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Federated Learning (FL) provides a novel paradigm for privacy-preserving machine learning, enabling mul-
tiple clients to collaborate on model training without sharing private data. To handle multi-source heteroge-
neous data, Vertical Federated Learning (VFL) has been extensively investigated. However, in the context of
VFL, the label information tends to be kept in one authoritative client and is very limited. This poses two
challenges for model training in the VFL scenario. On the one hand, a small number of labels cannot guar-
antee to train a well VFL model with informative network parameters, resulting in unclear boundaries for
classification decisions. On the other hand, the large amount of unlabeled data is dominant and should not
be discounted, and it is worthwhile to focus on how to leverage them to improve representation modeling ca-
pabilities. To address the preceding two challenges, we first introduce supervised contrastive loss to enhance
the intra-class aggregation and inter-class estrangement, which is to deeply explore label information and
improve the effectiveness of downstream classification tasks. Then, for unlabeled data, we introduce a pseudo-
label-guided consistency mechanism to induce the classification results coherent across clients, which allows
the representations learned by local networks to absorb the knowledge from other clients, and alleviates the
disagreement between different clients for classification tasks. We conduct sufficient experiments on four
commonly used datasets, and the experimental results demonstrate that our method is superior to the state-
of-the-art methods, especially in the low-label rate scenario, and the improvement becomes more significant.

CCS Concepts: • Computing methodologies → Neural networks; Classification and regression trees; •
Information systems → Data mining;

Additional Key Words and Phrases: Vertical federated learning, semi-supervised learning, contrastive learning
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1 INTRODUCTION

With the gradual proliferation of smart devices, data tends to be generated in a decentralized
manner, and each device stores only a portion of data. Due to increasing privacy concerns and
data protection regulations [36], it is not possible to centrally collect data scattered on multifarious
devices for model training. In this case, the effectiveness of traditional machine learning models
can be greatly affected because of limited available data. Accordingly, how to utilize decentralized
storage of data to improve the performance of client models has become an essential research
topic.

To address the challenges, Federated Learning (FL) is proposed to jointly train multiple in-
dependent client models to improve respective performance. In the FL settings, each device first
trains the model with local privacy data and uploads the generated gradient information to the
server. Then, the server adopt a vanilla aggregation or an advanced processing strategy to handle
these gradient information, and distributes the processed gradient to the participating clients. Each
client uses the refined gradient information to update the local model. One of the earliest FL imple-
mentations is FedAvg [4], which averages the model parameters uploaded by the selected clients
and uses the averaged parameters to update the local client. It achieves encouraging performance
under the independent identical distribution (IID) of data. However, in practical scenarios, the
data distribution of clients does not always satisfy the assumption of IID. When it comes to non-
IID of data, the effectiveness of FedAvg drops dramatically. Much research has been conducted
to address this challenge, and these approaches are mainly implemented by limiting local model
updating. FedProx [24] introduces a proximal regularization term that constrains local model up-
dates to deviate from the global model, thus mitigating the effects of heterogeneous data. MOON
[23] utilizes the idea of contrastive learning to constrain the local model output representations,
aiming at keeping the update direction of local model from deviating excessively from that of the
global model. Besides, there are related studies that consider heterogeneity as a blessing; clustered
FL [12] divides the clients with different distributions into different clusters, and the clients in the
same cluster are trained using FedAvg. FedPer [7] considers that the model mainly consists of per-
sonalization layers and non-personalization layers, and only aggregates the non-personalization
layers on the server side, whereas the personalization layers are kept local due to its client-side
personalization knowledge. All of the preceding methods can solve the inconsistent distribution of
client data to some extent. Today, a large amount of data is generated by different kinds of devices,
which produce various data with diverse features. For example, a camera generates picture data,
whereas a recording device can yield audio data. For such multi-source heterogeneous data, these
methods based on horizontal FL cannot be applied, as each device requires different type of model.

To conjointly train machine learning models from multiple sources of heterogeneous data, Verti-

cal Federated Learning (VFL) is proposed. VAFL [6] provides an asynchronous VFL framework
and avoids privacy leakage by adding noise to the transmitted data. PyVertical [37] provides a
VFL framework with SplitNN (split neural networks). FedOnce [49] uses an unsupervised training
method to learn features and then train a predictive model with the learned features. MMVFL [10]
takes advantage of the consistency of prediction results across client data to ensure the model
training effect. AsySQN [60] provides a more resource-efficient algorithm for model training.

Although VFL can combine multiple sources of heterogeneous data for collaborative model
training, to ensure consistent data labeling, VFL methods usually assume that the data labeling
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information is held by the server or some authoritative organizations. Furthermore, since label-
ing data is always a time-consuming and labor-intensive task, data labels are often scarce. Un-
der this situation, the previous VFL methods are applied to the classification task using only the
cross-entropy loss to learn the decision margin. Nevertheless, it is not reasonable, because cross-
entropy loss alone cannot extract enough valid information when the number of labels is very
small. Besides, most VFL methods argue that the unlabeled data is useless and leave them un-
treated [6, 10, 59, 60] because unlabeled data cannot compute the objective function due to miss-
ing labels, inducing the inefficient utilization of data. In conclusion, the preceding two reasons
together lead to the problem of unsatisfactory results of most VFL methods in few-label scenarios.
In VFL settings, the features of row data should be extracted first, then the features are used for
the downstream task. Generally speaking, the extracted features with a clear decision margin tend
to yield premium prediction results, whereas the clear decision margin demands sufficient labeled
data to support. Therefore, the few-label VFL scenario should be further studied to cope with the
widespread emergence of few-label scenarios and the challenges they generate.

To solve the problem caused by insufficient labels in the vertical federated scenario, the follow-
ing challenges need to be tackled:

— It is challenging to obtain valid information for making predictions from multiple types of
data.

— Considering that few-label scenarios can have a large negative impact on classification re-
sults, unlabeled data should be exploited effectively.

— During the training process, the representations transmitted to the server are susceptible to
attacks that can lead to privacy leakage, and therefore necessary measures need to be taken
to prevent privacy leakage.

