𝐹
)

+
𝑑∑
𝑣=1
𝜔𝑣

𝑛∑
𝑖,𝑗

‖𝐯𝑣
𝑖
− 𝐯𝑣

𝑗
‖22𝑠𝑖,𝑗 + 𝛼‖𝐒‖2𝐹 + 2𝜆𝑇 𝑟(𝐅𝑇𝐋𝑠𝐅)

𝑠.𝑡. 𝐔𝑣 ≥ 0,𝐕𝑣 ≥ 0, 𝐬𝑇
𝑗
𝟏 = 1,0 ≤ 𝑠𝑖𝑗 ≤ 1,𝐅𝑇𝐅 = 𝐈,

(7)

where 𝐅 = [𝑓1, ..., 𝑓𝑛] is the clustering indicator matrix.
In summary, our DA2NMF model exhibits four advantages: 1) DA2NMF utilizes autoencoder-like NMF by integrating both an 

encoder and a decoder, thereby comprehensively learning the latent linear low-dimensional representations in data. 2) DA2NMF 
incorporates graph learning to capture the nonlinear features of data. 3) DA2NMF designs a dual auto-weighted strategy, which is 
capable of measuring the importance of different views as well as different low-dimensional representations, thereby obtaining a 
discriminative graph. 4) DA2NMF yields clustering results directly without the post-processing, and the clustering indicator matrix 
contributes to updating of the consistent graph and learning of low-dimensional representations.

3.2. Optimization algorithm

To solve the optimization problem in Eq. (7), an iterative update procedure is designed based on MUR. The updating rules, 
complexity analysis, and convergence analysis are presented below.

3.2.1. Updating rules

The updating rules of Eq. (7) can be divided into six steps. That is updating 𝐔𝑣, 𝐕𝑣, 𝐒, 𝐅, 𝝈𝑣, and 𝝎𝑣.
A. Updating 𝐔𝑣. Fixing the other variables, we update 𝐔𝑣. The calculation of 𝐔𝑣 for the 𝑣-th view, when the other variables 

are fixed, does not depend on 𝐔𝑣′ or 𝐕𝑣′ (𝑣′ ≠ 𝑣). For a more refined depiction, 𝐗, 𝐔, and 𝐕 are used instead of 𝐗𝑣, 𝐔𝑣, and 𝐕𝑣, 
respectively. Hence, the objective function for the 𝑣-th view can be simplified as

1 = ‖𝐗−𝐔𝐕𝑇 ‖2
𝐹
+ 𝛽‖𝐕𝑇 −𝐔𝑇𝐗‖2

𝐹
. (8)

We transform Eq. (8) into the form of a trace

1 = 𝑇 𝑟[𝐗𝑇𝐗−𝐗𝑇𝐔𝐕𝑇 −𝐕𝐔𝑇𝐗+𝐕𝐔𝑇𝐔𝐕𝑇 ]

+ 𝛽𝑇 𝑟[𝐕𝐕𝑇 −𝐕𝐓𝐔𝐓𝐗−𝐗𝐓𝐔𝐕𝐓 +𝐗𝐓𝐔𝐔𝐓𝐗].
(9)

Utilizing the Lagrange multiplier matrix Ψ as a nonnegative constraint on 𝐔 and eliminating the irrelevant terms of 𝐔, the sub-
problem of Eq. (9) can be formulated as

1 = 𝑇 𝑟[−2𝐗𝑇𝐔𝐕𝑇 +𝐕𝐔𝐓𝐔𝐕𝐓]

+ 𝛽𝑇 𝑟[−2𝐗𝐓𝐔𝐕𝐓 +𝐗𝐓𝐔𝐔𝐓𝐗] + 𝑇 𝑟[Ψ𝐔𝑇 ].
(10)
6

Taking the derivative of problem (10) with respect of 𝐔, we can obtain
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𝜕1
𝜕𝐔

= −2𝐗𝐕+ 2𝐔𝐕𝐓𝐕+ 2𝛽(−𝐗𝐕+𝐗𝐓𝐔) + Ψ. (11)

According to the Karush Kuhn-Tucker (KKT) conditions [44], Ψ ⊙𝐔 = 𝟎 and the update of 𝐔 can be obtained as follows

𝐔←𝐔⊙ (1 + 𝛽)𝐗𝐕
𝐔𝐕𝐓𝐕+ 𝛽𝐗𝐗𝐓𝐔

, (12)

where ⊙ denotes the element-wise product.
B. Updating 𝐕𝑣. Fixing the other variables, and we can obtain the objective function of 𝐕𝑣

2 = 𝜎(‖𝐗−𝐔𝐕𝑇 ‖2
𝐹
+ 𝛽‖𝐕−𝐔𝑇𝐗‖2

𝐹
) + 2𝜔𝑇 𝑟(𝐕𝐋𝑠𝐕𝑇 ). (13)

The trace form can be formulated as

2 = 𝜎(𝑇 𝑟[𝐗𝑇𝐗−𝐗𝑇𝐔𝐕𝑇 −𝐕𝐔𝑇𝐗+𝐕𝐔𝑇𝐔𝐕𝑇 ]

+ 𝛽𝑇 𝑟[𝐕𝐕𝑇 −𝐕𝐓𝐔𝐓𝐗−𝐗𝐓𝐔𝐕𝐓 +𝐗𝐓𝐔𝐔𝐓𝐗]) + 2𝜔𝑇 𝑟(𝐕𝐋𝑠𝐕𝑇 ).
(14)

Using the Lagrange multiplier matrix Φ as a non-negative constraint on 𝐕 and removing the irrelevant terms of 𝐕, the sub-problem 
of Eq. (14) can be formulated as

2 = 𝜎(𝑇 𝑟[−2𝐗𝑇𝐔𝐕𝑇 +𝐕𝐔𝐓𝐔𝐕𝐓]

+ 𝛽𝑇 𝑟[𝐕𝐕𝐓 − 𝟐𝐗𝐓𝐔𝐕𝐓]) + 2𝜔𝑇 𝑟(𝐕𝐋𝑠𝐕𝑇 ).
(15)

