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Abstract—Recently, tensor singular value decomposition
(t-SVD), based on the tensor-tensor product (t-product), has
become a powerful tool for processing third-order tensor data.
However, constrained by the fact that the basic element is the
fiber (i.e., vector) in the t-product, higher-order tensor data (i.e.,
order d> 3) are usually unfolded into third-order tensors to sat-
isfy the classical t-product setting, which leads to the destroying
of high-dimensional structure. By revisiting the basic element in
the t-product, we suggest a generalized t-product called element-
based tensor-tensor product (elt-product) as an alternative of the
classic t-product, where the basic element is a (d− 2)th-order
tensor instead of a vector. The benefit of the elt-product is that it
can better preserve high-dimensional structures and that it can
explore more complex interactions via higher-order convolution
instead of first-order convolution in classic t-product. Starting
from the elt-product, we develop new tensor-SVD and low-rank
tensor metrics (e.g., rank and nuclear norm). Equipped with
the suggested metrics, we present a tensor completion model for
high-order tensor data and prove the exact recovery guarantees.
To harness the resulting nonconvex optimization problem, we
apply an alternating direction method of the multiplier (ADMM)
algorithm with a theoretical convergence guarantee. Extensive
experimental results on the simulated and real-world data (color
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videos, light-field images, light-field videos, and traffic data)
demonstrate the superiority of the proposed model against the
state-of-the-art baseline models.

Index Terms—High-order tensor, low-rank tensor comple-
tion, element-based tensor-tensor product, tensor singular value
decomposition, exact recovery guarantee.

I. INTRODUCTION

TENSOR, as a generalization of matrices and vectors, pro-
vides a versatile and efficient framework for processing

high-order tensor signals [1], [2], [3], [4], [5], [6], [7], such as
hyperspectral images (HSIs) [8], [9], color videos [10], [11],
light-field images [12], [13], and traffic data [14], [15], to name
but a few. Nevertheless, observed signals in the real world
often suffer from missing or corrupted conditions due to the
limitations of imaging devices and environment, significantly
hindering subsequent applications [16], [17]. Recovering un-
derlying signals from the partially observed signals, i.e., tensor
completion (TC), is a classical inverse problem in the signal
processing field. Due to the inherent non-uniqueness and insta-
bility encountered in solving the inverse problem, it is an effec-
tive strategy to constrain the solution space by incorporating the
prior information of signals. Low-rankness, as a prior, has been
widely utilized for extracting the internal structure of signals in
various real-world applications [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29].

To characterize the low-rank prior of high-order signals,
tensor decompositions induced by different products of the
tensor are investigated. The mainstream tensor decomposition
includes CANDECOMP/PAEAFAC (CP) decomposition [30],
Tukcer decomposition [31], [32], tensor train decomposition
[33], [34], tensor ring decomposition [35], [36], [37], [38],
and tensor singular value decomposition (t-SVD) [39], [40].
The goal of tensor decompositions is to decompose a given
tensor into several mutually interacting factors, facilitating the
exploration and extraction of low-rank structures. For example,
the CP decomposition represents a tensor as the sum of the outer
products of several vectors [30]. The Tucker decomposition is
to decompose the tensor into a core tensor and factor matrices
by using the tensor-matrix product [32]. Under the framework
of the tensor network decomposition, the tensor is equivalent
to the multiplication of several factors based on the tensor
contraction [33], [35], [41]. Recently, t-SVD induced by tensor-
tensor product (t-product) has gained widespread attention due
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Fig. 1. Illustration of the representation forms of the matrix product, tensor-
tensor product, and element-based tensor-tensor product. The basic element
of the matrix product is the zero-order scalar (yellow part in Fig. 1); the
basic element of the classical tensor-tensor product is the vector (green part
in Fig. 1); the basic element of the element-based tensor-tensor product is the
(d− 2)th-order tensor, e.g., matrix (red part in Fig. 1).

to its remarkable ability to capture spatial-shifting correlations
along the mode-3 direction in real signals [39], [42], [43], [44],
[45], [46], [47]. Based on the t-SVD, a third-order tensor of size
n1 × n2 × n3 can be decomposed into two orthogonal tensors
and an f -diagonal tensor via the t-product, where the basic
element of the t-product is a fiber of size 1× 1× n3. Many
excellent works focus on designing the better transform matri-
ces to improve the performance of the classical t-SVD [39] for
third-order tensors [48], [49], [50], [51], [52], [53], [54], [55],
[56]. However, the emergence of higher-order tensor data (e.g.,
color videos, light-field images, and light-field videos) from
real-world applications beckons for analyzing higher-order sig-
nal processing tools suited to them.