Therefore, in the few-label VFL scenario, we introduce the supervised contrastive loss with the
labeled data, ensuring a close distance between features of the same category and a large distance
between features of different categories. With the help of supervised contrastive, cluster-like prop-
erties among features can be enhanced, then the decision margin can be clearly depicted. Besides,
considering that the data belonging to each client is generated from the same entity, there is a
strong consistency between different client data— for instance, a picture of a dog is semantically
consistent with a textual description of a dog. Actually, the consistency is widely used in various
tasks of machine learning [5, 26, 40, 58]. However, too much consistency may have side effects
for downstream tasks [39], which makes it necessary to properly consider the manner of consis-
tency information to be extracted. Taking into account that our downstream task is a classification
task, the consistency associated with labels becomes particularly important. Thus, we achieve the
extraction of label-related consistency information by imposing constraints on the classification
results of different client representations so that their classification results are as similar as possi-
ble. In this step, the unlabeled data is exploited, making full use of all data, not just labeled data.
Finally, since the data features are extracted locally on the client side with a neural network, tra-
ditional optimization methods cannot directly optimize the parameters for privacy issues. Hence,
we develop a new network parameter optimization method, which can optimize both client-side
and server-side network parameters, and safeguard the client-side private data from leakage.

In summary, we propose a novel VFL method—SSVFL—in this article, which is capable of fed-
erating V clients with different features for model training, where V is the number of clients
participating in the training. Furthermore, considering the sparse label information, the super-
vised contrastive term and the pseudo-label-guided consistency mechanism are simultaneously
introduced to help learn well-predictive network, which endows the SSVFL with the capability of
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achieving encouraging performance as well as convergence even in the situation of a low labeling
rate. The contributions of this work are summarized as follows:

— We adopt supervised contrastive learning to strengthen intra-class cohesion and inter-class
dispersion, thus helping the local model learn a clearer decision margin.

— We propose a pseudo-label-guided consistency loss, which is able to extract consistent infor-
mation favorable for prediction against unlabeled data, improving the utilization efficiency
of the whole dataset and contributing to the effectiveness of downstream tasks.

— We conduct extensive experiments on four commonly used datasets, and experimental re-
sults demonstrate that the proposed method outperforms the state-of-the-art methods. In
particular, the improvement achieved by SSVFL over other methods is more significant in
scenarios of few labeled data.

The rest of the article is organized as follows. The related work is described in Section 2. The
details of the proposed SSVFL are presented in Section 3. To illustrate the superiority of the pro-
posed SSVFL, the experiments on four datasets are conducted in Section 4. The article concludes
in Section 5.

2 RELATED WORK

In this section, we review the existing research progress in FL, VFL, and few-label learning.

2.1 Federated Learning

FL is a new paradigm of machine learning that unites various participants for model training while
protecting privacy, without each participant sharing local private data. The most typical implemen-
tation is FL is FedAvg [4]. In FedAvg, each participant trains a local model with the private local
data, and this process is called local updates. After several rounds of local updates, the updated local
model is uploaded to the server to perform global averaging. During the whole training process,
private data is not shared. FedAvg is a simple but effective method and can achieve good perfor-
mance under IID settings. However, under the non-IID settings, such as the distributions of the
different clients being inconsistent, the performance of FedAvg will decrease significantly. Accord-
ing to the analysis of Li et al. [25], different data distributions will lead to different optimization
directions. When performing global averaging, FedAvg will make the aggregated model deviate
from the optimal solution, then lead to a decrease in the performance. Therefore, heterogeneity in
FL is an urgent issue.

To mitigate the effects of heterogeneity, many works have been explored. These works focus
on two perspectives: client-side training and server-side aggregation approaches. For the research
on client-side training [20, 23, 24, 43], they argued that data heterogeneity makes the local update
direction of the client vary widely and is not consistent with the global optimal update direction.
FedProx [24] provided a new regular term, constraining the discrepancy between the local model
parameters and the global model parameters. MOON [23] introduced contrastive learning into
FL, and the global model is regarded as a positive sample and the previous global models as a
negative sample. SCAFFOLD [20] introduced a client control variate to control the update of the
local model. Wang et al. [43] proposed deep reinforcement learning for client selection, and with
selected several related clients, the effects of heterogeneity can be mitigated. For the research
on server-side aggregation [27, 44], novel aggregation methods were provided for aggregating
the global model with generalizability. FedNova [44] aggregated a normalized gradient, and this
mitigated the effects of heterogeneity but decreased the convergence rate. FedDF [27] provided a
robust model fusion method with ensemble distillation.

The preceding methods perform well in light of heterogeneity scenarios, but in heavy het-
erogeneity scenarios, for example, where the client distribution is extremely different, the
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effectiveness of all of these methods is severely degraded. Hence, a few studies [12, 55] consid-
ered heterogeneity as a blessing rather than a challenge. IFCA [12] clustered the received local
models into several clusters and performed FedAvg within the same clusters. To further improve
the clustering accuracy and training effect, G-FML [55] learned the representations of the entire
dataset with auto-encoders to improve clustering accuracy and introduced meta-learning within
the clusters to improve training results. Further, parameter decomposition [1, 30, 35] is a man-
ner of solving heterogeneity—for example, FedPer [1] provided a generic layer + personalization

layer model to achieve personalization, sharing the parameters of the generic layer and keeping
the parameters of the personalization layer locally. Recently, FedOT [9] introduced optimal trans-
portation [42] into FL systems, mapping the distributions of each client into a universal space,
then training the model in the new space. Heterogeneity is not only reflected in data but also may
be reflected in devices. ODE [13] explored the impact of on-device storage on the performance of
FL, and defined a new data valuation metric for data evaluation and selection in FL with theoreti-
cal guarantees. SHIELD [57] proposed a novel incentivized FL with differential privacy (DP) in
an MCS system to motivate clients to actively participate in training. Besides, to prevent privacy
leakage, DP techniques are used as well. AF L [34] designed an effective incentive mechanism to
incentivize the participation of heterogeneous clients.

The introduced methods could solve the problem of heterogeneity with the assumption that
the data feature space of each client is consistent. However, when each client only stores partial
features of the data entity, the models trained by each client are different. Therefore, these methods
cannot handle multi-source heterogeneous data.