Taking the derivative of problem (15) with respect of 𝐕, we can obtain

𝜕2
𝜕𝐕

= 𝜎(−2𝐗𝑇𝐔+ 2𝐕𝐔𝐓𝐔+ 2𝛽(𝐕−𝐗𝐓𝐔)) + 2𝜔𝐋𝑠𝐕+Ψ. (16)

According to the KKT conditions, Φ ⊙𝐕 = 0, the update of 𝐕 can be obtained as follows

𝐕←𝐕⊙ 𝜎(1 + 𝛽)𝐗𝐓𝐔
𝜎(𝐕𝐔𝐓𝐔+ 𝛽𝐕) +𝜔𝐋𝑠𝐕

. (17)

C. Updating 𝐒. Fixing 𝐔, 𝐕, 𝐅, 𝜎𝑣, 𝜔𝑣, and updating 𝐒, we can get the objective function

3 =
𝑑∑
𝑣=1
𝜔𝑣

𝑛∑
𝑖,𝑗

‖𝐯𝑣
𝑖
− 𝐯𝑣

𝑗
‖22𝑠𝑖,𝑗 + 𝛼‖𝐒‖2𝐹 + 2𝜆𝑇 𝑟(𝐅𝑇𝐋𝑠𝐅)

=
𝑛∑
𝑖,𝑗

(
𝑑∑
𝑣=1
𝜔𝑣‖𝐯𝑣

𝑖
− 𝐯𝑣

𝑗
‖22𝑠𝑖,𝑗 + 𝛼𝑠2𝑖𝑗 + 𝜆‖𝐟𝑖 − 𝐟𝑗‖22𝑠𝑖𝑗 ),

(18)

we denote 𝑔𝑖𝑗 =
∑𝑑

𝑣=1𝜔
𝑣
∑𝑛

𝑖,𝑗
‖𝐯𝑣
𝑖
− 𝐯𝑣

𝑗
‖22 + 𝜆‖𝐟𝑖 − 𝐟𝑗‖22, and the problem turns as follows:

3 =
𝑛∑
𝑖,𝑗

(𝛼(𝑠𝑖𝑗 +
1
2𝛼
𝑔𝑖𝑗 )2 −

1
4𝛼
𝑔2
𝑖𝑗
) =

𝑛∑
𝑗

‖𝐬𝑗 + 1
2𝛼

𝐠𝑗‖22 −
𝑛∑
𝑖,𝑗

1
4𝛼
𝑔2
𝑖𝑗

𝑠.𝑡. 𝐬𝑇
𝑗
𝟏 = 1,0 ≤ 𝑠𝑖𝑗 ≤ 1.

(19)

The optimization problem mentioned above becomes

min
𝐒

𝑛∑
𝑗

‖𝐬𝑗 + 1
2𝛼

𝐠𝑗‖22
𝑠.𝑡. 𝐬𝑇

𝑗
𝟏 = 1,0 ≤ 𝑠𝑖𝑗 ≤ 1,

(20)

where 𝐒 can be solved column-by-column, and the detailed solution of Eq. (20) can be referred to [45].
D. Updating 𝐅. Fixing 𝐔, 𝐕, 𝐒, 𝜔𝑣, 𝜎𝑣, and updating 𝐅, we can get the objective function

min
𝐅

𝑇 𝑟(𝐅𝑇𝐋𝑠𝐅)

𝑠.𝑡. 𝐅𝑇𝐅 = 𝐈.
(21)

This problem can be solved by the eigen-decomposition. And the optimal solution of 𝐅 can be formed by the 𝑐 eigenvectors corre-
sponding to the 𝑐 smallest eigenvalues of 𝐋𝑠.

E. Updating 𝜎𝑣. Fixing 𝐔, 𝐕, 𝐒, 𝐅, 𝜔𝑣, and updating 𝜎𝑣, we can get the objective function. 𝜎𝑣 is updated by

𝜎𝑣 = 1√
𝑣 𝑣 𝑣 𝑇 2 𝑣 𝑣 𝑇 𝑣 2

.
(22)
7

2 ‖𝐗 −𝐔 (𝐕 ) ‖
𝐹
+ 𝛽‖𝐕 − (𝐔 ) 𝐗 ‖

𝐹
)
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F. Updating 𝜔𝑣. Fixing 𝐔, 𝐕, 𝐒, 𝐅, 𝜎𝑣, and updating 𝜔𝑣, we can get the objective function. 𝜔𝑣 is updated by

𝜔𝑣 = 1

2
√∑𝑛

𝑖𝑗
‖𝑣𝑣
𝑖
− 𝑣𝑣

𝑗
‖22𝑠𝑖𝑗

.
(23)

Algorithm 1 illustrates the entire solving and updating processes for problem Eq. (7). Note that the parameter 𝛼 is determined by the 
value of the nearest neighbor parameter and does not need to be specified as an input [45].

Algorithm 1 The optimization algorithm for DA2NMF.

Input: Multi-view data 𝐗1 ,...,𝐗𝑣 , parameters 𝛽, 𝜆.
1: Initialize: Standardized for each view 𝐗𝑣 . Using NMF to initialize 𝐔𝑣 and 𝐕𝑣 . Initialize 𝐒, 𝜎 = 1∕𝑑, 𝜔 = 1∕𝑑, and 𝐅.
2: while not converge do

3: Update 𝐔𝑣 by Eq. (12).
4: Update 𝐕𝑣 by Eq. (17).
5: Update 𝐒 by Eq. (20).
6: Update 𝐅 by Eq. (21). Here the 𝑐 smallest eigenvalues.
7: Update 𝜎𝑣 by Eq. (22).
8: Update 𝜔𝑣 by Eq. (23).
9: Check the convergence conditions.

10: end while

Output: The similarity matrix 𝐒 with exact 𝑐 connected components.

