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ARTICLE INFO ABSTRACT
Keywords: Multi-view clustering (MVC) can exploit the complementary information among multi-view
Multi-view clustering data to achieve the satisfactory performance, thus having extensive potentials for practical

Dual auto-weights
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Adaptive graph learning

applications. Although Nonnegative Matrix Factorization (NMF) has emerged as an effective
technique for MVC, the existing NMF-based methods still have two main limitations: 1) They
solely focus on the reconstruction of original data, which can be regarded as the decoder of
an autoencoder, while neglecting the low-dimensional representation learning. 2) They lack
the ability to effectively capture both linear and nonlinear structures of data. To solve these
problems, in this paper, we propose a Dual Auto-weighted multi-view clustering model based on
Autoencoder-like NMF (DA>NMF), which enables a comprehensive exploration of both linear and
nonlinear structures. Specifically, we establish an autoencoder-like NMF model that learns linear
low-dimensional representations by integrating data reconstruction and representation learning
within a unified framework. Moreover, the adaptive graph learning is introduced to explore
the nonlinear structures in data. We further design a dual auto-weighted strategy to adaptively
compute weights for different views and low-dimensional representations, thereby obtaining an
enhanced consistent graph. An effective algorithm based on Multiplicative Update Rule (MUR) is
developed to solve the DA?NMF with the theoretical convergence guarantee. Experimental results
show that the proposed DA>NMF can effectively improve the clustering performance compared
with the state-of-the-art MVC algorithms.

1. Introduction

In the fields of data mining and analysis [1-4], data often originates from multiple sources and exhibits different characteristics
[5], leading to the generation of multi-view data [6]. For example, a single piece of news can be documented across several languages,
an image can be characterized by diverse sets of features, and a signal can be displayed by distinct waveforms in the frequency and
time domains. These examples all represent multi-view data, where each view holds unique attributes and offers supplementary
information compared to that of other views. Therefore, to capture the complementary and consistent information inherent in multi-
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view data, multi-view clustering (MVC) has received widespread attention and research [1,7-9]. However, handling multi-view data
poses challenges due to complex features, diverse data sources, large volumes, and high dimensionality within data [10,11].

In recent years, there are many methods to deal with multi-view data, such as spectral clustering [12-15,7], graph-based clustering
[16-18,8,19], subspace-based clustering [20,9], and nonnegative matrix factorization (NMF)-based clustering [21,22]. Due to the
advantages of NMF in dimensionality reduction and interpretability, we mainly focus on NMF-based clustering methods. Typically,
NMF-based clustering involves two steps. Firstly, NMF is used to learn low-dimensional representations of data [23,24]. Then an
additional post-processing step like K-means [25] is applied to obtain the final clustering results [26]. For example, Yang et al. [27]
introduced sparse NMF and proposed a document clustering algorithm by explicitly constraining the sparsity of the low-dimensional
matrices. Wild et al. [28] developed an initialization technique for NMF to improve the speed of clustering tasks. One of the most
representative works is Symmetric NMF (SymNMF) [29], which decomposed the data into a symmetric matrix containing pairwise
similarity values and captured the clustering structure. Nevertheless, the above methods are only suitable for processing single-view
data, which fails to effectively integrate feature information from different views.

To handle multi-view data, a substantial number of MVC methods based on NMF and its variants [30,23] have emerged. Gao et al.
[21] proposed a multi-view NMF (MultiNMF) model, where the clustering structures of different views are preserved during the joint
factorization process, and the consensus representation is learnt by coefficient matrices of different views. Unlike most MVC methods
that only consider the consistency among multiple views, Liu et al. [30] introduced a semi-supervised multi-view learning method
to jointly explore both the consistent and complementary information across views. Cai et al. [31] proposed a semi-supervised MVC
method based on orthonormality-constrained NMF, which utilized constrained NMF to learn low-dimensional representations of data
and used co-regularization to integrate complementary information from different views. Though these NMF-based methods allow
for data dimensionality reduction and achieve latent linear representation of data, they are hardly to preserve geometric structures,
limiting their ability to capture complex nonlinear relationships in multi-view data. To preserve the geometric structure of data,
graph regularization-based NMF has been proposed for MVC task. Zhang et al. [32] applied graph regularization on the coefficient
matrices of each view to preserve the intrinsic structure of data. Xu et al. proposed a MVC via consistent and specific NMF with
graph regularization (MCCS) method and designed a disagreement regularization term to learn a common representation, thus a
same underlying cluster structure from multiple views can be ensured. Liu et al. [33] proposed deep manifold regularized semi-NMF
for MVC and employed graph regularization at each layer of deep matrix factorization to extract complex structural information
within data. The studies mentioned above use a fixed graph construction method that may produce clustering results sensitive to the
predefined similarity matrix and potentially disrupt the local connectivity of the data [34]. Despite significant progress in NMF-based
MVC, these methods still exhibit three limitations: 1) NMF-based methods primarily emphasize the decoder, which reconstructs the
original data from its low-dimensional representation, neglecting the encoding process of directly projecting input data into a low-
dimensional representation. 2) The linear and nonlinear structures inherent in multi-view data have not been thoroughly explored.
3) These methods do not adequately consider the contributions of different views, resulting in suboptimal clustering results.

To solve the above limitations, we propose a Dual Auto-weighted multi-view clustering model based on Autoencoder-like NMF
(DA2NMF), which not only retains the linear information from specific views but also incorporates adaptive graph learning to explore
the nonlinear structures of multi-view data, as illustrated in Fig. 1. Unlike traditional NMF-based algorithms that focus solely on
reconstructing the original data through the decoder, our model introduces both an encoder and a decoder to learn low-dimensional
representations. Moreover, we design a dual auto-weighted strategy to adaptively assign weights for each view and view-specific low-
dimensional representation, enabling DA>?NMF to obtain a more discriminative fused graph. Throughout the optimization iterations,
the three modules, i.e., low-dimensional representation learning, consistent graph learning, and dual auto-weighted strategy are
simultaneously optimized and they enhance each other in our proposed method. The contributions of this work are as follows:

1) We propose a Dual Auto-weighted multi-view clustering model based on Autoencoder-like NMF (DA2NMF), which integrates
the autoencoder-like NMF and adaptive graph learning into a unified framework. Moreover, by considering the dual auto-weighted
strategy, the DA2NMF effectively accounts for the importances of different views and the weights of view-specific low-dimensional
representations to learn a more discriminative consistent graph.

2) By considering both the reconstruction of multi-view data and representation learning, an autoencoder-like NMF is constituted
to obtain the better latent representations in a low-dimensional space. Moreover, based on the view-specific low-dimensional repre-
sentations, we introduce the adaptive graph learning to adaptively explore the nonlinear structure of multi-view data. Our framework
effectively integrates both the latent linear and nonlinear structures of multi-view data to obtain an enhanced consistent graph.