2.2 Vertical Federated Learning

VFL [28] enables model training by associating clients with heterogeneous features. The first VFL
method was provided by Hardy et al. [15]; it trained a logistic regression model with encrypted
data divided vertically into two parts. For adapting VFL to multi-client scenarios, MMVFL [10]
introduced a privacy label-sharing mechanism that enabled individual clients to use the received
representations as well as private labels for model training. Pivot [48] provided a method for train-
ing tree-based models in VFL scenarios and resisting attacks from semi-honest clients. To improve
the efficiency of VFL training, VAFL [6] proposed an asynchronous vertical federated training
approach implementing a tradeoff between training accuracy and efficiency. PyVertical [37] in-
troduced SplitNN and provided a universal network training framework. In VFL settings, model
training consumes a large amount of bandwidth, since the uploaded representations and the re-
ceived gradients may be large. To address the communication overhead, AsySQN [60] extended
the gradient descent step by approximating the computation of Hessian information and speeded
up the convergence rate, decreasing the communication rounds. However, AsySQN assumes that
each client holds labels, which is inconsistent with the assumption made in this work.

The most current methods assume that the majority of data is labeled. However, in the few-label
scenarios, these methods usually suffer significantly. FedMVT [19] gave a solution for handling
missing labels but can only handle the case of two clients. Therefore, we propose an optimization
algorithm in the few-label scenario, which is able to combine multiple clients for training and
improve the model effect of VFL in the few-label scenario.

2.3 Few-Label Learning

Traditional machine learning also suffers from missing label scenarios, and there are numerous
works proposing solutions. For instance, semi-supervised learning [41] exploits additional data
points with unknown labels to augment model training. A typical semi-supervised method is co-

training [3], which first inferred the pseudo-label and classification confidence of unlabeled data
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and then added the unlabeled data and pseudo-label that exceeded the threshold to the training
set so that the classifier can be trained jointly with the labeled and unlabeled data. To improve
the performance, active learning [33] is introduced into the co-training framework. For instance,
active learning was introduced to minimize the labeling cost by selecting the high-value data that
can best improve model performance [11].

Besides, the artificially constructed information can be introduced into the training process to
enhance performance, such as contrastive learning [14, 16, 22, 50, 56, 61]. CoMatch [22] jointly
learned embeddings and class probabilities, and regularized the embeddings with graph-based
contrastive learning. GCL [16] provided a framework unifying supervised metric learning and un-
supervised contrastive learning. SsCL [61] combined contrastive loss and cross-entropy loss, and
optimized these two objective functions in an end-to-end manner. ICL-SSL [56] designed a novel
contrastive loss to guide the training of the network and eventually improved the discriminative
capability.

Learning the core information of the data is very important for few-label learning, and several
studies focus on studying how to extract features that contain information about the essential
nature of the data, and constrained the extracted features to benefit downstream tasks [51–54].
TTLRR [52] attempted to find the latent low-rank tensor structure from the corrupted data with
singular value decomposition for recovering the clean data. Yang et al. [53] took into account
scenarios where noise is present in the data, and introduced tensor dictionary learning to remove
both structure noise and Gaussian noise.

These methods require centralized processing of data from individual clients, which raises pri-
vacy issues and is therefore not suitable for application in VFL settings.

3 PROPOSED METHOD: SSVFL

In this section, we first define the few-label problem in the VFL scenario and then introduce the
framework. Specifically, to explore the label information more deeply and to make the classification
decision margin clearer, we propose supervised contrastive loss. Besides, we introduce a pseudo-
label-guided consistency loss, which improves the utilization of the whole dataset.

3.1 Problem Formulation

Consider a set of V clients: V := {1, . . . ,V }, where V is the number of clients participating in
training. A dataset of N samples with V different types of features, the whole dataset D, defined
by Equation (1), are maintained by V local clients with M labeled data and N −M unlabeled data.
Each client v is also associated with a specific type of feature. For example, client v maintains

feature x (v)
n ∈ Rdv , where n = 1, . . . ,N . Since the label information is usually maintained by an

authority, it is reasonable to suppose that the label information yn is held by the server.

D := {{xn ,yn}
M
n=1, {xn}

N
n=M+1} (1)

To preserve privacy, x (v)
n ∈ Rdv are not permitted to be shared with other clients and the server.

However, with the help of a neural network, x (v)
n could be mapped into a low-dimensional vector

h(v)
n , and sharing h(v)

n does not raise the privacy issue. Therefore, the objective function can be
given as

F (θ ,w) =
1

N

N∑

n=1

L(θ ,h(1)n , . . . ,h
(V )
n ;yn), s .t . h(v)

n = f (x (v)
n ;wv ),v = 1, . . . ,V , (2)

where θ represents the parameters of the global model learned by the server, w = [w1, . . . ,wV ]

denotes the set of network parameters of local models, L is the loss function, and f is the feature
extraction function.
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In the actual situation, not all samples have label information, and L is not computable for the
unlabeled data. Therefore, a separate design of unlabeled loss Lsemi is necessary to ensure that
unlabeled data contribute to the model. Finally, the objective function should be modified as

F (θ ,w) =
1

|Il |

∑

n∈Il

Lsup (θ ,h
(1)
n , . . . ,h

(V )
n ;yn) + λ ∗ Lsemi (Iu ),

s .t . h(v)
n = f (x (v)

n ;wv ),v = 1, . . . ,V ,

(3)

where Il are the indexes of the samples with label information, Iu are the indexes of the samples
without the label, and Lsup is the supervised loss like L in Equation (2). Usually, for classification
tasks, Lsup is given as the cross-entropy loss. Hence, designing a suitable Lsemi for the unlabeled
samples is the key to solve the semi-supervised problem. Previous VFL methods do not focus on
the samples without a label and have a limited performance. Therefore, we propose SSVFL and
design a novel form of Lsemi , which boost the classification performance in the few-label scenario.
Besides, we improve the supervised loss Lsup , allowing the model to explore the label information
more deeply.