3.2.2. Complexity analysis

Based on Algorithm 1, the most computationally intensive part of the optimization process is the update step for 𝐔, 𝐕, 𝐒, and 
𝐅. Specifically, the complexity of updating 𝐔𝑣 in Eq. (12) is 𝑂(𝑚𝑛𝑘 +𝑚𝑘2 +𝑚2𝑘) for the 𝑣𝑡ℎ view, and the complexity of updating 
𝐕𝑣 in Eq. (17) is 𝑂(𝑛𝑚𝑘 + 𝑛𝑘2 + 𝑛2𝑘) for the 𝑣𝑡ℎ view. Considering that 𝑚 ≫ 𝑘 and 𝑛 ≫ 𝑘, the complexity of updating 𝐔, 𝐕 is 
𝑂(𝑚𝑛𝑘 +𝑚2𝑘 +𝑛2𝑘). The complexity of updating these two processes for multi-view data with 𝑑 views is 𝑂(𝑑(𝑚𝑛𝑘 +𝑚2𝑘 +𝑛2𝑘)). The 
complexity of updating 𝐒 in Eq. (20) primarily involves the computation of 𝐆, which is 𝑂(𝑛2(𝑑 + 𝑐)). The complexity of updating 𝐅
in Eq. (21) involves the computation of the eigenvectors of the Laplacian matrix and has a complexity of 𝑂(𝑛2𝑐). Over 𝑇 iterations, 
the overall complexity of our DA2NMF algorithm is 𝑂(𝑇 (𝑑𝑚𝑛𝑘 + 𝑑𝑘𝑚2 + 𝑑𝑘𝑛2 + 𝑑𝑛2 + 𝑐𝑛2) + 𝑛2𝑐).

3.2.3. Convergence analysis

According to problem (7), our objective function is not a jointly convex problem. Consequently, seeking the global optimum 
is a challenging task. Next, we demonstrate that problem (7) achieves local optimum within the framework of Algorithm 1 at the 
iterations. For convenience, we define the objective function of the optimization problem as follows:

 =
𝑑∑
𝑣=1
𝜎𝑣(‖𝐗𝑣 −𝐔𝑣(𝐕𝑣)𝑇 ‖2

𝐹
+ 𝛽‖𝐕𝑣 − (𝐔𝑣)𝑇𝐗𝑣‖2

𝐹
)

+
𝑑∑
𝑣=1
𝜔𝑣𝑇 𝑟(𝐕𝐋𝑠𝐕𝑇 ) + 𝛼‖𝐒‖2𝐹 + 2𝜆𝑇 𝑟(𝐅𝑇𝐋𝑠𝐅),

(24)

and we have following theorem:

Theorem 1. Under the updating rules of Algorithm 1, the problem (7) can achieve local optimum.

To prove the Theorem 1, it is necessary to establish the convergence of the six subproblems within problem (7). When other 
variables are held constant, the computation of 𝐔𝑣 for the 𝑣-th view remains independent of 𝐔𝑣′ or 𝐕𝑣′ (where 𝑣′ ≠ 𝑣). Here, 𝐗, 𝐔, 
and 𝐕 are used in place of 𝐗𝑣, 𝐔𝑣, and 𝐕𝑣, respectively. As the updates for 𝐔 and 𝐕 are relatively complex, we provide the following 
clarifications before proceeding with the proof:

The update steps for 𝐔 and 𝐕 are similar to NMF [46]. Considering each element 𝑣𝑖𝑗 in 𝐕, we use 𝐹𝑖𝑗 to denote the part of , 
which is only relevant to 𝑣𝑖𝑗 . We will obtain that

𝐹 ′
𝑖𝑗
= ( 𝜕
𝜕𝐕𝑖𝑗

) = [𝜎(−2𝐗𝑇𝐔+ 2𝐕𝐔𝐓𝐔+ 2𝛽(𝐕−𝐗𝐓𝐔)) + 2𝜔𝐋𝑠𝐕]𝑖𝑗 , (25)

𝐹 ′′
𝑖𝑗
= 2𝜎(𝐔𝐓𝐔)𝑖𝑖 + 2𝜎𝛽𝐈𝑗𝑗 + 2𝜔(𝐋𝑠)𝑖𝑗 . (26)

To prove the convergence of 𝐕-subproblem, we need to demonstrate that each 𝐹𝑖𝑗 remains nonincreasing during the update described 
in Eq. (17). Next, we will prove the nonincreasing property of 𝐹𝑖𝑗 by utilizing an auxiliary function [46]. The following two definitions 
8

are introduced:
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Definition 1. [46] 𝐺(𝑣, 𝑣′) is an auxiliary function of 𝐹 (𝑣) if the following conditions

𝐺(𝑣, 𝑣′) ≥ 𝐹 (𝑣), 𝐺(𝑣, 𝑣) = 𝐹 (𝑣), (27)

are satisfied.

Definition 2. [46] If 𝐺 is an auxiliary function of 𝐹 , then 𝐹 is nonincreasing under the update

𝑣(𝑡+1) = argmin
𝑣

𝐺(𝑣, 𝑣(𝑡)). (28)

Definition 1 and Definition 2 are utilized to demonstrate that by introducing an appropriate auxiliary function, the update for 
𝐕 in Eq. (17) can be transformed into the update form of Eq. (28). Additionally, we introduce the following lemma to construct 
auxiliary function.

Lemma 1. Function

𝐺(𝑣, 𝑣(𝑡)
𝑖𝑗
) = 𝐹𝑖𝑗 (𝑣

(𝑡)
𝑖𝑗
) + 𝐹 ′

𝑖𝑗
(𝑣(𝑡)
𝑖𝑗
)(𝑣− (𝑣(𝑡)

𝑖𝑗
)

+
[𝜎(𝐕𝐔𝐓𝐔+ 𝛽𝐕) +𝜔𝐋𝑠𝐕]𝑖𝑗

(𝑣(𝑡)
𝑖𝑗
)

(𝑣− (𝑣(𝑡)
𝑖𝑗
)2,

(29)

is an auxiliary function of 𝐹𝑖𝑗 .