To this end, the basic element that served as the foundation
for defining the product should be expanded. From Fig. 1, we
can see that, in the definition of the t-product, the first-order
vector is adopted as the basic element instead of the zero-order
scalar, distinguishing it from the matrix product. Thanks to
this strategy, the models based on the t-product can effectively
capture the low-rank structure of signals on the third-order
tensor, specifically along the mode-3 direction [39], [44], [45].
However, for higher-order tensor signals (i.e., order d > 3), to
satisfy the classical t-product setting where the basic element is
a vector, they are usually unfolded into third-order tensors [57],
[58], which hinders the natural representation of the higher-
order tensor data. To address this issue, we suggest adopting
the (d− 2)th-order tensor instead of the vector as the basic
element for the dth-order tensor in the definition of the prod-
uct. It has two advantages compared to the classical t-product.
Firstly, the new basic element can avoid unfolding operations
to better preserve high-dimensional structures. Secondly, the
corresponding operation of the basic element can explore more
complex interactions via higher-order convolution instead of
first-order convolution. Furthermore, to strengthen the interre-
lation between the different modes, it is imperative to extend
the product from one mode to any mode.

Building upon the analysis above, in this paper, we revisit the
classic t-product from the basic element perspective and sug-
gest a generalized t-product called element-based tensor-tensor
product (elt-product), which extends the classical t-product
to dth-order. We suggest that the basic element should be a
(d− 2)th-order tensor instead of limiting the vector, thereby
preserving the intrinsic structure of the high-order tensor data.
Further, we can naturally extend the elt-product from one mode
to any mode. This strengthens the interrelation among various
elt-products defined in different modes, effectively overcoming
the permutation sensitivity issue in classical t-product. Based
on the proposed elt-product, we can define the corresponding
tensor-SVD, tensor rank, and tensor nuclear norm. The main
contributions of this paper are summarized as three-fold:

1) By revisiting the basic element in the t-product, we sug-
gest a generalized t-product (elt-product) as an alternative
of the classic t-product, where the basic element is a
(d− 2)th-order tensor instead of a vector. The benefit
of the elt-product is that it can better preserve high-
dimensional structures and that it can explore more com-
plex interactions via higher-order convolution instead of
first-order convolution in classic t-product.

2) Starting from the elt-product, we develop new tensor-
SVD and low-rank tensor metrics (e.g., rank and nuclear
norm). Equipped with the suggested metrics, we establish
the corresponding low-rank tensor completion (LRTC)
model for high-order tensor data and prove the exact
recovery guarantee of the proposed model.

3) To harness the resulting nonconvex optimization prob-
lem, we apply an alternating direction method of the mul-
tiplier (ADMM) algorithm and prove the convergence of
the developed algorithm. Extensive experimental results
on the simulated and real-world data demonstrate the
superiority of the proposed models against the state-of-
the-art baseline models.

The rest of the paper is organized as follows. In Section II, we
review some related works on the generalization of t-SVD for
high-order tensor data. In Section III, we introduce some nota-
tions and preliminary knowledge. In Section IV, we present an
elt-product and give a description of the corresponding tensor-
SVD, tensor rank, and tensor nuclear norm. In Section V, we
propose the LRTC model, in the meanwhile proving the exact
recovery guarantee of the model. The experimental results are
illustrated and discussed in Section VI. The conclusion is drawn
in Section VII.

II. RELATED WORK

To deal with high-order tensor data, researchers have devel-
oped generalizations of the classical t-SVD [57], [58], [59],
[60], [61]. These works can be broadly classified into two cate-
gories: unfolding-based methods and recursion-based methods.