3.2 Details of SSVFL

In this section, we present an overview of the proposed SSVFL, including the framework and
network architecture. Additionally, we introduce the two predominant modules: the super-
vised contrastive learning module and the pseudo-label-guided consistency information learning
module.

3.2.1 Overview of SSVFL. Without loss of generality, we suppose that there exists V clients in

the VFL system, and the dataset owned by the v-th client is X (v) ∈ RN×d (v )
, with a total of N

samples. In this dataset, each sample is represented as a vector of d (v) dimensions. The network
structure consists of three parts: the client-specific feature encoder, the global classifier, and the
client-specific classifier. The overall framework of the proposed method SSVFL is illustrated in
Figure 1. Next, each part of the network structure is described in detail:

(1) Client-specific feature encoder: Since the feature dimension of each client is different, we set
an encoder consisting of a cascaded linear layer for each client to extract compact features,
respectively. For the v-th client, the encoder is noted as fv with parameters of wv . Conse-
quently, the extracted feature is given as H (v) = fv (X

(v);wv ), and the dimension of H (v) is
set to d for each client-specific encoder.

(2) Global classifier: To finish the classification task, a global classification network is needed to
make a prediction for classification. Considering that the global classifier should consider
information from each client, the input of the global classifier should be the aggregation of
the uploaded representations from each client, and the parameter is noted as θ .

(3) Client-specific classifier: To ensure that the learned representations are label consistent, the
pseudo-label of the representations should be calculated. Therefore, a classifier is set up on
the server side for each client, whose input is the uploaded representations from each client,
and the parameter for the v-th client is noted as θ (v).

For the labeled data, we propose supervised contrastive learning to enhance the discriminative
nature of the representations, which in turn makes the classification decision margin clearer. This
is introduced in Section 3.2.2. For the unlabeled data, we propose pseudo-label-guided consistency
learning to enforce the client-specific feature encoders extract information benefits to the classifi-
cation tasks, which is introduced in Section 3.2.3.
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Fig. 1. The overall framework of SSVFL, wherein each client uses the local client-specific encoder to extract

the representations H (v) of both labeled and unlabeled data, and then sends H (v) to the server. The server

aggregates the received representations for finishing the classification tasks. For improving the classification

performance and to make the classification decision margin clearer, supervised contrastive loss is proposed.

Further, pseudo-label-guided consistency loss is proposed for extracting beneficial information from unla-

beled data for downstream classification tasks.

3.2.2 Supervised Contrastive Representation Learning. The decision margin is defined as the
distance between two different classes, which can make the classification result of the sample
uncertain [32]. Thus, a clear decision margin not only enhances the robustness of the classification
network but also its generalization, which is important in the few-label scenario.

For the classification tasks, the input of the classification network is the extracted representa-
tions. According to the definition of the decision margin, it is affected by the distribution of the
representations—that is, a compact distribution will lead to a clearer decision margin. Therefore,
the extracted representations should have good cluster structure—that is, representations with
the same labeled data should be close to each other in the representation space, whereas repre-
sentations with differently labeled data should be far from each other. Considering that in semi-
supervised scenarios the insufficient labeled data will result in not being able to extract enough
information using only cross-entropy loss, supervised contrastive loss needs to be imposed on the
labeled data to be able to use the labeled information more effectively.

Contrastive learning constrains the representations of positive example pairs to be close to each
other and representations of negative example pairs to be far from each other. In the supervised
scenario, positive example pairs can be viewed as samples with the same label, and negative ex-
ample pairs can be viewed as samples with different labels.

Inspired by this, we propose supervised contrastive loss to increase the utilization of the labeled
data. The specific expression of the loss is given as follows:

Lcon =
1

N

N∑

i=1

∑

j ∈Pi

exp(д(H [i],H [j]))∑
k ∈Ni

exp(д(H [i],H [k]))
, (4)

д(X ,Y ) =
XYT

| |X | | ∗ | |Y | |
, (5)
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where д(x ,y) measures the distance between two representations x and y, and cosine similarity is
used in this equation. Pi denotes the set of positive samples consisting of samples with the same
label as sample i , and Ni denotes the set of negative samples consisting of samples with the differ-
ent label as sample i . H is the averaged representations, and H [i] is the averaged representation of
sample i .

First, to extract meaningful information from the raw data, each client trains an encoder to
obtain the representations, noted as H (v) and calculated as Equation (6). For the consideration
of performance, the representations used for the downstream classification tasks should contain
information about each client. Therefore, the aggregation method of H (v) is crucial. Furthermore,
we adopt a simple but effective approach to aggregation by calculating the mean value of all H (v),
which is represented as Equation (7). Finally, we obtain the representations H for the downstream
classification tasks.

H (v) = fv (X
(v);wv ), s .t . v = 1, · · · ,V (6)

H =
1

V

V∑

v=1

H (v) (7)

SinceH is used for classification, and cross-entropy loss is frequently used in classification tasks
to place constraints on representations [17, 31], the cross-entropy loss is employed to constrain
the representations H . To implement the classification task, a global classifier cls , parameterized
by θ , is employed. Finally, the loss function is given as follows:

LCE = −

K−1∑

i=1

yi log(probi ), (8)

prob = cls(H ;θ ), (9)

where prob is the classification results, and probi is the i-th value of vector prob.
In summary, LCE enforces the client-specific feature encoders to extract label-related informa-

tion of the labeled data, whereas Lcon minimizes the distances between the features with the same
label and enhances the discrimination of the features. Combining these two loss items, label-related
information is deeply exploited and the classification decision margin is clearer. Finally, the clas-
sification accuracy is improved.

3.2.3 Pseudo-Label-Guided Consistency Learning. Since label information may be very sparse,
traditional supervised learning methods converge slowly. To address this challenge, we employed
a semi-supervised learning approach.

In the VFL setting, the samples corresponding to each client-owned dataset come from the same
entity. Therefore, there is a strong consistency between different client data. However, the consis-
tency information is not always beneficial for downstream tasks and may even have side effects
[39]. Considering the classification as downstream tasks, the label-related consistency information
should be extracted to assist the classification task.