Proof of Lemma 1. It is straightforward to observe that 𝐺(𝑣, 𝑣) = 𝐹𝑖𝑗 (𝑣). Before proving 𝐺(𝑣, 𝑣(𝑡)
𝑖𝑗
) ≥ 𝐹𝑖𝑗 (𝑣), we need to consider the 

Taylor series expansion of 𝐹𝑖𝑗 (𝑣).

𝐹𝑖𝑗 (𝑣) = 𝐹𝑖𝑗 (𝑣
(𝑡)
𝑖𝑗
) + 𝐹 ′

𝑖𝑗
(𝑣(𝑡)
𝑖𝑗
)(𝑣− (𝑣(𝑡)

𝑖𝑗
)

+ [𝜎(𝐔𝐓𝐔)𝑗𝑗 + 𝜎𝛽𝐈𝑗𝑗 +𝜔(𝐋𝑠)𝑖𝑖](𝑣− (𝑣(𝑡)
𝑖𝑗
)2.

(30)

By Eq. (29) and Eq. (30), we can observe that proving 𝐺(𝑣, 𝑣(𝑡)
𝑖𝑗
) ≥ 𝐹𝑖𝑗 (𝑣) is essentially equivalent to proving

𝜎[(𝐕𝐔𝐓𝐔+ 𝛽𝐕) +𝜔𝐋𝑠𝐕]𝑖𝑗
(𝑣(𝑡)
𝑖𝑗
)

≥ 𝜎(𝐔𝐓𝐔)𝑗𝑗 + 𝜎𝛽𝐈𝑗𝑗 +𝜔(𝐋𝑠)𝑖𝑖. (31)

Eq. (31) can be divided into three parts for proof, as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜎𝐕𝐔𝐓𝐔𝑖𝑗 = 𝜎
𝑘∑
𝑙

𝑣
(𝑡)
𝑖𝑙
𝐔𝐓𝐔𝑙𝑗 ≥ 𝜎𝑣

(𝑡)
𝑖𝑗
(𝐔𝐓𝐔)𝑗𝑗 ,

𝜎𝛽𝐕𝑖𝑗 = 𝜎𝛽
𝑘∑
𝑙

𝑣
(𝑡)
𝑖𝑙

≥ 𝜎𝛽𝑣
(𝑡)
𝑖𝑗
𝐈𝑗𝑗 ,

𝜔𝐋𝑠𝐕𝑖𝑗 = 𝜔
𝑞∑
𝑙

(𝐋𝑠)𝑖𝑙𝑣
(𝑡)
𝑙𝑗

≥ 𝜔(𝐋𝑠)𝑖𝑖𝑣
(𝑡)
𝑖𝑗
.

(32)

In accordance with Eq. (32), the validity of Eq. (31) is established, thereby ensuring 𝐺(𝑣, 𝑣(𝑡)
𝑖𝑗
) ≥ 𝐹𝑖𝑗 (𝑣). Furthermore, the above proof 

satisfies Definition 1, demonstrating that 𝐺(𝑣, 𝑣(𝑡)
𝑖𝑗
) is an auxiliary function for 𝐹𝑖𝑗 (𝑣).

Next, we will present the proof of Theorem 1.

Proof of Theorem 1. It is imperative to demonstrate the convergence of each subproblem in Algorithm 1. Next, we present the 
convergence of each subproblem systematically in the following.

(1). Update 𝐔 and 𝐕 in Eq. (12) and Eq. (17). We replace 𝐺(𝑣, 𝑣(𝑡)
𝑖𝑗
) in Eq. (28) with Eq. (29) by introducing the Newton’s method 

[44], and we obtain the following update rule:

𝑣
(𝑡+1)
𝑖𝑗

= 𝑣(𝑡)
𝑖𝑗
− 𝑣(𝑡)

𝑖𝑗

𝐹 ′
𝑖𝑗
(𝑣(𝑡)
𝑖𝑗
)

2[𝜎(𝐕𝐔𝐓𝐔+ 𝛽𝐕) +𝜔𝐋𝑠𝐕]𝑖𝑗

= 𝑣(𝑡)
𝑖𝑗

[𝜎(1 + 𝛽)𝐗𝐓𝐔]𝑖𝑗
[𝜎(𝐕𝐔𝐓𝐔+ 𝛽𝐕) +𝜔𝐋𝑠𝐕]𝑖𝑗

.

(33)

The aforementioned proof satisfies the conditions of Definition 2 and 𝐹𝑖𝑗 is nonincreasing under the update rule of Eq. (33). A similar 
9

conclusion can also be extended to the updating of 𝐔 using Eq. (12), indicating that auxiliary function related to the subproblem of 
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𝐔 is also nonincreasing. Additionally, we have made slight adjustments to the update procedures of 𝐔 and 𝐕, as described in [47], 
to ensure the convergence of the subproblems of Problem (7) concerning 𝐔 and 𝐕.

(2). Update 𝐒 in Eq. (18). In order to discuss the update process of 𝐒, we rewrite  as

 =
𝑑∑
𝑣=1

√√√√ 𝑛∑
𝑖,𝑗

‖𝐯𝑣
𝑖
− 𝐯𝑣

𝑗
‖22𝑠𝑖𝑗 + 𝛼‖𝐒‖2𝐹 . (34)

Next, we proceed to demonstrate that the updated 𝐒 will reduce the objective function value of Eq. (34) until convergence. We 
assume that after each iteration, 𝐒 becomes 𝐒̃, and then we can obtain the following

∑
𝑣

∑𝑛

𝑖𝑗
‖𝑣𝑣
𝑖
− 𝑣𝑣

𝑗
‖22𝑠̃𝑖𝑗

2
√∑𝑛

𝑖𝑗
‖𝑣𝑣
𝑖
− 𝑣𝑣

𝑗
‖22𝑠𝑖𝑗

+ 𝛼‖𝐒̃‖2
𝐹

≤
∑
𝑣

∑𝑛

𝑖𝑗
‖𝑣𝑣
𝑖
− 𝑣𝑣

𝑗
‖22𝑠𝑖𝑗

2
√∑𝑛

𝑖𝑗
‖𝑣𝑣
𝑖
− 𝑣𝑣

𝑗
‖22𝑠𝑖𝑗

+ 𝛼‖𝐒‖2
𝐹
. (35)