3) We develop an iterative algorithm based on Multiplicative Update Rules (MUR) to effectively solve the optimization problem
of the DAZNMF model. We also theoretically prove the convergence of the algorithm. In the experiments, the proposed DA2NMF
outperforms the comparative methods, showing the effectiveness of our method.

The paper is organized as follows: Section 2 provides a brief review of related works. In Section 3, the DAZNMF model and
optimization algorithm are introduced. In Section 4, extensive experiments are tested to validate the effectiveness of DAZNMF.
Section 5 involves a discussion on the experimental results. Section 6 concludes the paper.

2. Related work

MVC has been a popular topic which aims at exploring the inherent correlation and consistency among different views for
clustering [35]. In this section, we review some related works about MVC, which consists of four parts: spectral MVC, graph-based
MVC, subspace-based MVC, and NMF-based MVC.
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2.1. Spectral MVC

Spectral clustering transforms the clustering problem into a graph partitioning problem [36]. The input to spectral clustering is a
similarity graph, whose optimization objective is to minimize the similarity relations between different components of the graph [37].
Kumar et al. [12] constructed a spectral clustering framework, which introduces pairwise co-regularization as well as centroid-based
co-regularization to balance view-specific eigenvectors and consensus eigenvectors. To achieve a robust spectral clustering result,
Huang et al. [13] proposed affinity aggregation spectral clustering (AASC) method for alleviating the impact of irrelevant features.
Motivated by the same purpose, Xia et al. [14] used Markov chain method and proposed robust multi-view spectral clustering (RMSC)
to explicitly handle the noise in the transition probability matrices among views. Considering the diversity of different views, Zong
et al. [7] employed the spectral perturbation to model the weights of views, which allowed the clustering results among views to
approximate the consensus clustering result and smoothes the weights.

2.2. Graph-based MVC

Graph-based MVC achieves a fused graph by integrated graphs from multiple views. It can be noted that graph-based MVC
and spectral MVC exhibit certain similarities; however, their distinction lies in the fact that spectral MVC typically identifies a
low-dimensional embedding representation of the data, while graph-based MVC generates clusters on the constructed data graph
rather than a new embedding representation [8]. Zhan et al. [16] pointed out most graph-based MVC need a predefined graph,
the quality of which can significantly influence the clustering performance. Based on the concern, multiview clustering with graph
learning (MVGL) [16] and multiview consensus graph clustering (MCGC) [17] methods were proposed to enhance the quality of
the predefined graph. Different from MVGL, MCGC employed a specific disagreement cost for exploring consistency across different
views. Moreover, Wang et al. [8] proposed a general graph-based MVC (GMC) method to construct the graph of each view and learn
a fusion graph in a mutually reinforcing way. To reduce the computational complexity, Tang et al. [19] designed a parameter-free
method and learnt a unified graph for MVC via cross-view graph diffusion.

2.3. Subspace-based MVC

Subspace-based MVC aims to obtain a shared low-dimensional space from different views, in which a consistent low-dimensional
representation of multi-view data can be found for clustering. This method can reduce redundant information of data and has low
computational complexity. Liu et al. [20] proposed multi-view subspace clustering algorithm, which preserves the locally consistent
geometric relationship and ensure the consistency across different views. Wang et al. [9] pointed out that most subspace-based MVC
methods suffer from cubic time complexity and are not suitable for dealing with large-scale datasets. Subsequently, a fast parameter-
free multiview subspace clustering method with consensus anchor guidance (FPMVS-CAG) was proposed to automatically learn an
optimal anchor subspace graph without any extra hyper-parameters, which was suitable for large-scale multi-view data clustering.

2.4. NMF-based MVC

To handle the high-dimensional data clustering, NMF-based MVC derives a representation in low-dimensional spaces by decom-
posing original data into two nonnegative low-rank matrices, and the clustering results can be obtained by K-means. In recent years,
many extensions of NMF-based MVC have been proposed, such as constrained NMF-based MVC [32] with additional constraint
terms, structured NMF-based MVC [38] by altering the loss function structure, and generalized NMF-based MVC [33] by extending
the decomposition form [23]. Generally, the constrained NMF-based MVC has been widely studied, which imposes additional con-
straint terms such as graph regularizer and orthogonality constraint [31]. For instance, by integrating concept factorization, manifold
regularization and the consistency constraint into a unified framework, the multi-view concept clustering (MVCC) [22] method was
proposed to learn a consistent representation across different views. Moreover, Luong et al. [39] proposed a MVC framework of
deep NMF by applying diversity constraint, orthogonal constraint, and cut-type constraint to enhance the learning of shared and
complementary information among the views.

Compared to the spectral MVC, graph-based MVC, and subspace-based MVC mentioned above, NMF-based MVC have the follow-
ing two advantages: 1) NMF-based MVC ensures that all elements in the generated decomposition matrix are nonnegative, making the
results easier to interpret. 2) The computational complexity of NMF-based MVC is lower, especially on large-scale datasets. Inspired
by the above, we further propose a new MVC framework that incorporates the inherent linear and nonlinear structures of multi-view
data, taking into account the significance of different views and low-dimensional representations.

3. Method

In this paper, matrices are denoted as uppercase letters such as X. We use x; and x;; to denote the i-th column and the ij-th entry
of X, respectively. The trace of X is denoted by Tr(X). We use ||X|| and ||X]||, to describe the Frobenius norm and the /, norm
of X, respectively. Assuming a multi-view dataset has d views, and X" = {x{,...,x"'} € R™" is the v-th view data, where m is the
dimension of features and »n denotes the number of instances. Table 1 presents a comprehensive list of mathematical symbols in this
paper along with their corresponding descriptions.
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Table 1
Some notations and definitions used in DA2NMF.
Notations Definitions
m The dimension of features
n The number of instances
c The number of clusters
d The number of views
k The reduced feature dimensionality

X, x;, X; The matrix, the i-th column, the ij-th entry
X e R™n The v-th view data
UY € R™k  The v-th view basis matrix

VU e Rk The v-th view representation matrix
S e Rm® The fused graph

Tr(X) The trace of X

I1X]| The Frobenius norm of X

11X1l, The /I, norm of X

o', o The auto-weighted parameters

a,p The hyperparameters

3.1. The proposed DA2NMF model

In this section, we present the DAZNMF model and the optimization algorithm in detail. Our DA2NMF model consists of three
components: autoencoder-like NMF, adaptive graph learning, and dual auto-weighted strategy, which are unified within a framework,
as shown in Fig. 1.