To extract the label-related consistency information, the classification result using each H (v)

should be similar. Therefore, KL divergence is utilized to measure the degree of similarity of the
classification results. Considering that the aggregated representationsH contain information from
multiple clients, it will work better in the classification task. To make the learned consistency
information contribute to the classification task, we force to minimize the KL divergence between
the classification results of each H (v) and the aggregated representation H . Finally, the problem is
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formulated as

Llдc =

V∑

v=1

DK L(cls(H
(v);θ (v)), cls(H ;θ )). (10)

Due to the unique nature of data owned by each client, it is not reasonable to use a classifier to
obtain the classification results for eachH (v) and reduce the KL divergence. Here, we set a classifier
for each client, whose parameters are represented by θ (v).

Obviously, Llдc is not related to the label information, and therefore it is possible to calculate Llдc

on unlabeled data. During the training process, the prediction of client-specific classifiers could
be similar to the result of the global classifier. Additionally, this enforces the client-specific fea-
ture encoders to extract the consistent information which benefits the classification. Consequently,
Llдc could introduce the unlabeled data into the training process and improve the performance of
classification.

3.3 Federated Optimization

To enforce the local encoders to encode better representations, and the global classifier to make a
better prediction, the overall objective function is given as

L = LCE + λ ∗ Lcon + β ∗ Llдc . (11)

In Equation (11), Lcon could clarify the classification decision margin, and Llдc could boost
dataset utilization and improve the performance of classification. To balance the role of the two
terms, two hyperparameters λ and β are set. It is not difficult to find that the objective is a convex
function and can be optimized with gradient descent. However, in VFL settings, the transmission of
raw data is forbidden, which leads to the fact that the gradients of parameters cannot be calculated
directly.

Fortunately, the gradient can be calculated indirectly according to the chain rule. For the local
feature extractor, the gradient of parameter wv can be calculated with

дradwv
=
∂L

∂wv
=
∂L

∂H (v)

∂H (v)

∂wv
. (12)

Therefore, gradient descent can be used for updating the parameters of the client-specific feature

encoder, and the detailed function is given as Equation (13). For the parameter of the global classifier
and the client-specific classifier, θ ,θ (v), their gradients can be calculated directly, and the detailed
updating functions are given as Equations (14) and (15), respectively. In the updating equations, η
is the learning rate.

wv =wv + η ∗ дwv
= wv + η ∗

∂L

∂H (v)

∂H (v)

∂wv
(13)

θ =θ − η ∗
∂L

∂θ
(14)

θ (v) =θ (v) − η ∗
∂L

∂θ (v)
(15)

During the training, a client needs to transmitH (v) to the server, and after the server receives all
representations {H (v)}V

v=1, the gradient ∂L
∂H (v ) can be calculated and transmitted to the correspond-

ing client. The details of the proposed algorithm are given in Algorithm 1. Considering {H (v)}V
v=1

is equivalent to the encrypted data with a non-linear transformation, there is no privacy leakage.
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3.4 Enforcing DP

During the training process illustrated by Algorithm 1, the uploaded information by the client is
representations {H (v)}V

v=1. Considering that the representations are equivalent to the encrypted
data, this does not raise privacy issues.

Recently, several works [18, 29, 46, 47] focused on the feature inference attack on VFL systems
and provided several threat models to extract raw data from the uploaded features. Since DP [8]
is an effective method to prevent inference attack, we introduce DP into the proposed method.

For the client-specific encoders, each of them extracts the embeddings of local data with a neural
network, and the procedure for extracting embeddings can be presented as follows:

h0 =x
(v), (16)

hl =σl (wlhl−1 + bl ), l = 1, 2, . . . ,L, (17)

h =hL, (18)

where σl is an activation function, which introduces non-linear transformation into the process
of extracting features, and wl ,bl are the optimizable parameters of composition wv —for example,
wv = [w1,b1, . . . ,wL,bL]. To introduce DP into the procedure of feature extracting, we perturb
the embeddings by adding a random noise at the last layer, and the perturbed embeddings are
given as

hL = σ (wLhL−1 + bL) + Z , (19)

where Z is a random variable. To ensure that h is smooth and enables DP, we enforce Z to satisfy
the Gaussian distribution with zero means, and Equation (19) can be reformulated as Equation (20),
where c2 is the variance. For the proposed method, we set a flag use_DP for enabling DP.

hL = σ (wLhL−1 + bL) + N(0, c2) (20)

4 EXPERIMENTS

4.1 Datasets

For verifying the effectiveness of the proposed SSVFL, we collect four public datasets and conduct
experiments on them. Detailed information on the dataset employed is as follows:

— UCI [2] contains 2,000 handwritten numeric images, ranging from 0 to 9. Additionally, there
are three types of features: PIX feature, FOU feature, and MOR feature.

— Caltech101 [21] contains 9,144 object images, and six different types of features are extracted:
Gabor feature, wavelet moments feature, CENTRIST feature, HOG feature, GIST feature, and
LBP feature. Additionally, there are 102 classes in total.

— MNIST10k1 contains 100,000 digit images, and three types of features are extracted:
30-dimension IsoProjection features, 9-dimension Linear Discriminant Analysis (LDA) fea-
tures, and 9-dimension Neighborhood Preserving Embedding (NPE) features.

— Reuters2 contains 18,758 documents with five languages, and each sample is represented as
a bag of words. Considering that this dataset is stored in the form of a sparse matrix, we
transformed it into the form of a dense matrix before training.

Detailed information about the given four datasets is presented in Table 1.

1http://yann.lecun.com/exdb/mnist/
2http://archive.ics.uci.edu/ml/machine-learning-databases/00259/

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 176. Publication date: June 2024.

http://yann.lecun.com/exdb/mnist/
http://archive.ics.uci.edu/ml/machine-learning-databases/00259/


176:12 L. Zhang et al.

Table 1. Detailed Information about the Four Datasets

Dataset ID Dataset Samples Types of Feature Feature Dimensions
1 UCI 2,000 3 240/76/6

2 Caltech101 9,144 6 48/40/254/1,984/512/928

3 MNIST10k 10,000 3 30/9/30
4 Reuters 18,758 5 21,531/24,892/34,251/16,606/11,547

ALGORITHM 1: The main steps of SSVFL.