• Zheng et al. [57] proposed the weighted sum of the ten-
sor nuclear norm (WSTNN) by unfolding the high-order
tensor data into the third-order tensor along mode-k1k2.
Similarly, Wang et al. [58] used mode-(k, t) 3D unfolding
to unfold the high-order tensor data into the third-order
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TABLE I
NOTATIONS AND EXPLANATIONS

Notations Explanations
[d] The set of the first d natural numbers.

x, x, X , X Scalar, vector, matrix, tensor.
Xi1i2···id The i1i2 · · · id-th element of X .

X� The transposition of X ∈ R
n1×n2 .

σi(X) The i-th singular value of X .
‖X‖∗ =

∑
σi (X) The nuclear norm of X .

〈X ,Y〉 The inner product between X and Y .
‖X‖F The Frobenius norm of X .
Tr(X) The trace of X .
X(i) The i-th frontal slice of X .

X(k) = unfoldk(X ) The mode-k matricization of X .
X = foldk(X(k)) The inverse operation of unfoldk(X ).

tensor to describe the low-rank structure. Both these meth-
ods unfold the dth-order tensor into a third-order tensor
and then apply the t-SVD of the third-order to the unfolded
tensor, which destroys the intrinsic structure of the high-
order tensor data.

• Martin et al. [59] took a recursive manner, treating prod-
ucts of dth-order as successive t-product operations with
(d− 1)th-order tensors, and finally recursing to t-product
of third-order. In addition, Qin et al. [60] suggested a
strategy that performed a one-dimensional transform from
the third dimension to the dth dimension for the tube of
each dimension. Essentially, these two methods are equiv-
alent as they concentrate on the third dimension to the dth
dimension while disregarding the first and second dimen-
sions, indicating the model’s direction sensitivity. Beyond
that, Wang et al. [61] proposed that higher order tensor
SVD utilizes tubal-tensor and tubal-matrix to replace the
core tensor and factor matrix in higher order SVD, where
the tubal-tensor can be regarded as an (d− 1)th-order
tensor with the tubal as the basic element.

In this paper, the proposed elt-product can avoid the unfolding
operation, it is extremely competitive compared to the classical
t-product in exploring the intrinsic structure of high-order tensor
data. In the meantime, we can naturally extend the elt-product
from one mode to any mode, making it invariant to permutation,
which overcomes the shortcomings of directional sensitivity.

III. NOTATIONS AND PRELIMINARIES

Throughout this paper, the notations are listed in Table I, and
the preliminary knowledge used is summarized as follows:

Definition 1 (Orthogonal matrix, semi-orthogonal matrix):
For a square matrix X ∈ R

n×n, X is an orthogonal matrix if
and only if it satisfies XX� = I and X�X = I , where I is
the identity matrix. For any matrix X ∈ R

m×n, X is a semi-
orthogonal matrix with orthogonal rows if and only if it satisfies
XX� = I . In addition, X is a semi-orthogonal matrix with
orthogonal columns if and only if it satisfies X�X = I .

Let X ∈ R
n1×n2···×nd be a dth-order tensor, and

X〈k〉 � P〈k〉 (X ) = permute(X , [k, k + 1, · · · , k − 1 + d]) ∈
R

nk×nk+1×···×nk−1+d for ∀k ∈ [d] and k − 1 + d := k − 1
with k − 1 + d > d. The corresponding inverse operation as

P−1
〈k〉 (X ) = ipermute(X , [k, k + 1, · · · , k − 1 + d]), i.e.,

X = P−1
〈k〉(X〈k〉).

For dth-order tensor X , the mode-k high-dimensional block
diagonal operation maps a dth-order tensor of size n1 × n2 ×
· · · × nd into a block diagonal matrix of size nkNk × nk+1Nk

with Nk = n1n2 · · ·nk−1nk+2 · · ·nd, which is defined as
follows

Hbdiag (X , k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
(1)
k

X
(2)
k

. . .

X
(jk)
k

. . .