According to [45], we have: 
√
𝑥− 𝑥

2
√
𝑦
≤
√
𝑦− 𝑦

2
√
𝑦

for any positive real number 𝑥 and 𝑦. Based on this, we can obtain

∑
𝑣

√√√√ 𝑛∑
𝑖𝑗

‖𝑣𝑣
𝑖
− 𝑣𝑣

𝑗
‖22𝑠̃𝑖𝑗 −∑

𝑣

∑𝑛

𝑖𝑗
‖𝑣𝑣
𝑖
− 𝑣𝑣

𝑗
‖22𝑠̃𝑖𝑗

2
√∑𝑛

𝑖𝑗
‖𝑣𝑣
𝑖
− 𝑣𝑣

𝑗
‖22𝑠𝑖𝑗

≤
∑
𝑣

√√√√ 𝑛∑
𝑖𝑗

‖𝑣𝑣
𝑖
− 𝑣𝑣

𝑗
‖22𝑠𝑖𝑗 −∑

𝑣

∑𝑛

𝑖𝑗
‖𝑣𝑣
𝑖
− 𝑣𝑣

𝑗
‖22𝑠𝑖𝑗

2
√∑𝑛

𝑖𝑗
‖𝑣𝑣
𝑖
− 𝑣𝑣

𝑗
‖22𝑠𝑖𝑗

.

(36)

Combining Eq. (35) and Eq. (36), we have

∑
𝑣

√√√√ 𝑛∑
𝑖𝑗

‖𝑣𝑣
𝑖
− 𝑣𝑣

𝑗
‖22𝑠̃𝑖𝑗 + 𝛼‖𝐒̃‖2𝐹 ≤

∑
𝑣

√√√√ 𝑛∑
𝑖𝑗

‖𝑣𝑣
𝑖
− 𝑣𝑣

𝑗
‖22𝑠𝑖𝑗 + 𝛼‖𝐒‖2𝐹 , (37)

which can demonstrates that the problem (18) is convergent.

(3). Update 𝐅 in Eq. (21). According to [8], considering the update of 𝐅, we introduce the Hessian matrix of the Eq. (21) as 
follows,

𝜕2𝑇 𝑟(𝐅𝑇𝐋𝑠𝐅)
𝜕𝐅𝐅𝑇

= 𝐋𝑠 +𝐋𝑇
𝑠
, (38)

where 𝐋𝑠 is positive semi-definite, Eq. (21) is also positive semi-definite. Therefore, problem (21) is a convex function, which is 
convergent.

(4). Update 𝜎 and 𝜔 in Eq. (22) and Eq. (23). As Eq. (22) and Eq. (23) are both convex functions, and we have provided a 
closed-form solutions for 𝜎 and 𝜔, respectively. Therefore, the subproblems concerning 𝜎 and 𝜔 of problem (7) are convergent.

In summary, it can be demonstrated that within Algorithm 1, each subproblem converges. Therefore, Problem (7) achieves local 
minimization.

4. Experiments

In this section, extensive experiments are performed to evaluate the performance of DA2NMF. All the experiments are conducted 
on Matlab 2016. And the three metrics accuracy (ACC), normalized mutual information (NMI), and Purity are used to measure 
the clustering performance. ACC represents the proportion of correctly clustered samples, NMI measures the difference between 
predicted and true labels, while Purity indicates the percentage of correctly clustered samples within the total samples. These metrics 
range from 0 to 1, with higher values denoting better results. The specific details can be referred to in [17].

4.1. Datasets

The following five classical datasets are used in MVC: MSRCv11: The MSRCv1 dataset is an image dataset consisting of 210 
scene recognition images, which can be categorized into 7 classes. And each image is described by using 5 distinct image features.
BBCSport2: This dataset consists of 544 documents obtained from the BBCSport website, with a total of 544 instances. It is composed 
of 2 views and categorized into 5 classes. 3Sources3: Consisting of 169 news documents reported by online news organizations, 

1 http://research .microsoft .com /en -us /projects /objectclassrecognition/.
2 http://mlg .ucd .ie /datasets /segment .html.
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3 http://mlg .ucd .ie /datasets /3sources .html.

http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://mlg.ucd.ie/datasets/segment.html
http://mlg.ucd.ie/datasets/3sources.html
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Fig. 2. Parameter analysis of DA2NMF in MSRCv1 dataset. (a), (b), and (c) represent the ACC, NMI, and Purity under different parameter settings.

this dataset comprises 3 views and can be categorized into 6 classes. HandWritten4: With 2000 data points representing 0–9 digit 
classes, the HandWritten dataset includes 6 types of features for each data point. WebKb5: The WebKb dataset comprises a total of 
203 web pages, each having 3 distinct views. This dataset can be divided into 4 different categories.

4.2. Comparison methods

To test the performance of the DA2NMF, we compare it against a single-view algorithm and 15 multi-view algorithms. Further-
more, we categorize the 15 MVC methods into four groups: spectral MVC, NMF-based MVC, graph-based MVC, and subspace-based 
MVC.

A. spectral MVC: The 5 models, namely Co-Regularized Spectral Clustering (CoReg), [12], Affinity Aggregation for Spectral 
Clustering (AASC) [13], Robust Multi-view Spectral Clustering (RMSC) [14], MVC via Adaptively Weighted Procrustes (AWP)

[15], and Weighted Multi-view Spectral Clustering based on spectral perturbation (WMSC) [7], are categorized as spectral MVC 
methods.

B. NMF-based MVC: The NMF-based MVC contains the following, Multi-View NMF (MultiNMF) [21] and Multi-view Concept 
Clustering (MVCC) [22].