Input: Local dataset X (v)

Output: Trained models {ev }
V
v=1,

Initialize the clients’ model parameters.
procedure CLIENTFORWARD

1: Hv = ev (X
(v);wv )

2: if use_DP then

3: N = sample_noise()
4: H (v) = H (v) + N
5: end if

return H (v)

procedure CLIENTBACKWARD( ∂L
∂H (v ) )

6: Update parameters of local feature extractor with wv = wv − η ∗ ∂L
∂H (v ) ∗

∂H (v )

∂wv

procedure SERVER EXECUTION

7: for all each communication rount t ∈ {1, . . . ,T } do

8: for all v ∈ [1, 2, . . . ,V ] do

9: H (v) = ClientForward(v)
10: end for

11: H = 1
V

∑V
v=1 H

v

12: Calculate the cross-entropy loss LCE

13: Calculate the supervised contrastive loss Lcon

14: Calculate the pseudo-label-guided consistency loss Llдc

15: Calculate the complete objective loss L by Equation (11)
16: Update θ with Equation (14)
17: update θ (i) with Equation (15)
18: Calculate the gradient { ∂L

∂H (v ) }V

v=1

}

19: for all v ∈ [1, 2, . . . ,V ] do

20: LocalBackward( ∂L
∂H (v ) )

21: end for

22: end for

4.2 Baseline Methods

To illustrate that the information from other clients benefits the semi-supervised classification
task, we train a classifier with the first type of feature, which is denoted as Local Training. Besides,
we collect three state-of-the-art VFL methods and compare them with the proposed SSVFL, and
descriptions about them are listed as follows:

— Local Training: This method feeds the data of the labeled client into a network and trains
the classification network with only the labeled data.
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— VAFL [6]: This method is proposed for combining information from other clients to enhance
the classification performance. To improve the efficiency of training, VAFL adopts an asyn-
chronous approach for model training.

— MMVFL [10]: This method provides a privacy-preserving label sharing mechanism, which
benefits the classification tasks.

— PyVertical [37]: This method introduces split neural networks into VFL settings and trains a
Vertically Federated Machine Learning algorithm on data distributed across the premises of
multiple data owners with the PySyft library [38].

— FedOnce [49]: This method learns representations locally with the unsupervised represen-
tation learning method NAT, then sends the representations to the server for training the
aggregated classifier.

4.3 Implementation Details

First, we construct a VFL scenario by distributing one type of feature to one client. For the UCI
dataset, we set up three clients and allow client 1 to hold the PIX features, client 2 to hold the
FOU features, and client 3 to hold the MOR features. For the Caltech101 dataset, six clients are
set, and each client maintains one type of feature. The labels are maintained on the server, and
we randomly select a portion of the data as labeled data, ranging from 1% to 20%, whereas the
remaining unlabeled data are used for model testing. For calculating accuracy on the test dataset,

we use client-specific encoders to obtain representations of the test data,H (v)
test , and then send them

to the server. At the server side, the global representations Htest are obtained by averaging each

H (v)
test . Finally, the classification results are obtained by feeding H (v)

test to the global classifier.
For the proposed SSVFL, we vary λ in {0.001, 0.01, 0.1} and β in {0.001, 0.003, 0.03}. The dimen-

sions of the encoder are set as d (v) − 200 − 100 − 64, and the dimensions of classifiers are set as
64 − c , where c is the number of categories. For large datasets like Caltech101, the dimensions of
the encoder are set as d (v) − 500− 200− 128, and the dimensions of classifiers are set as 128−c . All
of these networks are optimized by the Adam optimizer with a learning rate of 0.001. To ensure
that the raw data is not inferred by the uploaded representations, we add noise n ∼ N(0, 1) to the
representations.

For a fair comparison, with respect to Local Training, we feed the data on the client with label
information into the classifier and train the classifier with gradient descent. For MMVFL, we feed
the labeled data into the network, and set η and ζk to 1,000 according to the settings in the orig-
inal paper. For the consideration of performance, we implement VAFL without local perturbation

and enforcing DP. For FedOnce,3 we implement FedOnce-L0 and train the local model until con-
vergence, then send the extracted features to the server for classification. For PyVertical,4 we feed
data into the provided SplitNN and aggregate the features for classification in a form of averaging.

4.4 Experimental Results

We illustrate the experimental results of the compared methods with the proposed SSVFL in Table 2.
The highest accuracies are noted in bold font, and the second best results are rendered with an
underline.

From this table, it is no surprise that Local Training with only the data of one client performs
less effectively on most datasets. The reason is that in this method, it is not possible to use infor-
mation from other clients, which is crucial in the case of insufficient label information. In contrast,
VFL methods, such as VAFL, MMVFL, and FedOnce-L0, could utilize useful information from each

3https://github.com/JerryLife/FedOnce
4https://github.com/OpenMined/PyVertical
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Table 2. Classification Accuracy on Different Label Rates and on the Given UCI,

Caltech101, MNIST10k, and Reuters Datasets

Dataset Methods 1% 3% 5% 10% 20%

UCI

Local Training 0.5005 0.8675 0.9068 0.9378 0.9518
FedOnce-L0 0.5121 0.8031 0.8211 0.8761 0.8963

MMVFL 0.4611 0.7619 0.8658 0.9078 0.9281
VAFL 0.5843 0.8711 0.9084 0.9456 0.9550

PyVertical 0.5061 0.8479 0.8916 0.9383 0.9563
SSVFL-DP 0.6313 0.8994 0.9247 0.9556 0.9644

SSVFL 0.6465↑10.64% 0.9010↑3.43% 0.9279↑2.15% 0.9567↑1.17% 0.9650↑0.91%

Caltech101

Local Training 0.1743 0.2051 0.2455 0.2894 0.3203
FedOnce-L0 0.2592 0.2685 0.3479 0.3633 0.4222

MMVFL 0.1882 0.1894 0.2107 0.2174 0.2239
VAFL 0.2191 0.2720 0.3042 0.3491 0.3897

PyVertical 0.2617 0.2985 0.3554 0.4181 0.5078
SSVFL-DP 0.2850 0.3440 0.4034 0.4600 0.5262