X
(Nk)
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where X
(jk)
k = X (i1, i2, · · · , ik−1, :, :, ik+2, · · · , id) ∈

R
nk×nk+1 , jk = ik+2+!(ik+3− 1)nk+2 + · · ·+ (id − 1)nk+2

· · ·nd−1 + (i1−1)nk+2 · · ·nd + · · ·+(ik−1)nk+2 · · ·ndn1 · · ·
nk−2, i1 ∈ [n1], i2 ∈ [n2], · · · , ik−1 ∈ [nk−1], ik+2 ∈ [nk+2],
· · · , id ∈ [nd].

Definition 2 (Mode-k tensor-matrix product [32]): For any
dth-order tensor X ∈ R

n1×···×nk×···×nd with a matrix U ∈
R

n×nk , the mode-k tensor-matrix product is denoted by X ×k

U ∈ R
n1×···×n×···×nd . For any element-wise, we have

(X ×k U)i1···ik−1jik+1···id =

nk∑
ik=1

xi1i2···idujik . (1)

Based on the unfolding operator, the mode-k tensor-matrix
product is equivalent to

Y = X ×k U ⇔ Y (k) =UX(k). (2)

Definition 3 (Tensor-tensor product [39]): For third-order
tensors G ∈ R

n1×n2×n3 , A ∈ R
n1×p×n3 , and B ∈ R

p×n2×n3 ,
the tensor-tensor product (t-product) is defined as

G =A ∗ B ⇔ G(i, j, :) =
p∑

t=1

A(i, t, :)� B(t, j, :), (3)

where � denotes the circular convolution operation of two
fibers. More specifically, the element-wise form of the cir-
cular convolution operation between x ∈ R

n3 and y ∈ R
n3

can be expressed as (x� y)k =
∑n3

m=1 x(k−m+1)ym, where
x(k−m+1) = x(k−m+1+n3) if k −m+ 1≤ 0, k ∈ [n3] .

Definition 4 (Mode-k face-wise product): For any
dth-order tensors X ∈ R

n1×···×nk×p×···nd and Y ∈
R

n1×···×p×nk+1×···nd , the mode-k face-wise product is
denoted as X �k Y ∈ R

n1×···nk×nk+1×···×nd . For any
element-wise, we have

(X �k Y)i1···ikik+1···id =

p∑
t=1

xi1···iktik+2···idyi1···ik−1tik+1···id .

(4)
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Based on Hbdiag operator, the mode-k face-wise product is
equivalent to

G = X �k Y ⇔Hbdiag(G, k)
= Hbdiag(X , k) ·Hbdiag(Y, k). (5)

Definition 4 is a generalization of the face-wise product
from third-order to higher-order, where the third-order face-
wise product is defined for three-order tensors by Kernfeld et al.
in [49].

IV. HIGH-ORDER ELEMENT-BASED TENSOR-TENSOR PRODUCT

In this section, we present an elt-product and give new defini-
tions of the corresponding tensor-SVD, tensor rank, and tensor
nuclear norm. We begin with the preliminary definition of elt-
product on the dth-order tensors.

Definition 5 (Element-based tensor-tensor product):
For any dth-order tensors A ∈ R

n1×p×n3×···×nd , B ∈
R

p×n2×n3×···×nd , the element-based tensor-tensor product
(elt-product) between these two tensors produces the dth-order
tensor such that

G =A♦B ∈ R
n1×n2×n3×···×nd , (6)

where ♦ denotes the operator of the tensor product.
More specifically, suppose T 1 ∈ R

n1×n1 and T 2 ∈ R
n2×n2

be the invertible transform matrices, then on each G(i,j) ∈
R

n3×n4×···×nd , ∀i ∈ [n1], j ∈ [n2] (i.e., (d− 2)th-order ten-
sor), we have

Ĝ(i,j) =

p∑
t=1

Â(i,t) � B̂(t,j), (7)

where the above variables are given by
⎧
⎪⎨
⎪⎩

Ĝ(i,j) � G ×1 T 1(i, :)×2 T 2(j, :),

Â(i,t) �A×1 T 1(i, :)×2 Ip(t, :),

B̂(t,j) � B ×1 Ip(t, :)×2 T 2(j, :),

(8)