3.1.1. Autoencoder-like NMF
The core of NMF is to reconstruct the data X" from basis matrix U” and low-dimensional representation V¥ [40], which can be
seen as a decoding process. The objective function is

in IXY = UV T2
min IX° = U (V)T I, »
sit. U >0,VV>0.

However, Eq. (1) neglects the encoding process, which involves the transformation of X" into a more optimized V’. Hence, we
introduce an autoencoder-like NMF to jointly consider the reconstruction of original data and the learning of low-dimensional
representations. The optimization problem is given by

d
min Y (XY - U (V)T |12+ BIIVY — (U)TX7|12)
AT UZT F F 2
s.t. UV >0,VV >0,

where the first term in Eq. (2) is decoder, which reconstructs the input matrices from low-dimensional representations. The encoder
can directly project the input data into low-dimensional representations, as indicated in the second term of Eq. (2). According to Eq.
(2), the linear low-dimensional representation of each view can be adequately learnt.

Remark 1. Autoencoder-like NMF refers to a variant of NMF that is inspired by the architecture and principles of the autoencoder,
which comprises an encoder and a decoder. The encoder projects the original data into a low-dimensional representation, while the
decoder reconstructs the original data based on this representation. In contrast to conventional NMF algorithms that primarily focus
on the decoder, the autoencoder-like NMF can obtain the better latent representations in a low-dimensional space.

3.1.2. Adaptive graph learning

Despite addressing some drawbacks of traditional NMF, autoencoder-like NMF remains with two limitations: 1) it ignores the
nonlinear structure within the original data, and 2) it lacks consistency information descriptions. To address the aforementioned
limitations, inspired by [41], we incorporate the idea of adaptive graph learning into our model for preserving nonlinear structures.
Adaptive graph learning obtains the similarity relationships between samples by optimizing the following problem:

N
: 2 2
min (%, =X, 13s;; +757) -
ij
. Tq
S.t.Vl,Sjl—l,OSSijS 1,

where s;; is the ij-th entry of a similarity matrix, and it can describe the distance between data points x; and x;, reflecting the
relationship between the data points. Specifically, a smaller distance ||x; — x; ||§ implies that x; is closer to x;, resulting in a larger
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Fig. 1. Overview of the DA’NMF. DA?NMF comprises three crucial components: A. autoeoder-like NMF, B. graph learning, and C. dual auto-weighted strategy.
Specifically, autoencoder-like NMF explores the linear latent representations {V',...,V'} of data {X',...,X"}. Graph learning focuses on capturing the nonlinear
structures within the low-dimensional representations and obtaining a consistent graph S. And dual auto-weighted strategy dynamically allocates weight ¢* to each
view X". Simultaneously, when constructing the consistent graph, the auto-weight " is assigned to each low-dimensional representation V*, enabling the generation
of an enhanced consistent graph.

value of s;;. Based on Eq. (3), we perform adaptive graph learning on view-specific representations and obtain a consistent graph.
The objective function is

d d n
min XY =TV I+ BV = U X T) + 3 DIy = Vyll5s; +allSIE -
o=l v=1 i,j
s.t. U”zO,V”zo,sJT1=1,ossijS1,

The last two terms in Eq. (4) represent the adaptive graph learning, whose basic idea is that a large probability value s;; should be
assigned when the distance between two data points is small.

Remark 2. Adaptive graph learning is employed to explore nonlinear relationships within view-specific low-dimensional represen-
tation V”. By automatically updating the edges for each data point (i.e., vertex v;), a similarity graph S is dynamically constructed
to capture more flexible nonlinear relationships.

3.1.3. Dual auto-weighted strategy
Furthermore, there is diversity among each view, so it is essential to distinguish the importance of different views in multi-view
learning [42]. We introduce the concept of auto-weighting to design a dual auto-weighted strategy. Eq. (4) can be transformed into

d
: vIXY — U (VY T2 v _ (T TXU 2
oy ; o (X = U (VT I+ AIVY = (U)X 1)

n
5)
+ 2" YN = vils,; +allSIIE
v=1 ij
st U'20,V'20,571=1,0<s; <1,

where oV and w" represent auto-weighted parameters, ¢ is assigned to balance the importance of each view to learn the discrimina-
tive low-dimensional representation, and w" is allocated to measure the significance of each latent low-dimensional representation
when constructing the consistent graph.

Remark 3. The dual auto-weighted strategy is crucial as it takes into account the significance of different views and different low-
dimensional representations, learning a discriminative consistency graph. Specifically, ¢" is automatically assigned to different views
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with the aim of obtaining reliable view-specific low-dimensional representations. Similarly, " is allocated adaptively to measure
the importance of different low-dimensional representations.

3.1.4. Objective function

Eq. (5) is capable of adequately capturing both linear structures and nonlinear relationships within data. Building upon this
foundation, we introduce a rank constraint on the Laplacian matrix of the consistent graph. This constraint ensures that the learned
consistent graph contains ¢ connected components, corresponding to ¢ clusters, thereby directly obtaining the clustering results and
avoiding post-processing steps. The objective function is

d
: vIXY — U (VY T2 v _ (Y TXU 2
g B g 27 X = U OV I IV = U7X

d v c v v 2 2 (6)
+ D@ Y IV =Vl + allSI}
v=1 ij

st U >0,V zo,sz1= 1,0<s;; <1, rank(Ly) =n—c,

where L, =D — (S + ST)/2 is the graph Laplacian matrix, D € R"*" is a diagonal matrix with the ith diagonal element calculated by
di; = %;(s;; +5;;)/2. However, Eq. (6) is difficult to solve. Based on the Ky Fan’s Theorem [43], the rank constraint rank(L,)=n—c
can be equivalently replaced by minimizing Tr(FTL,F) subject to F € R™" and FTF = I. Mathematically, the overall objective
function of DA2NMF is

d
: v XU_UUVUT2+ VU_UUTXUZ
Uu,vv‘,rs‘,‘éfav,wv;“ (I VTG + BIVE = U XAI)

d n
X 7
+ D Y v - VI35, + aliSIly + 24T r(FTL,F)
v=1 i,j

st U'20,V'20,s/1=1,0<s; <LLF'F=1,
where F =[f, ..., f,] is the clustering indicator matrix.

In summary, our DAZNMF model exhibits four advantages: 1) DAZNMF utilizes autoencoder-like NMF by integrating both an
encoder and a decoder, thereby comprehensively learning the latent linear low-dimensional representations in data. 2) DA?NMF
incorporates graph learning to capture the nonlinear features of data. 3) DA?NMF designs a dual auto-weighted strategy, which is
capable of measuring the importance of different views as well as different low-dimensional representations, thereby obtaining a
discriminative graph. 4) DA2NMF yields clustering results directly without the post-processing, and the clustering indicator matrix
contributes to updating of the consistent graph and learning of low-dimensional representations.