C. graph-based MVC: The graph-based MVC contains the following, Graph Learning for MVC (MVGL) [16], Multi-view Consen-

sus Graph Clustering (MCGC) [17], Graph-based System (GBS) [18], Graph-Based MVC (GMC) [8], and MVC via Cross-View 
Graph Diffusion (CGD) [19].

D. Subspace-based MVC: The subspace-based MVC contains the following, Consensus Graph Constrained Multi-view Subspace 
Clustering (CGMSC) [20] and Fast Parameter-free Multi-view Subspace Clustering with Consensus Anchor Guidance (FPMVS-

CAG) [9].

4.3. Parameters analysis

In accordance with the details provided in Section 3, the impact of hyperparameters 𝛽 and 𝜆 on clustering performance of 
DA2NMF model are investigated. Taking the MSRCv1 dataset as an example, we analyze the sensitivity of each hyperparameter 
considering the range of values: [0.001, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1]. Fig. 2 depicts the experimental 
results for each parameter setting, providing a more comprehensible analysis of parameter sensitivity. From Fig. 2, we can observe 
that the DA2NMF model is sensitive to both parameters 𝛽 and 𝜆. Additionally, compared to parameter 𝛽, DA2NMF model exhibits 
higher sensitivity to 𝜆. Based on these observations, we set 𝜆 to 0.04 and 𝛽 to 0.1.

4.4. Comparison with the single-view clustering algorithm

To validate the effectiveness of the DA2NMF method, we conduct experimental analysis on single-view clustering using the 
aforementioned five datasets. Specifically, we use the DA2NMF method and the traditional NMF-based [48] clustering method 
separately for each view. To evaluate the significance of auto-weighted strategy, additional experiments are conducted to compare 
the equal-weighted approach with the auto-weighted method. The clustering performance is presented in Table 2 and Fig. 3, and the 
best results are bolded in Table 2. Based on our observation of the results, we have the following analyses.

1). Our DA2NMF exhibits strong clustering performance within each view across multiple datasets. Especially in the third view 
of the HandWritten dataset, DA2NMF surpasses NMF method by 57.8% based on the ACC metric. This is due to the fact that our 
DA2NMF extracts features from each view by simultaneously considering both linear and nonlinear structures of multi-view data.

4 https://archive .ics .uci .edu /ml /datasets /Multiple +Features.
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5 https://linqs .soe .ucsc .edu /data.

https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://linqs.soe.ucsc.edu/data
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Table 2

Clustering performance comparison of each view in different datasets.

Method BBCSport 3Sources WebKb MSRCv1 HandWritten

ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity

NMF-based
clustering

View1 45.96 32.47 53.49 35.92 28.85 49.82 64.83 39.32 77.04 37.62 25.27 38.62 35.41 29.70 36.99
View2 44.22 26.51 52.13 52.07 42.36 60.36 50.79 4.76 54.43 65.00 53.42 65.86 60.70 58.59 62.30
View3 - - - 38.22 31.03 52.31 73.40 46.07 80.30 67.90 61.97 70.43 10.05 3.50 10.45
View4 - - - - - - - - - 44.67 36.63 47.57 29.27 36.09 33.57
View5 - - - - - - - - - 56.71 47.48 59.57 65.33 61.43 67.39
View6 - - - - - - - - - - - - 48.96 44.93 51.43

DA2NMF

View1 77.02 63.24 77.02 36.69 35.46 58.58 71.43 36.85 72.91 41.90 34.26 42.86 58.95 62.82 64.05
View2 60.11 50.43 72.79 53.25 52.89 72.78 51.72 8.47 54.68 70.48 60.56 70.48 57.10 61.16 63.15
View3 - - - 49.11 41.24 62.72 59.61 9.75 61.08 68.57 58.11 68.57 67.85 60.96 67.85
View4 - - - - - - - - - 53.81 45.78 57.14 32.10 38.03 32.80
View5 - - - - - - - - - 58.57 52.55 61.90 77.25 73.13 77.25
View6 - - - - - - - - - - - - 58.90 61.72 63.65
Equal 88.79 74.94 88.79 63.91 48.47 69.82 66.01 17.21 67.49 76.19 75.98 79.05 91.10 85.65 91.10
Auto 91.54 78.58 91.54 81.66 65.64 81.66 81.28 51.82 82.27 95.24 90.29 95.24 94.95 90.62 94.65

Fig. 3. The ACC of the single-view algorithm on (a) BBCSport, (b) 3Sources, (c) WebKb, (d) MSRCv1, (e) HandWritten.

2). Clustering based solely on individual views fails to leverage the full diversity present in the data. Notably, in View3 of the 
HandWritten dataset, the traditional NMF method shows poor performance. Recognizing the complementarity of multiple views, we 
assign equal weights to all views for clustering. It can be observed that our multi-view DA2NMF significantly improves the clustering 
performance compared to single-view clustering results by integrating features from multiple views.

3). While assigning equal weights to various views can leverage complementary information across multiple perspectives, there 
are cases, such as in the 3Sources dataset, where the clustering performance of using only the third view surpasses the clustering 
performance of averaging all views. Conversely, the dual auto-weighted DA2NMF outperforms all clustering methods. This demon-
strates that our dual auto-weighted DA2NMF adaptively allocates weights based on the importance of different views. Moreover, 
this method dynamically assigns weights to low-dimensional representations during the graph fusion process, resulting in a more 
representative graph that ensures consistency across views.

4.5. Comparison with the multi-view clustering algorithms

To further evaluate the effectiveness of the proposed MVC framework DA2NMF, comparative experiments are conducted against 
other MVC methods. Tables 3–7 display the clustering results of different on MSRCv1, 3Sources, HandWritten, BBCSport, and WebKb 
datasets, respectively. In each metric, the best clustering result is indicated in bold, while the second best is underlined. From these 
results, we derive the following observations:

1). From the above Tables 3–7, DA2NMF algorithm has shown promising experimental results across the aforementioned five 
classical multi-view datasets, outperforming the comparison methods, including spectral clustering, the NMF-based clustering, the 
graph-based clustering, and the subspace-based clustering. Specifically, compared to NMF-based methods like MultiNMF and MVCC, 
DA2NMF achieves the highest performance metrics on the datasets mentioned above. This could be attributed to the fact that DA2NMF 
not only utilizes a decoder for data reconstruction but also incorporates an encoder, which explores and mines the underlying data 
structure. DA2NMF integrates an encoder and a decoder into a unified framework, enabling comprehensive learning of linear low-
dimensional representations from the data.