in which Ip ∈ R
p×p is the identity matrix. The symbol �

denotes the convolution with given boundary conditions1

between two (d− 2)th-order tensors, and ×1 (or ×2)
denotes the mode-1 (or mode-2) product between tensor
and matrix/vector. Specifically, for the convolution
operation with periodic boundary conditions, the the
element-wise form of the convolution operation between
two (d− 2)th-order tensors X ∈ R

n3×n4···×nN and
Y ∈ R

n3×n4···×nN can be expressed as (X � Y)k3···kN
=∑n3

m3=1 · · ·
∑nN

mN=1 X(k3 −m3 +1) ··· (kN −mN +1)Ym3 ···mN
,

where Xi3···(kj−mj+1)···iN = Xi3···(kj−mj+1+nj)···iN if
kj −mj + 1≤ 0, ∀j ∈ {3, 4, · · ·N}. In this special case, the
corresponding transform matrix T k is discrete Fourier matrix.

Definition 5 explains the correlation of (d− 2)th-order ten-
sor, while the correlation between two other modes (i.e., refer-
ring to two other orders) is totally ignored. This oversight may

1More discussion about boundary conditions can be found in the supple-
mentary material.

rise to direction-sensitive shortcomings in the elt-product possi-
bly rendering the elt-product susceptible to direction-sensitive
issues.

Definition 6 (Mode-k element-based tensor-tensor product):
For any dth-order tensors A ∈ R

n1×···nk×p×···nd , B ∈
R

n1×···p×nk+1×···nd , and G ∈ R
n1×···nk×nk+1×···nd with

any invertible transform matrix T k ∈ R
nk×nk and T k+1 ∈

R
nk+1×nk+1 , then the mode-k element-based tensor-tensor

product (elt-product), which is denoted by ♦k, is defined as

G =A♦kB ⇔ Ĝ(i,j) =

p∑
t=1

Â(i,t) �k B̂(t,j), (9)

where �k denotes the convolution with given boundary con-
ditions between (d− 2)th-order tensors of size n1 × · · · ×
nk−1 × nk+2 × · · · × nd. The above variables are given by

⎧
⎪⎨
⎪⎩

Ĝ(i,j) � G ×k T k(i, :)×k+1 T k+1(j, :),

Â(i,t) �A×k T k(i, :)×k+1 Ip(t, :),

B̂(t,j) � B ×k Ip(t, :)×k+1 T k+1(j, :),

(10)

where ×k denotes the mode-k product.
Remark 1: The proposed product provides a flexible defini-

tion and includes some special cases as the existing product.
As illustrated in Fig. 1, the matrix product, t-product, and elt-
product work in the same way for constructing a matrix struc-
ture. In the special case that k = 1 and the invertible transform
matrices T 1 and T 2 are identity matrices, the elt-product is
reduced to the classical t-product (Definition 3 [39]) on the
third-order tensor. If X is a dth-order tensor, suppose k = 1
and the invertible transform matrices T 1 and T 2 are identity
matrices, then the elt-product is reduced to high-order t-product
[59], [60]. Moreover, if the invertible transform matrices T 1

and T 2 are identity matrices, then the elt-product refers to the
mode-k t-product [62] on the third-order tensor.

To build the SVD of the elt-product, we need to introduce
the fully transform and some special high-order tensors.

Definition 7 (Fully transform): For a dth-order tensor
X ∈ R

n1×n2×···×nd and any invertible transform matrix T k ∈
R

nk×nk , where k ∈ [d]. Then the full transform of X is defined
as

Φ(X )� X ×1 T
�
1 ×2 T

�
2 × · · · ×d T

�
d . (11)

The corresponding inverse operator is defined as

Φ−1 (X )� X ×1

(
T�

1

)−1

×2

(
T�

2

)−1

× · · · ×d

(
T�

d

)−1

.