3.2. Optimization algorithm

To solve the optimization problem in Eq. (7), an iterative update procedure is designed based on MUR. The updating rules,
complexity analysis, and convergence analysis are presented below.

3.2.1. Updating rules

The updating rules of Eq. (7) can be divided into six steps. That is updating U’, V", S, F, 6", and o".

A. Updating U". Fixing the other variables, we update U". The calculation of U for the v-th view, when the other variables
are fixed, does not depend on U” or V¥ (V' # v). For a more refined depiction, X,U, and V are used instead of X", U, and V¢,
respectively. Hence, the objective function for the v-th view can be simplified as

Ly =IX-UVI|I3 + IV - UTX]f5.. (8)
We transform Eq. (8) into the form of a trace
£, =TrXTX -XTuv? - vUTX + vUTUVT]
+ pTrVVT —=vTUTX - XTUVT + XTUUTX]. ©

Utilizing the Lagrange multiplier matrix ¥ as a nonnegative constraint on U and eliminating the irrelevant terms of U, the sub-
problem of Eq. (9) can be formulated as
£, =Tr[-2XTuvT + vUuTuvT]
(10)
+ pTr[-2X"UVT + XTUUTX] + Tr[PUT .

Taking the derivative of problem (10) with respect of U, we can obtain
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% =—2XV +2UVTV + 25(-XV + XTU) + ¥. 11
According to the Karush Kuhn-Tucker (KKT) conditions [44], ¥ ® U =0 and the update of U can be obtained as follows
1 X
UcUo_U+AXV 12)
UVTV + gxXXTU

where O denotes the element-wise product.
B. Updating V". Fixing the other variables, and we can obtain the objective function of V"
L, =0(IX=UVT|2 + B|IV = UTX|I%) + 20T r(VL, V7). (13)
The trace form can be formulated as
L, =o(TrXTX-XTUVT - vUTX + VUTUVT]
+pTr[VVT —VTUTX - XTUVT + XTUUTX)) + 20T r(VL, V7). a

Using the Lagrange multiplier matrix ® as a non-negative constraint on V and removing the irrelevant terms of V, the sub-problem
of Eq. (14) can be formulated as

L, =o(Tr[-2XTUVT + VUTUVT]

(15)
+ ATr[VVT —2XTUVT)) + 20T (VL V7).
Taking the derivative of problem (15) with respect of V, we can obtain
oL
0_\72 =0(=2XTU+2VUTU 4+ 26(V - XTU)) + 2L,V + V. 1e6)
According to the KKT conditions, ® ® V =0, the update of V can be obtained as follows
1+ AXTU
VeVo ol +/) . 17)
o(VUTU + pV) + wL,V
C. Updating S. Fixing U, V, F, ¢, w", and updating S, we can get the objective function
d n
Ly=) 0" Y IV =135, +allS|% + 24T r(ET LF)
v=1 i.j
n d (18)
=D QleIv - VII3si, +asi, + AlE = £ 113s;)),
i,j v=1
we denote g;; = 2‘5:] o’ 27/ v} — v;.’||§ +Alf; — fj||2, and the problem turns as follows:
c 1 1 c 1 o 1
_ 2_ 1 2y _ Lo _ L2
Ly= Dy + 508 = o) = Dl + gl = 2 e 19
i.j J i
Tq1_
st s;1=1,0<s; <1
The optimization problem mentioned above becomes
c 1
min )" [ls; + 5-g;l3
S ; J 20°7 2 (20)
s.t. ¥1=LOSSU§L
where S can be solved column-by-column, and the detailed solution of Eq. (20) can be referred to [45].
D. Updating F. Fixing U, V, S, w", ¢”, and updating F, we can get the objective function
min Tr(FTL,F)
¥ @D

s.t. FTF=1

This problem can be solved by the eigen-decomposition. And the optimal solution of F can be formed by the ¢ eigenvectors corre-
sponding to the ¢ smallest eigenvalues of L.
E. Updating ¢". Fixing U, V, S, F, ", and updating ¢", we can get the objective function. ¢" is updated by

1
v _
24/IXe ~ UL (VO |2 + BIIVE = (U)X |12)

c

(22)
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F. Updating . Fixing U, V, S, F, ¢", and updating w", we can get the objective function. w" is updated by

o’ = !

- ’ (23)
20/ 10y = o813

Algorithm 1 illustrates the entire solving and updating processes for problem Eq. (7). Note that the parameter « is determined by the
value of the nearest neighbor parameter and does not need to be specified as an input [45].

Algorithm 1 The optimization algorithm for DA>?NMF.

Input: Multi-view data X',..., X", parameters f, A.
1: Initialize: Standardized for each view X". Using NMF to initialize U” and V". Initialize S, 6 = 1/d, w=1/d, and F.
2: while not converge do
3:  Update U’ by Eq. (12).
Update V¥ by Eq. (17).
Update S by Eq. (20).
Update F by Eq. (21). Here the ¢ smallest eigenvalues.
Update 6" by Eq. (22).
Update o by Eq. (23).
9:  Check the convergence conditions.
10: end while
Output: The similarity matrix S with exact ¢ connected components.

QNI A

3.2.2. Complexity analysis

Based on Algorithm 1, the most computationally intensive part of the optimization process is the update step for U, V, S, and
F. Specifically, the complexity of updating U? in Eq. (12) is O(mnk + mk* + m*k) for the vth view, and the complexity of updating
VU in Eq. (17) is O(nmk + nk* + n?k) for the vth view. Considering that m > k and n>> k, the complexity of updating U, V is
O(mnk +m?k + nk). The complexity of updating these two processes for multi-view data with d views is O(d(mnk + m*k + nk)). The
complexity of updating S in Eq. (20) primarily involves the computation of G, which is O(n2(d + ¢)). The complexity of updating F
in Eq. (21) involves the computation of the eigenvectors of the Laplacian matrix and has a complexity of O(n%c). Over T iterations,
the overall complexity of our DAZNMF algorithm is O(T(dmnk + dkm? + dkn* + dn? + cn?) + n%c).

3.2.3. Convergence analysis

According to problem (7), our objective function is not a jointly convex problem. Consequently, seeking the global optimum
is a challenging task. Next, we demonstrate that problem (7) achieves local optimum within the framework of Algorithm 1 at the
iterations. For convenience, we define the objective function of the optimization problem as follows:

d
L= e (X" = U (V)T |7+ BIV" = (U XV|12)
v=1
d
+ D @' Tr(VL,V") + al|S||% + 24Tr(F" LF),

v=1

24

and we have following theorem:
Theorem 1. Under the updating rules of Algorithm 1, the problem (7) can achieve local optimum.