2). Moreover, DA2NMF surpasses graph learning, particularly DA2NMF outperforms the CGD (the second highest) algorithm, 
with improvements of 5.24%, 6.81%, and 5.24% in the ACC, NMI, and Purity metrics in MSRCv1 dataset. This could be attributed 
to the fact that DA2NMF incorporates adaptive graph learning, dynamically constructing a consistent graph based on the structure 
of the low-dimensional representations. By constructing graph to learn nonlinear relationships, DA2NMF becomes possible to better 
12

capture the underlying structure and relational information within the view-specific representations.
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Fig. 4. Comparison results of different methods on (a) MVSRCv1 and (b) WebKb datasets.

Table 3

Clustering performance compared to multi-view algorithms on MSRCv1.

Metric CoReg AASC MultiNMF RMSC MVCC MVGL AWP MCGC

ACC(%) 80.48 82.38 66.67 74.29 72.38 74.76 75.24 74.29
NMI(%) 71.62 71.38 58.88 68.72 62.54 72.14 68.70 63.25
Purity(%) 80.48 82.38 66.67 79.52 72.38 77.62 75.71 74.76

Metric WMSC LRSSC GBS GMC CGD CGMSC FPMVS-CAG DA2NMF

ACC(%) 76.19 66.12 83.33 74.76 90.00 71.90 78.57 95.24

NMI(%) 71.24 58.02 79.06 74.53 83.48 65.96 68.56 90.29

Purity(%) 80.00 54.39 83.33 77.62 90.00 73.81 78.57 95.24

Table 4

Clustering performance compared to multi-view algorithms on 3Sources.

Metric CoReg AASC MultiNMF RMSC MVCC MVGL AWP MCGC

ACC(%) 45.56 37.28 51.01 43.20 72.78 72.78 42.60 74.56
NMI(%) 47.48 30.63 46.14 42.89 68.12 56.17 37.90 58.72
Purity(%) 68.05 50.03 61.84 61.54 73.96 76.33 59.76 78.11

Metric WMSC LRSSC GBS GMC CGD CGMSC FPMVS-CAG DA2NMF

ACC(%) 42.60 61.15 69.23 69.23 78.70 66.27 34.32 81.66

NMI(%) 41.98 51.70 62.73 62.73 69.86 60.13 12.27 65.64
Purity(%) 60.36 61.57 74.56 74.56 84.02 76.92 46.15 81.66

Table 5

Clustering performance compared to multi-view algorithms on HandWritten.

Metric CoReg AASC MultiNMF RMSC MVCC MVGL AWP MCGC

ACC(%) 92.60 82.35 10.05 19.85 52.15 85.30 87.35 59.15
NMI(%) 89.10 86.50 3.50 21.56 50.29 88.99 88.07 70.30
Purity(%) 92.60 85.75 10.45 28.90 54.35 88.05 87.65 59.30

Metric WMSC LRSSC GBS GMC CGD CGMSC FPMVS-CAG DA2NMF

ACC(%) 84.15 75.75 88.10 88.30 85.45 69.00 82.30 94.95

NMI(%) 85.96 72.49 90.12 90.74 88.77 81.94 79.24 90.62
Purity(%) 86.70 66.21 88.10 88.30 87.90 77.55 82.30 94.95
13
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Table 6

Clustering performance compared to multi-view algorithms on BBCSport.

Metric CoReg AASC MultiNMF RMSC MVCC MVGL AWP MCGC

ACC(%) 60.48 62.32 63.13 51.47 86.03 72.61 63.42 59.93
NMI(%) 47.12 39.11 47.21 36.09 74.14 70.83 44.26 31.35
Purity(%) 67.28 67.10 67.52 61.40 86.03 76.29 70.40 61.95

Metric WMSC LRSSC GBS GMC CGD CGMSC FPMVS-CAG DA2NMF

ACC(%) 58.82 52.60 80.70 80.70 81.70 54.41 49.82 91.54

NMI(%) 47.60 36.43 76.10 76.10 81.07 32.86 33.18 78.58
Purity(%) 68.57 45.80 84.38 84.38 84.74 54.78 60.11 91.54

Table 7

Clustering performance compared to multi-view algorithms on WebKb.

Metric CoReg AASC MultiNMF RMSC MVCC MVGL AWP MCGC

ACC(%) 56.16 59.61 46.35 51.72 71.43 54.68 54.68 74.38
NMI(%) 22.46 25.25 9.68 20.77 44.46 5.22 18.85 26.21
Purity(%) 70.94 70.44 52.91 73.40 80.79 56.65 68.47 74.38

Metric WMSC LRSSC GBS GMC CGD CGMSC FPMVS-CAG DA2NMF

ACC(%) 55.17 66.38 73.89 76.85 77.36 51.23 57.64 81.28

NMI(%) 25.04 27.09 40.65 46.43 32.70 17.75 32.68 51.82

Purity(%) 73.89 60.20 77.83 78.82 77.34 70.44 77.83 81.28

3). DA2NMF outperforms auto-weighted methods such as GMC. This could be attributed to the fact that GMC only utilizes an auto-
weighted allocation, whereas DA2NMF employs a novel approach of dual auto-weighted strategy, resulting in a more representative 
fusion graph.

Furthermore, to facilitate a more visual comparison, we present bar charts, as illustrated in Fig. 4. By observing the Fig. 4, we 
can derive the same results as those shown in the Tables 3–7, indicating that our DA2NMF outperforms the comparison methods.