(12)

We also denote that Φ(X ) = XΦ and Φ−1 (X ) = XΦ−1 .
Definition 8 (Mode-1 conjugate transpose tensor [59],

[60]): The mode-1 conjugate transpose of a tensor X1 ∈
C

n1×n2×n3···×nd is the tensor X H1
1 ∈ C

n2×n1×n3···×nd if the
tensor slices always hold that

X H1
1,Φ(:, :, i3, · · · , id) = (X1,Φ (:, :, i3, · · · , id))H1 . (13)

Definition 9 (Mode-1 identity tensor [59], [60]): The mode-
1 identity tensor I1 ∈ R

p×p×n3×···×nd is the tensor with slices
such that I1,Φ (:, :, i3, · · · , id) = Ip.
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Definition 10 (Mode-1 f -diagonal tensor [59], [60]): The
mode-1 f -diagonal tensor X1 ∈ R

n×n×n3×···×nd is the tensor
if and only if the tensor slice X1,Φ (:, :, i3, · · · , id) is a diagonal
matrix.

Lemma 1: Given any dth-order tensors G ∈
R

n1×···nk×nk+1×···nd , X ∈ R
n1×···nk×p×···nd , and Y ∈

R
n1×···p×nk+1×···nd , the following properties are always held:
1) Hbdiag(X , k) = Hbdiag(X〈k〉, 1).
2) (X Hk)〈k〉 = (X〈k〉)

H1 .
3) Gk = Xk♦kYk if and only if G〈k〉 = X〈k〉♦1Y〈k〉.
4) X is the mode-k identity tensor if and only if X〈k〉 is the

mode-1 identity tensor.
5) X is the mode-k diagonal tensor if and only if X〈k〉 is the

mode-1 diagonal tensor.
6) X is the mode-k orthogonal tensor if and only if X〈k〉 is

the mode-1 orthogonal tensor.
The proof of Lemma 1 can be found in the supplementary

material.
Remark 2: Lemma 1 gives the connection between Definition

5 and Definition 6, demonstrating the importance of the permute
operation for reinforcing Definition 5 (i.e., the direction of
tensor product).

Definition 11 (Mode-k element-based tensor singular value
decomposition): For any dth-order tensor X ∈ R

n1×n2×···×nd ,
mode-k element-based tensor singular value decomposition
(elt-SVD) takes the factorization such that

X = Uk♦kSk♦kVHk
k , (14)

where Uk ∈ R
n1···×nk−1×nk×nk×nk+2×···nd and Vk ∈

R
n1···×nk−1×nk+1×nk+1×nk+2×···nd are the mode-k orthogonal

tensors and Sk ∈ R
n1···×nk×nk+1×nk+2×···nd is the mode-k

diagonal tensor.
Definition 12 (Tensor-element multi-rank): The tensor-

element multi-rank of X ∈ R
n1×···×nd , denoted by ranktm =

R ∈ R
d×M , is a matrix with its (k, i)-th entry being the rank

of the i-th frontal slice of X〈k〉,Φ, i.e.,

R�⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

rank(X (1)
〈1〉,Φ) rank(X (2)

〈1〉,Φ)

rank(X (1)
〈2〉,Φ) rank(X (2)

〈2〉,Φ)

· · · rank(X (
∏d

i�=1,2 ni)
〈1〉,Φ )

· · · rank(X (
∏d

i�=2,3 ni)
〈2〉,Φ )

...
...

rank(X (1)
〈d〉,Φ) rank(X (1)

〈d〉,Φ)

...
...

· · · rank(X (
∏d

i�=d,1 ni)
〈d〉,Φ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(15)

where rank(X (
∏d

i�=k,k+1 ni)
〈k〉,Φ ) = 0 if

∏d
i�=k,k+1 ni <M ,

M =max{
∏d

i�=k,k+1 ni}, k ∈ [d], i.e., R(k, t) = 0 when∏d
i�=k,k+1 ni <M and

∏d
i�=k,k+1 ni ≤ t≤M , and

X〈k〉,Φ =Φ(X〈k〉).
Definition 13 (Mode-k tensor-element rank and tensor-

element rank): The mode-k tensor-element rank of X ∈
R

n1×···×nd is defined as

ranket,k (X )� rank
(
X〈k〉

)
=max

t
R(k, t) (16)

=#{i : S〈k〉(i, i, :, · · · , :) �= 0}.