To prove the Theorem 1, it is necessary to establish the convergence of the six subproblems within problem (7). When other
variables are held constant, the computation of U for the v-th view remains independent of U” or V¢ (where v/ # v). Here, X, U,
and V are used in place of X”,UY, and VY, respectively. As the updates for U and V are relatively complex, we provide the following
clarifications before proceeding with the proof:

The update steps for U and V are similar to NMF [46]. Considering each element v;; in V, we use F;; to denote the part of £,
which is only relevant to v;;. We will obtain that

(25)

F) = (:Tﬁ) =[o(-2X"U +2VUTU + 24(V - X"U)) + 20L, V],;.
ij

Fl! =26(UTU), + 201 + 200(L,), ;. (26)

To prove the convergence of V-subproblem, we need to demonstrate that each F;; remains nonincreasing during the update described
in Eq. (17). Next, we will prove the nonincreasing property of F;; by utilizing an auxiliary function [46]. The following two definitions
are introduced:
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Definition 1. [46] G(v,v") is an auxiliary function of F(v) if the following conditions

G(v,v') > F(v), G(v,v)=F(), 27)

are satisfied.

Definition 2. [46] If G is an auxiliary function of F, then F is nonincreasing under the update

oD =argmin  G(v, v). (28)
v

Definition 1 and Definition 2 are utilized to demonstrate that by introducing an appropriate auxiliary function, the update for
V in Eq. (17) can be transformed into the update form of Eq. (28). Additionally, we introduce the following lemma to construct
auxiliary function.

Lemma 1. Function
G,y = F ;) + Fwihw - )
[6(VUTU + pV) + oL, V];;
’ @)

is an auxiliary function of F;;.

(29)

(1)\2
=2,

Proof of Lemma 1. It is straightforward to observe that G(v,v) = F;;(v). Before proving G(v, Ul(.

Taylor series expansion of F; (V).

;.)) > F;;(v), we need to consider the

— (1) 1 (0 0]
Fij() = F;(v;)) + F; (03,0 = (7)) 30)
+[o(UTU);; + 0L, + oLy, 10 — ().
By Eq. (29) and Eq. (30), we can observe that proving G(v, U,(.;)) > Fj;(v) is essentially equivalent to proving
ol(VUTU + pV) + 0L, V];;
(1)
;)

Eq. (31) can be divided into three parts for proof, as follows:

> O'(UTU)J'/ + 5,51“‘ + W(Ls)u- (31)

k

) (1)
oVUTU; =0 Y v)UTU;; > 00 (UTU)
1

k
oV, =cp Y vl > aﬁvl(.;)l i (32)
1

q
oL,V =0 Y (L)) 2 oL);,0)).
!

(

In accordance with Eq. (32), the validity of Eq. (31) is established, thereby ensuring G(v, Uit.)) > F;;(v). Furthermore, the above proof

J
satisfies Definition 1, demonstrating that G(v, vg.)) is an auxiliary function for F; ().
Next, we will present the proof of Theorem 1.

Proof of Theorem 1. It is imperative to demonstrate the convergence of each subproblem in Algorithm 1. Next, we present the
convergence of each subproblem systematically in the following.

(1). Update U and V in Eq. (12) and Eq. (17). We replace G(v, ug.)) in Eq. (28) with Eq. (29) by introducing the Newton’s method
[44], and we obtain the following update rule:

o)
() _ 0 _ 0 Ty
ij i 7 U 2[(VUTU + fV) + 0L, V],
o [e(1+ ﬂ)XTU][j
=0.’ .
¥ [6(VUTU + V) + oL, V],

v

(33)

The aforementioned proof satisfies the conditions of Definition 2 and F;; is nonincreasing under the update rule of Eq. (33). A similar
conclusion can also be extended to the updating of U using Eq. (12), indicating that auxiliary function related to the subproblem of

9
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U is also nonincreasing. Additionally, we have made slight adjustments to the update procedures of U and V, as described in [47],

to ensure the convergence of the subproblems of Problem (7) concerning U and V.
(2). Update S in Eq. (18). In order to discuss the update process of S, we rewrite L as

d n
L= 3| D Ive = vels;; + ISl 34
v=1 i.j

Next, we proceed to demonstrate that the updated S will reduce the objective function value of Eq. (34) until convergence. We
assume that after each iteration, S becomes S, and then we can obtain the following

n 2~ n v v12
Yl = ohlI55;; >l = vhliss;;
ij i Jjh2ty 2 ij i Jjh2ty
+allSlly < E

v 24 /Zl'.'j llof - Ujll%s,-j v 24 /Z’"J llo} - U;)”%Sij

According to [45], we have: y/x — ﬁ; V- Z—\y/; for any positive real number x and y. Based on this, we can obtain

+allS|3. (35)

n n v _ 2%
v D112~ Zij ”Ul' Ujllzsij
Z\ Z””i _”1”25"/'_2
s n )
v ij v 2,/21.1. ||U,.L—vj”.||§s,-j

n "ot = oY) 3s;;
< Z Z ||Uf) _ U?”%SU _ Z Zu i Jjr2ty )
“\ G 520 /30 (0 = oty

Combining Eq. (35) and Eq. (36), we have

(36)

n n
2% &2 2 2
DAl Dl = obl35, +allSIE < Y| D et = otli2s, +alSI, 37)
v ij v ij
which can demonstrates that the problem (18) is convergent.

(3). Update F in Eq. (21). According to [8], considering the update of F, we introduce the Hessian matrix of the Eq. (21) as
follows,
P*Tr(FTL,F)
OFFT

where L, is positive semi-definite, Eq. (21) is also positive semi-definite. Therefore, problem (21) is a convex function, which is
convergent.

—L,+L7, 38)

(4). Update ¢ and w in Eq. (22) and Eq. (23). As Eq. (22) and Eq. (23) are both convex functions, and we have provided a
closed-form solutions for ¢ and w, respectively. Therefore, the subproblems concerning ¢ and w of problem (7) are convergent.

In summary, it can be demonstrated that within Algorithm 1, each subproblem converges. Therefore, Problem (7) achieves local
minimization.

4. Experiments

In this section, extensive experiments are performed to evaluate the performance of DA2NMF. All the experiments are conducted
on Matlab 2016. And the three metrics accuracy (ACC), normalized mutual information (NMI), and Purity are used to measure
the clustering performance. ACC represents the proportion of correctly clustered samples, NMI measures the difference between
predicted and true labels, while Purity indicates the percentage of correctly clustered samples within the total samples. These metrics
range from O to 1, with higher values denoting better results. The specific details can be referred to in [17].