4.6. Visualization analysis

To illustrate the effectiveness of DA2NMF to consolidate the structural information across diverse views, the standardized t-SNE 
tool [49] is utilized to visualize the original data matrices of each view and the learned consistent graph of the MSRCv1 dataset. The 
visualization results are depicted in Fig. 5, where data points of the same color denote samples from identical categories. In Fig. 5, 
for view1, view2, view3, view4, and view5, the classes are intermingled, making it challenging to discern the category for each data 
point. However, in the visualizations of the DA2NMF, clear class boundaries and distinctive separations are observed, indicating the 
framework’s capacity to effectively grasp the underlying data structures from diverse perspectives. This ability facilitates the fusion 
of multi-view information, thereby promoting better clustering.

Furthermore, as depicted in Fig. 6, we present confusion matrices to illustrate the clustering outcomes of DA2NMF and other 
MVC methods applied to the MSRCv1 dataset. A clearer block-diagonal structure in the confusion matrix signifies superior clustering 
performance. For a visually intuitive display, areas with notably higher error rates are marked using red circles. It’s apparent that, 
compared to the other methods, our DA2NMF distinctly shows a clear block-diagonal pattern in the confusion matrix. Additionally, 
DA2NMF does not misassign the second class to different clusters, which is common in most comparison methods. Overall, compared 
to other MVC algorithms, DA2NMF integrates multi-view information, resulting in a significantly improved clustering performance.

5. Discussion

To individually evaluate the impacts of autoencoder-like NMF, adaptive graph learning, and dual-weighted strategy, we conduct 
several ablation experiments. Additionally, for further validation, we create a baseline model by removing autoencoder-like module, 
adaptive graph learning module, and dual auto-weighted strategy from DA2NMF, denoting it as Multi-view NMF (MvNMF). The 
settings for ablation experiments are as follows: 1) Removal of adaptive graph learning module and dual auto-weighted strategy, 
named as Multi-view Autoencoder-like NMF (MvANMF). 2) Removal of autoencoder-like NMF and dual auto-weighted strategy, 
named as Multi-view Graph-based NMF (MvGNMF). 3) Removal of dual auto-weighted strategy, named as Multi-view Autoencoder-
like NMF with Graph learning (MvAGNMF). 4) Removal of auto-weight 𝜔, named as A2NMF-𝜔. 5) Removal of auto-weight 𝜎, named 
as A2NMF-𝜎. The specific results of the ablation experiments are presented in Table 8. According to Table 8, we have the following 
observations and analyses:

1. It is evident that autoencoder-like NMF, adaptive graph learning, and the dual auto-weighted strategy effectively enhance 
14

the performance of the DA2NMF. Specifically, the experimental performance of MvANMF is superior to that of MvNMF on both 
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Fig. 5. Visualization of the different view and the consistent graph in the MSRCv1 dataset, where each category is represented by a distinct color.

Table 8

Comparison between DA2NMF and ablative methods.

Dataset Methods ACC NMI Purity

MSRCv1

MvNMF 63.19 57.65 67.93
MvANMF 83.81 72.49 83.81
MvGNMF 89.52 82.20 89.52
MvAGNMF 91.43 83.83 91.43
A2NMF-𝜔 93.33 87.27 93.33
A2NMF-𝜎 92.38 86.43 92.38
DA2NMF 95.26 90.29 95.24

WebKb

MvNMF 46.35 9.68 52.91
MvANMF 49.26 10.30 53.69
MvGNMF 53.69 35.66 77.36
MvAGNMF 65.52 17.87 66.50
A2NMF-𝜔 67.00 34.44 74.88
A2NMF-𝜎 70.44 36.81 73.89
DA2NMF 81.28 51.82 81.28

datasets. Furthermore, MvANMF achieves a significant improvement of 20.62% in ACC compared to the MvNMF on the MSRCv1 
dataset. In comparison to MvNMF, MvANMF incorporates an additional encoder to learn low-dimensional representations. This 
further emphasizes the effectiveness of the autoencoder-like module, demonstrating that the comprehensive integration of encoder 
and decoder is beneficial for obtaining linear view-specific low-dimensional representations.

2. Compared to MvNMF, MvGNMF exhibits a 26.33% improvement in ACC metric. Similar effects are observed on the WebKb 
dataset as well. This shows the significance of adaptive graph learning. By capturing the nonlinear structures between data, a satisfied 
clustering result can be obtained.

3. In both MSRCv1 and WebKb datasets, adaptively changing the weights of 𝜎 and 𝜔 leads to improvements in the experimental 
results. Specifically, on the MSRCv1 dataset, A2NMF-𝜔 yields better experimental results compared to A2NMF-𝜎. However, the 
opposite conclusion is observed in the WebKb dataset. This indicates that simultaneously adjusting the dual weights is necessary. 
Therefore, the dual auto-weighted strategy employed in DA2NMF has proven to be effective.

6. Conclusion

In this work, we proposed a Dual Auto-weighted multi-view clustering model by Autoencoder-like NMF (DA2NMF), which can 
fully explore the linear and nonlinear structures of data. Specifically, autoencoder-like NMF learns latent representations and recon-
15

structs the multi-view data simultaneously. Furthermore, adaptive graph learning comprehensively explores the nonlinear structures 
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Fig. 6. Visualization of the confusion matrices in the MSRCv1 dataset.

within the view-specific representations. By designing a dual auto-weighted strategy, DA2NMF can highlight the significance of dif-
ferent views and the contribution of each low-dimensional representation. An iterative algorithm based on MUR is developed to solve 
the optimization problem with a theoretical convergence guarantee. Experimental results demonstrate that the proposed DA2NMF 
outperforms the state-of-the-art multi-view algorithms.

For MVC, as the DA2NMF involves multiple variables, one remaining challenge is to effectively perform clustering on large-scale 
datasets. Moreover, since the proposed method focuses on handling complete multi-view datasets, it may have limitations when 
extended to the incomplete MVC tasks. We will attempt to address the remaining challenges in our future work.
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