The tensor-element rank of X , denoted by ranket (X ) ∈ R
d, is

a vector with its k-th entry being rank
(
X〈k〉

)
.

Since the definition of elt-product is associated with con-
volution operation, it may come at a high computational cost.
To achieve fast and efficient computation, we also expect the
proposed elt-product to keep some equivalence properties of the
classical t-product in the transform domain. To this end, we give
the following theorem.

Theorem 1: For any dth-order tensors A ∈ R
n1×···nk×p×···nd

and B ∈ R
n1×···p×nk+1×···nd with any invertible transform

T k ∈ R
nk×nk , the mode-k elt-product (see Definition 6) is

equivalent to

A♦kB =Φ−1(ΦLk
(A)�k ΦRk

(B)), (17)

where

ΦLk
(X )� X ×1 T

�
1 · · · ×k T�

k ×k+2 T
�
k+2 · · · ×d T

�
d ,
(18)

and the fully mode-k right transform of X is defined as

ΦRk
(X )� X ×1 T

�
1 · · · ×k−1 T

�
k−1 ×k+1 T

�
k+1 · · · ×d T

�
d .

(19)

We also denote that ΦLk
(X ) = XΦLk

and ΦRk
(X ) = XΦRk

.
The proof of Theorem 1 can be found in the supplementary

material.
The aforementioned Theorem 1 allows one to build up the

tensor nuclear norm induced by the elt-product.
Definition 14 (Mode-k element-based tensor nuclear norm):

For X ∈ R
n1×n2×···×nd with any full column rank matrix T k,

the mode-k element-based tensor nuclear norm (ETNN) is de-
fined as

‖X‖ETNNk
� ‖Hbdiag (XΦ, k)‖∗ = ‖Hbdiag (Ck, k)‖∗

=

n1∑
i1=1

· · ·
nk−1∑

ik−1=1

nk+2∑
ik+2=1

· · ·
nd∑

id=1

‖C(i1,··· ,ik−1,:,:,ik+2,··· ,id)‖∗,

(20)

where X = C ×1 T 1 × · · · ×d T d and C(i1,··· ,ik−1,ik+2,··· ,id) =
C (i1, · · · , ik−1, :, :, ik+2, · · · , id) ∈ R

nk×nk+1 .
Remark 3: We extend the transform matrix T k from invert-

ible to non-invertible in Definition 14, which brings to better
performance.

We define the enhanced ETNN as ‖X‖ETNN+
k

when T k is
a non-invertible transform matrix. In this paper, we focus on
orthogonal and semi-orthogonal transform matrices as repre-
sentatives of invertible and non-invertible transform matrices.

Definition 15 (Multi-mode element-based tensor nuclear
norm): For X ∈ R

n1×n2×···×nd with any orthogonal transform
T k ∈ R

nk×nk , the multi-mode element-based tensor nuclear
norm with orthogonal transform (METNN) is defined as

‖X‖METNN �
d∑

k=1

1

d
‖X‖ETNNk

. (21)
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Furthermore, for any semi-orthogonal transform T k ∈ R
nk×�k ,

the enhanced multi-mode element-based tensor nuclear norm
with semi-orthogonal transform (METNN+) is defined as

‖X‖METNN+ �
d∑

k=1

1

d
‖X‖ETNN+

k
. (22)

We propose two tensor unclear norms under orthogonal
and semi-orthogonal conditions, but the relationship between
‖X‖METNN and ‖X‖METNN+ is still not clear. To answer this
question, we give the following theorem.

Theorem 2: For X ∈ R
n1×···×nd with any orthogonal trans-

form T k ∈ R
nk×nk and semi-orthogonal transform Dk ∈

R
nk×�k that satisfies Dk = T k (:, 1 : �k). The METNN with

orthogonal transform T k and METNN+ with semi-orthogonal
transform Dk show the relationship such that

‖X‖METNN+ ≤ ‖X‖METNN. (23)

The proof of Theorem 2 can be found in the supplementary
material.