4.1. Datasets

The following five classical datasets are used in MVC: MSRCv1': The MSRCv1 dataset is an image dataset consisting of 210
scene recognition images, which can be categorized into 7 classes. And each image is described by using 5 distinct image features.
BBCSport?: This dataset consists of 544 documents obtained from the BBCSport website, with a total of 544 instances. It is composed
of 2 views and categorized into 5 classes. 3Sources®: Consisting of 169 news documents reported by online news organizations,

1 http://research.microsoft.com/en-us/projects/objectclassrecognition/.
2 http://mlg.ucd.ie/datasets/segment.html.
3 http://mlg.ucd.ie/datasets/3sources.html.
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Purity

(2)

Fig. 2. Parameter analysis of DA>NMF in MSRCv1 dataset. (a), (b), and (c) represent the ACC, NMI, and Purity under different parameter settings.

this dataset comprises 3 views and can be categorized into 6 classes. HandWritten*: With 2000 data points representing 0-9 digit
classes, the HandWritten dataset includes 6 types of features for each data point. WebKb®: The WebKb dataset comprises a total of
203 web pages, each having 3 distinct views. This dataset can be divided into 4 different categories.

4.2. Comparison methods

To test the performance of the DAZNMF, we compare it against a single-view algorithm and 15 multi-view algorithms. Further-
more, we categorize the 15 MVC methods into four groups: spectral MVC, NMF-based MVC, graph-based MVC, and subspace-based
MVC.

A. spectral MVC: The 5 models, namely Co-Regularized Spectral Clustering (CoReg), [12], Affinity Aggregation for Spectral
Clustering (AASC) [13], Robust Multi-view Spectral Clustering (RMSC) [14], MVC via Adaptively Weighted Procrustes (AWP)
[15], and Weighted Multi-view Spectral Clustering based on spectral perturbation (WMSC) [7], are categorized as spectral MVC
methods.

B. NMF-based MVC: The NMF-based MVC contains the following, Multi-View NMF (MultiNMF) [21] and Multi-view Concept
Clustering (MVCC) [22].

C. graph-based MVC: The graph-based MVC contains the following, Graph Learning for MVC (MVGL) [16], Multi-view Consen-
sus Graph Clustering (MCGC) [17], Graph-based System (GBS) [18], Graph-Based MVC (GMC) [8], and MVC via Cross-View
Graph Diffusion (CGD) [19].

D. Subspace-based MVC: The subspace-based MVC contains the following, Consensus Graph Constrained Multi-view Subspace
Clustering (CGMSC) [20] and Fast Parameter-free Multi-view Subspace Clustering with Consensus Anchor Guidance (FPMVS-
CAG) [9].

4.3. Parameters analysis

In accordance with the details provided in Section 3, the impact of hyperparameters f and A on clustering performance of
DAZNMF model are investigated. Taking the MSRCv1 dataset as an example, we analyze the sensitivity of each hyperparameter
considering the range of values: [0.001, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1]. Fig. 2 depicts the experimental
results for each parameter setting, providing a more comprehensible analysis of parameter sensitivity. From Fig. 2, we can observe
that the DA2NMF model is sensitive to both parameters § and A. Additionally, compared to parameter §, DA2NMF model exhibits
higher sensitivity to 4. Based on these observations, we set A to 0.04 and § to 0.1.

4.4. Comparison with the single-view clustering algorithm

To validate the effectiveness of the DAZNMF method, we conduct experimental analysis on single-view clustering using the
aforementioned five datasets. Specifically, we use the DAZNMF method and the traditional NMF-based [48] clustering method
separately for each view. To evaluate the significance of auto-weighted strategy, additional experiments are conducted to compare
the equal-weighted approach with the auto-weighted method. The clustering performance is presented in Table 2 and Fig. 3, and the
best results are bolded in Table 2. Based on our observation of the results, we have the following analyses.

1). Our DA2NMF exhibits strong clustering performance within each view across multiple datasets. Especially in the third view
of the HandWritten dataset, DA’NMF surpasses NMF method by 57.8% based on the ACC metric. This is due to the fact that our
DAZNMF extracts features from each view by simultaneously considering both linear and nonlinear structures of multi-view data.

4 https://archive.ics.uci.edu/ml/datasets/Multiple+ Features.
5 https://lings.soe.ucsc.edu/data.
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Table 2
Clustering performance comparison of each view in different datasets.

Method BBCSport 3Sources WebKb MSRCv1 HandWritten

ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity

Viewl 4596 3247 53.49 3592 2885 49.82 64.83 3932 77.04 37.62 2527 38.62 3541 29.70 36.99
View2 4422 26.51 5213 52.07 4236 6036 50.79 4.76 5443 65.00 53.42 65.86 60.70 5859 62.30

NMF-based  View3 - - - 38.22 31.03 5231 73.40 46.07 80.30 6790 6197 70.43 10.05 3.50 10.45
clustering View4 - - - - - - - - - 44.67 36.63 47.57 29.27 36.09 33.57
View5 - - - - - - - - - 56.71 47.48 59.57 65.33 61.43 67.39
View6 - - - - - - - - - - - - 48.96  44.93 51.43

Viewl 77.02 63.24 77.02 36.69 3546 5858 71.43 36.85 7291 4190 34.26 42.86 5895 62.82 64.05
View2 60.11 50.43 7279 53.25 52.89 7278 51.72 8.47 54.68 70.48 60.56 70.48 57.10 61.16 63.15

View3 49.11  41.24 6272 59.61 9.75 61.08 68.57 58.11 68.57 67.85 60.96 67.85
DA2NMF View4 - - - - - - - - - 53.81 4578 57.14 3210 38.03 32.80
View5 - - - - - - - - - 58.57 52,55 6190 77.25 7313 77.25
View6 - - - - - - - - - - - - 58.90 61.72 63.65

Equal 88.79 74.94 88.79 6391 4847 69.82 66.01 1721 67.49 76.19 7598 79.05 91.10 85.65 91.10
Auto 91.54 78.58 91.54 81.66 65.64 81.66 81.28 51.82 82.27 95.24 90.29 95.24 94.95 90.62 94.65

100 100 100 ¢ 100 100

% ————————— 90 90+ % Py

ACC(%)
ACC(%)

(B means
-
|—#—Equatwoignes
|=o— Auto woghiea

—e— Equal-weighted
—e— Auto-weighted

- 0 0
view 1 view 2 view 1 view 2 view 3 view 1 view 2 view 3 Vew1  view2 view3. viewd  view5 view1 view2 view3 viewd view5 views

(a) (b) ©) [C)] (e)

Fig. 3. The ACC of the single-view algorithm on (a) BBCSport, (b) 3Sources, (c) WebKb, (d) MSRCv1, (e) HandWritten.