SSVFL 0.3013↑15.14% 0.3638↑21.86% 0.4049↑13.94% 0.4603↑10.08% 0.5291↑4.19%

MNIST10k

Local Training 0.7346 0.8321 0.8654 0.8958 0.9035
FedOnce-L0 0.7257 0.7454 0.7682 0.7730 0.7811

MMVFL 0.6558 0.7847 0.8104 0.8270 0.8358
VAFL 0.716 0.836 0.878 0.901 0.918

PyVertical 0.7707 0.8762 0.8965 0.9117 0.9263
SSVFL-DP 0.8437↑9.48% 0.9019 0.9197 0.9312 0.9424↑1.73%

SSVFL 0.8246 0.9036↑3.13% 0.9201↑2.63% 0.9343↑2.48% 0.9407

Reuters

Local Training 0.5705 0.5813 0.6178 0.6850 0.6878
FedOnce-L0 0.6402 0.6867 0.6713 0.4499 0.5219

MMVFL 0.5910 0.6442 0.7077 0.7897 0.8828
VAFL 0.6144 0.6557 0.6708 0.7785 0.8074

PyVertical 0.6343 0.6587 0.6631 0.7679 0.7905
SSVFL-DP 0.7648 0.8121 0.8211 0.8371 0.8561

SSVFL 0.7656↑19.59% 0.8188↑19.23% 0.8329↑17.69% 0.8517↑7.85% 0.8643↑4.29%

client and hence improves the classification accuracy. Recent VFL methods, such as FedOnce-L0,
MMVFL, PyVertical, and VAFL, only consider the labeled data, and as the label rate decreases, the
performance drops dramatically. Furthermore, it is concluded that for the traditional VFL meth-
ods, VAFL and MMVFL optimize the local neural networks with cross-entropy loss, which does
not extract enough label-related information, and hence achieve limited performance. Nonetheless,
SSVFL introduces supervised contrastive learning, by which the classification decision margin is
clarified. Moreover, the unsupervised method FedOnce-L0 is sensitive to the initial parameters,
such as Ci , and therefore less robust, as evidenced by the fact that the classification performance
does not improve with label rates on the Reuters dataset. The proposed SSVFL and SSVFL-DP are
more robust to the initial parameters, since the performance improves with label rate on each
dataset. By comparing the results of SSVFL and SSVFL-DP, the effect of noise on the classification
results is not significant, with the effect being reduced by no more than 2%. Surprisingly, SSVFL-DP
may outperform SSVFL—for example, on the Caltech101 dataset with 10% labeled data, this may
be caused by the introduction of noise that enhances the generalization of the model. Therefore,
it is concluded that the proposed method is able to protect the privacy and does not affect perfor-
mance. Thus, we do not add the DP module in the following experiments. For the proposed SSVFL,
the improvement of classification performance increases with the decrease in labeling rate—for
instance, SSVFL achieves 10.64% improvement with 1% labeled data but 0.91% with 20% labeled
data for the UCI dataset.
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Fig. 2. A scatter plot of classification using the raw data maintained by each client and the fused represen-

tation on the MNIST10k dataset as the training epochs increase.

Figure 2 shows the gradual separation process of different classes as the number of training
epochs increases. As a common tool for the dimensionality reduction of data, T-SNE is employed
to project high-dimensional representations onto a two-dimensional plane and to visualize the rep-
resentations. It is observed that for each client, the sample points without processing are cluttered.
As the training process progresses, the shapes of various classes gradually become clear and the
distances between the different classes increase. Therefore, it is concluded that with the increas-
ing training epochs, the decision margin becomes clearer, which guarantees better classification
performance.

4.5 Ablation Study

The proposed SSVFL consists of three loss terms, including cross-entropy loss LCE , supervised
contrastive loss Lcon , and pseudo-label-guided consistency Llдc . To illustrate their effects on the
classification task separately, the results are given in Table 3 and Figure 3.

In Table 3 and Figure 3, CE means using LCE to train the networks, CE+Con notes LCE + Lcon ,
CE+Lgc means LCE+Llдc , and CE+Con+Lgc means LCE+Lcon+Llдc . From this table, it is concluded
that Lcon and Llдc both can have a performance improvement, and the combination of the two will
improve the effect more obviously. It is worth noting that for the different datasets, the two losses
work differently. For example, on the UCI dataset, Llдc contributes more to the final result, and Llдc

results in a 1% to 2% improvement in accuracy, whereas Lcon only improved by up to 1%. However,
on the Caltech101 dataset, Lcon contributes more. This may be caused by the nature of the dataset.
For the UCI dataset, the consistency between different kinds of features is more strongly expressed,
leading to a better classification result.

Besides, the effect of cross-entropy is investigated. Considering the classification task as a
downstream task, we chose MSE as an alternative to cross-entropy. The definition of MSE is
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Table 3. Ablation Results (%) on UCI, Caltech101, MNIST10k, and Reuters Datasets

Loss
UCI Caltech101

1% 3% 5% 10% 20% 1% 3% 5% 10% 20%

CE 60.91 - 87.11 - 88.11 - 90.61 - 92.81 - 25.72 - 33.27 - 37.50 - 38.12 - 42.93 -
CE+Con 62.07 ↑ 88.04 ↑ 90.16 ↑ 93.56 ↑ 93.00 ↑ 27.50 ↑ 35.16 ↑ 38.31 ↑ 39.76 ↑ 45.75 ↑

CE+Lgc 63.59 ↑ 88.40 ↑ 90.79 ↑ 93.78 ↑ 94.56 ↑ 26.90 ↑ 35.12 ↑ 37.84 ↑ 40.96 ↑ 47.66 ↑

MSE+Con+Lgc 56.11 ↓ 89.58 ↑ 92.37 ↑ 95.06 ↑ 94.81 ↑ 21.35 ↑ 29.12 ↓ 31.02 ↓ 33.10 ↓ 33.62 ↓

CE+Con+Lgc 64.65 ↑ 90.10 ↑ 92.79 ↑ 95.67 ↑ 96.50 ↑ 30.13 ↑ 36.38 ↑ 40.49 ↑ 45.43 ↑ 52.91 ↑