2). Clustering based solely on individual views fails to leverage the full diversity present in the data. Notably, in View3 of the
HandWritten dataset, the traditional NMF method shows poor performance. Recognizing the complementarity of multiple views, we
assign equal weights to all views for clustering. It can be observed that our multi-view DAZNMF significantly improves the clustering
performance compared to single-view clustering results by integrating features from multiple views.

3). While assigning equal weights to various views can leverage complementary information across multiple perspectives, there
are cases, such as in the 3Sources dataset, where the clustering performance of using only the third view surpasses the clustering
performance of averaging all views. Conversely, the dual auto-weighted DA2NMF outperforms all clustering methods. This demon-
strates that our dual auto-weighted DA?2NMF adaptively allocates weights based on the importance of different views. Moreover,
this method dynamically assigns weights to low-dimensional representations during the graph fusion process, resulting in a more
representative graph that ensures consistency across views.

4.5. Comparison with the multi-view clustering algorithms

To further evaluate the effectiveness of the proposed MVC framework DA?NMF, comparative experiments are conducted against
other MVC methods. Tables 3-7 display the clustering results of different on MSRCv1, 3Sources, HandWritten, BBCSport, and WebKb
datasets, respectively. In each metric, the best clustering result is indicated in bold, while the second best is underlined. From these
results, we derive the following observations:

1). From the above Tables 3-7, DA2NMF algorithm has shown promising experimental results across the aforementioned five
classical multi-view datasets, outperforming the comparison methods, including spectral clustering, the NMF-based clustering, the
graph-based clustering, and the subspace-based clustering. Specifically, compared to NMF-based methods like MultiNMF and MVCC,
DAZNMEF achieves the highest performance metrics on the datasets mentioned above. This could be attributed to the fact that DAZNMF
not only utilizes a decoder for data reconstruction but also incorporates an encoder, which explores and mines the underlying data
structure. DA?’NMF integrates an encoder and a decoder into a unified framework, enabling comprehensive learning of linear low-
dimensional representations from the data.

2). Moreover, DA2NMF surpasses graph learning, particularly DA2NMF outperforms the CGD (the second highest) algorithm,
with improvements of 5.24%, 6.81%, and 5.24% in the ACC, NMI, and Purity metrics in MSRCv1 dataset. This could be attributed
to the fact that DAZNMF incorporates adaptive graph learning, dynamically constructing a consistent graph based on the structure
of the low-dimensional representations. By constructing graph to learn nonlinear relationships, DA’NMF becomes possible to better
capture the underlying structure and relational information within the view-specific representations.
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Fig. 4. Comparison results of different methods on (a) MVSRCv1 and (b) WebKb datasets.
Table 3
Clustering performance compared to multi-view algorithms on MSRCv1.
Metric CoReg  AASC MultiNMF RMSC MVCC MVGL  AWP MCGC
ACC(%) 80.48 82.38  66.67 74.29 72.38 74.76 75.24  74.29
NMI(%) 71.62 71.38  58.88 68.72 62.54 72.14 68.70  63.25
Purity(%)  80.48 82.38  66.67 79.52 72.38 77.62 7571  74.76
Metric WMSC  LRSSC GBS GMC CGD CGMSC  FPMVS-CAG ~ DA’NMF
ACC(%) 76.19 66.12 83.33 7476  90.00  71.90 78.57 95.24
NMI(%) 71.24 58.02 79.06 7453  83.48 6596 68.56 90.29
Purity(%) 80.00 54.39 83.33 77.62 90.00 73.81 78.57 95.24
Table 4
Clustering performance compared to multi-view algorithms on 3Sources.
Metric CoReg AASC MultiNMF RMSC MVCC MVGL AWP MCGC
ACC(%) 45.56 37.28 51.01 43.20 72.78 72.78 42.60 74.56
NMI(%) 47.48 30.63  46.14 42.89 68.12 56.17 37.90 5872
Purity(%)  68.05 50.03 61.84 61.54 73.96 76.33 59.76  78.11
Metric WMSC  LRSSC GBS GMC CGD CGMSC  FPMVS-CAG  DA’NMF
ACC(%) 42.60 61.15 69.23  69.23  78.70 66.27 34.32 81.66
NMI(%) 41.98 51.70 62.73 6273  69.86 60.13 12.27 65.64
Purity(%) 60.36 61.57 74.56 74.56 84.02 76.92 46.15 81.66
Table 5
Clustering performance compared to multi-view algorithms on HandWritten.
Metric CoReg AASC MultiNMF RMSC MVCC MVGL AWP MCGC
ACC(%) 92.60 82.35 10.05 19.85 52.15 85.30 87.35 59.15
NMI(%) 89.10 86.50  3.50 21.56 50.29 88.99 88.07  70.30
Purity(%)  92.60 8575  10.45 28.90 54.35 88.05 87.65  59.30
Metric WMSC  LRSSC GBS GMC CGD CGMSC  FPMVS-CAG  DA’NMF
ACC(%) 84.15 75.75 88.10  88.30 85.45  69.00 82.30 94.95
NMI(%) 85.96 72.49 90.12 90.74 8877 81.94 79.24 90.62
Purity(%) 86.70 66.21 88.10 88.30 87.90 77.55 82.30 94.95
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Table 6
Clustering performance compared to multi-view algorithms on BBCSport.
Metric CoReg  AASC  MultiNMF RMSC MVCC MVGL  AWP MCGC
ACC(%) 60.48 62.32  63.13 51.47 86.03 72.61 63.42  59.93
NMI(%) 47.12 39.11 47.21 36.09 74.14 70.83 44.26 31.35
Purity(%)  67.28 67.10  67.52 61.40 86.03 76.29 70.40  61.95
Metric WMSC LRSSC GBS GMC CGD CGMSC FPMVS-CAG DA’NMF
ACC(%) 58.82 52.60 80.70 80.70 81.70 54.41 49.82 91.54
NMI(%) 47.60 36.43 76.10 76.10  81.07 32.86 33.18 78.58
Purity(%)  68.57 45.80 84.38  84.38  84.74 54.78 60.11 91.54
Table 7
Clustering performance compared to multi-view algorithms on WebKb.
Metric CoReg  AASC MultiNMF RMSC MVCC MVGL AWP MCGC
ACC(%) 56.16 59.61 46.35 51.72 71.43 54.68 54.68  74.38
NMI(%) 22.46 25.25  9.68 20.77 44.46 5.22 18.85  26.21
Purity(%) 70.94 70.44 52.91 73.40 80.79 56.65 68.47 74.38
Metric WMSC  LRSSC GBS GMC CGD CGMSC  FPMVS-CAG  DA’NMF
ACC(%) 55.17 66.38 7389 7685 77.36  51.23 57.64 81.28
NMI(%) 25.04 27.09 40.65 46.43 32.70 17.75 32.68 51.82
Purity(%)  73.89 60.20 77.83 78.82 77.34 70.44 77.83 81.28

3). DA2NMF outperforms auto-weighted methods such as GMC. This could be attributed to the fact that GMC only utilizes an auto-
weighted allocation, whereas DA2NMF employs a novel approach of dual auto-weighted strategy, resulting in a more representative
fusion graph.

Furthermore, to facilitate a more visual comparison, we present bar charts, as illustrated in Fig. 4. By observing the Fig. 4, we
can derive the same results as those shown in the Tables 3-7, indicating that our DA2NMF outperforms the comparison methods.

4.6. Visualization analysis

To illustrate the effectiveness of DAZNMF to consolidate the structural information across diverse views, the standardized t-SNE
tool [49] is utilized to visualize the original data matrices of each view and the learned consistent graph of the MSRCv1 dataset. The
visualization results are depicted in Fig. 5, where data points of the same color denote samples from identical categories. In Fig. 5,
for viewl, view2, view3, view4, and view5, the classes are intermingled, making it challenging to discern the category for each data
point. However, in the visualizations of the DAZNMEF, clear class boundaries and distinctive separations are observed, indicating the
framework’s capacity to effectively grasp the underlying data structures from diverse perspectives. This ability facilitates the fusion
of multi-view information, thereby promoting better clustering.

Furthermore, as depicted in Fig. 6, we present confusion matrices to illustrate the clustering outcomes of DANMF and other
MVC methods applied to the MSRCv1 dataset. A clearer block-diagonal structure in the confusion matrix signifies superior clustering
performance. For a visually intuitive display, areas with notably higher error rates are marked using red circles. It’s apparent that,
compared to the other methods, our DA?NMF distinctly shows a clear block-diagonal pattern in the confusion matrix. Additionally,
DAZNMF does not misassign the second class to different clusters, which is common in most comparison methods. Overall, compared
to other MVC algorithms, DA>?NMF integrates multi-view information, resulting in a significantly improved clustering performance.

5. Discussion

To individually evaluate the impacts of autoencoder-like NMF, adaptive graph learning, and dual-weighted strategy, we conduct
several ablation experiments. Additionally, for further validation, we create a baseline model by removing autoencoder-like module,
adaptive graph learning module, and dual auto-weighted strategy from DAZNMF, denoting it as Multi-view NMF (MvNMF). The
settings for ablation experiments are as follows: 1) Removal of adaptive graph learning module and dual auto-weighted strategy,
named as Multi-view Autoencoder-like NMF (MvANMEF). 2) Removal of autoencoder-like NMF and dual auto-weighted strategy,
named as Multi-view Graph-based NMF (MvGNMF). 3) Removal of dual auto-weighted strategy, named as Multi-view Autoencoder-
like NMF with Graph learning (MvAGNMEF). 4) Removal of auto-weight w, named as A2NMF-w. 5) Removal of auto-weight o, named
as A’NMF-o. The specific results of the ablation experiments are presented in Table 8. According to Table 8, we have the following
observations and analyses:

1. It is evident that autoencoder-like NMF, adaptive graph learning, and the dual auto-weighted strategy effectively enhance
the performance of the DAZNMF. Specifically, the experimental performance of MVvANMF is superior to that of MVNMF on both
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Fig. 5. Visualization of the different view and the consistent graph in the MSRCv1 dataset, where each category is represented by a distinct color.

Table 8
Comparison between DA’NMF and ablative methods.
Dataset Methods ACC NMI Purity
MvNMF 63.19 57.65 67.93

MvANMF 83.81 72.49 83.81
MvGNMF 89.52 82.20 89.52

MSRCVL  \lVAGNMF  91.43 8383  91.43
A’NMF-o 93.33 87.27  93.33
A’NMF-o 9238  86.43  92.38
DA?NMF 95.26  90.29  95.24
MvNMF 46.35  9.68 52.91
MvANMF 4926  10.30  53.69
WebKb MvGNMF 53.69 35.66  77.36

MvAGNMF  65.52  17.87  66.50
A’NMF-o 67.00 34.44  74.88
A’NMF-¢ 70.44  36.81  73.89
DA’NMF 81.28 51.82  81.28

datasets. Furthermore, MVANMF achieves a significant improvement of 20.62% in ACC compared to the MVNMF on the MSRCv1
dataset. In comparison to MVNMF, MvANMF incorporates an additional encoder to learn low-dimensional representations. This
further emphasizes the effectiveness of the autoencoder-like module, demonstrating that the comprehensive integration of encoder
and decoder is beneficial for obtaining linear view-specific low-dimensional representations.

2. Compared to MVNMF, MvGNMF exhibits a 26.33% improvement in ACC metric. Similar effects are observed on the WebKb
dataset as well. This shows the significance of adaptive graph learning. By capturing the nonlinear structures between data, a satisfied
clustering result can be obtained.

3. In both MSRCv1 and WebKb datasets, adaptively changing the weights of ¢ and @ leads to improvements in the experimental
results. Specifically, on the MSRCv1 dataset, A>’NMF-w yields better experimental results compared to A2NMF-¢. However, the
opposite conclusion is observed in the WebKb dataset. This indicates that simultaneously adjusting the dual weights is necessary.
Therefore, the dual auto-weighted strategy employed in DA2NMF has proven to be effective.

6. Conclusion
In this work, we proposed a Dual Auto-weighted multi-view clustering model by Autoencoder-like NMF (DAZNMF), which can
fully explore the linear and nonlinear structures of data. Specifically, autoencoder-like NMF learns latent representations and recon-

structs the multi-view data simultaneously. Furthermore, adaptive graph learning comprehensively explores the nonlinear structures
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Fig. 6. Visualization of the confusion matrices in the MSRCv1 dataset.

within the view-specific representations. By designing a dual auto-weighted strategy, DAZNMF can highlight the significance of dif-
ferent views and the contribution of each low-dimensional representation. An iterative algorithm based on MUR is developed to solve
the optimization problem with a theoretical convergence guarantee. Experimental results demonstrate that the proposed DAZNMF
outperforms the state-of-the-art multi-view algorithms.

For MVC, as the DA’NMF involves multiple variables, one remaining challenge is to effectively perform clustering on large-scale
datasets. Moreover, since the proposed method focuses on handling complete multi-view datasets, it may have limitations when
extended to the incomplete MVC tasks. We will attempt to address the remaining challenges in our future work.
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