Loss
MNIST10k Reuters

1% 3% 5% 10% 20% 1% 3% 5% 10% 20%

CE 78.41 - 88.45 - 90.37 - 92.05 - 93.72 - 62.33 - 66.28 - 58.36 - 69.86 - 71.80 -
CE+Con 80.56 ↑ 89.32 ↑ 90.65 ↑ 92.26 ↑ 93.84 ↑ 64.13 ↑ 66.85 ↑ 67.47 ↑ 70.04 ↑ 71.21 ↑

CE+Lgc 79.81 ↑ 88.87 ↑ 90.77 ↑ 92.30 ↑ 93.85 ↑ 62.64 ↑ 66.87 ↑ 67.55 ↓ 77.45 ↑ 80.23 ↑

MSE+Con+Lgc 74.07 ↓ 85.87 ↓ 88.60 ↓ 92.03 ↓ 92.80 ↓ 61.67 ↓ 76.51 ↑ 78.78 ↑ 79.01 ↑ 84.23 ↑

CE+Con+Lgc 82.46 ↑ 90.36 ↑ 92.01 ↑ 93.43 ↑ 94.07 ↑ 66.83 ↑ 76.69 ↑ 79.09 ↑ 80.57 ↑ 84.40 ↑

Fig. 3. Ablation details on the given datasets.

given as

LMSE =
1

N

∑
| |prob − one_hot(y)| |22 , (21)

where prob is the output of the model, y is the label, and one_hot(y) converts y into one hot vector.
The results are given in Table 3, and MSE+Con+Lgc means LMSE +Lcon +Llдc . From the table, it is
concluded that when the number of labeled samples is insufficient—for example, the label rate is
1% for the UCI dataset—MSE cannot fit the data well, resulting in a serious decline in classification
accuracy. When labeled samples are sufficient, the effect of MSE will be slightly worse than that of
cross-entropy. This is mainly because MSE is less conducive to gradient update than cross-entropy.

4.6 Parameter Sensitivity Investigation

In the objective function (11), there are two tradeoff parameters λ and β . To explore their effects on
the classification performance of the proposed SSVFL, we vary λ in {0.0001, 0.001, 0.01, 0.1, 1, 10}
and β in {0.0003, 0.003, 0.03, 0.3, 3, 30}, and the label rates are set as 0.03 and 0.1.

Figure 4 is used for comparison. In the figure, it can be seen that the classification performance
is inferior when β is set to a large value on the UCI dataset, especially when the label rate is
low. This is attributed to excessive penalty for the contrastive loss Llдc , resulting in extracting too
much consistent information including background or noise, which is irrelevant to the downstream
classification tasks, and in return reduces the representational power of the representation and
degrades the classification performance. Interestingly, when β is tuned to be relatively large with
a large λ, the performance becomes a little better. On the Caltech101 and MNIST10k datasets, the
performance is relatively stable in general. However, they have a common phenomenon in which
the classification accuracies are worse when β is set to the biggest value, which inspires us to
determine that β should not be set too big.
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Fig. 4. Parameter sensitivity investigation with respect to λ and β on UCI, Caltech101, and MNIST10k

datasets.

Fig. 5. Convergence curves of objective values of the proposed SSVFL on UCI, Caltech101, MNIST10k, and

Reuters datasets

4.7 Convergence Verification

To illustrate the convergence of the proposed SSVFL, we record the value of the objective function
after each training epoch on the four datasets with the label rate varying at [1%, 5%, 10%, 20%].

The results are present the convergence curves of the proposed SSVFL in Figure 5. To make it
more clear, the objective values are processed with the loд function. From this figure, it can be con-
cluded that the proposed SSVFL has good convergence even though the amount of labeled samples
is insufficient. However, as the label rate increases, the convergence rate does not accelerate as in-
tuitively. As can be seen in Figure 5(b), on the Caltech101 dataset, SSVFL converges at nearly 20
rounds when the label rate is 1% and at nearly 50 rounds when the label rate is 20%. This is because
the labeled data increase and SSVFL needs to spend more time to extract meaningful information
from the labeled data, thus making the convergence slower.

In Figure 6, it is concluded that as the training procedure goes on, the classification accuracy is
improved, and after several epochs, the accuracy does not change significantly as the proposed
method converges. For an extremely large dataset, such as the Reuters dataset, the proposed
method converges rapidly. Thus, the classification accuracies do not improve too much, as shown
in Figure 6(d).

4.8 The Impact of DP

DP is used to protect the privacy. Due to the addition of Gaussian noise, the attacker cannot obtain
private data from the uploaded embeddings. However, noise may affect the training of the model,
thereby affecting the classification accuracy [45].
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Fig. 6. The curves of classification accuracies in different numbers of epoch and different label rates.

Fig. 7. The results of different datasets under different standard deviations of noise.

To reveal the impact of DP on the accuracy, we conducted multiple experiments, adding noise
with different c , standard deviations, in the training phase for different label rates in different
datasets, and the standard deviation range is {1, 2, 3, 4}. The detailed results are given in Figure 7.

From Figure 7, it is concluded that classification accuracy decreases as the standard deviation of
the added noise increases, illustrated in Figure 7(a), (c), and (d). However, DP does not negatively
affect model effects in all situations. In some special scenarios, such as in Figure 7(c), where the
labeling rate is 1% for the MNIST10k dataset, the effect improves with increasing noise. Overall,
the introduction of DP still causes some degradation in accuracy.

5 CONCLUSION

In this article, we proposed a novel VFL method, SSVFL, which can be applied to semi-supervised
scenarios. Specifically, we considered improving classification performance from two aspects: one
to fully explore the label information and the other to make full use of the unlabeled data. Besides,
we proposed a privacy-preserving optimization method for the proposed SSVFL, transmitting the
embeddings rather than the raw data. We found that SSVFL outperforms baselines significantly
with empirical evidence, showing its ability to address the difficult challenges in semi-supervised
VFL. However, during the training process, the embeddings are required to be transferred to the
server, which is bandwidth intensive. Therefore, future work needs to be done to deal with com-
munication costs for SSVFL.
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