In Definitions 14 and 15, the connection between single-
mode and multi-mode is established by the permuting operation
applied to X . The following theorem emphasizes that this con-
nection can be established under the transformed domain, which
is equivalent to the connection under the original domain, i.e.,
the permuting operation applied to Φ(X ) := C.

Theorem 3: For any dth-order tensor X ∈ R
n1×···×nd , we

assume that it can be written as X =
∑d

k=1
1
dXk. Let C =

Φ(X ), if Xk = Uk♦kSk♦kVHk
k , then we have C =

∑d
k=1

1
dCk

and Ck =Φ(Xk). It can be further verified that

‖X‖METNN =
d∑

k=1

1

d
‖X‖ETNNk

=

d∑
k=1

1

d
‖Hbdiag

(
C〈k〉

)
‖∗. (24)

The proof of Theorem 3 can be found in the supplementary
material.

V. TENSOR EXACT RECOVERY GUARANTEE BASED ON

ELEMENT-BASED TENSOR SVD

In this section, we first present the LRTC model based on
the METNN and METNN+, in the meanwhile proving the
exact recovery guarantee of the model. Then, we develop an
efficient algorithm with the ADMM framework and analyze the
convergence behavior and the computational complexity.

A. Low-Rank Tensor Completion Model

Let O ∈ R
n1×n2×···×nd be the observation tensor, then we

assume that the ground truth X ∗ ∈ R
n1×n2×···×nd takes a low-

rank structure with tensor-element multi-rank R. The observed
index set of O is denoted by Ω = {(i1, i2, · · · , id) | δi1i2···id =
1} in which the independent and identically distributed (i.i.d.)
binary variable δi1i2···id follows a Bernoulli distribution with a
probability of ρ. The LRTC model allows one to reconstruct

X ∈ R
n1×n2×···×nd from a very limited number of observa-

tions, mainly due to its low-rank structure. Formally, the LRTC
model can be formulated as follows,

min
X

rank(X ), s .t. XΩ =OΩ . (25)

However, minimizing the rank function is NP-hard. We suggest
the proposed METNN replace the rank function to find feasible
low-rank structures. Therefore, the model (25) can be rather
expressed as

min
X

‖X‖METNN, s.t. XΩ =OΩ . (26)

The model (26) is built in the invertible transform framework,
and then we will prove its exact recovery guarantee in Theorem
4. In the case that the transform is non-invertible, as theoreti-
cal properties may be compromised, it is possible to improve
performance and reduce computational complexity if T k is a
semi-orthogonal transform. As a result, the model (25) can be
expressed as

min
X

‖X‖METNN+ , s.t. XΩ =OΩ . (27)

B. Exact Recovery Guarantee

We establish the exact recovery guarantee in this part. We
first introduce some basic definition used for the exact recovery
guarantee.

Definition 16 (Tensor incoherence conditions): For X ∈
R

n1×n2×···×nd suppose that the mode-k elt-SVD is Xk =
Uk♦kSk♦kVHk

k with tensor-element multi-rank ranktm(X ) =

R. Let X =
∑d

k=1
1
dXk and Mk =

∏d
i�=k,k+1 ni. Then, for any

k, the tensor incoherence conditions with parameter μ > 1 are
given by

max
ik=1,··· ,nl, l �=k+1

‖U〈k〉♦1e̊
(ik)
k ‖2F ≤ μ

∑Mk

i=1 R (k, i)

nkMk
, (28)

max
ik=1,··· ,nl, l �=k

‖V〈k〉♦1e̊
(ik+1)
k+1 ‖2F ≤ μ

∑Mk

i=1 R (k, i)

nk+1Mk
, (29)

where U〈k〉 and V〈k〉 are mode-k permutation of Uk and

Vk, respectively; e̊
(ik)
k is the standard dth-order tensor basis

whose size is n1 × · · · × nk × 1× nk+2 × · · · × nd with its
(i1, · · · , ik, 1, ik+2, · · · , id)-th entry be 1 and be 0 otherwise,
and the e̊

(ik+1)
k+1 = (̊e

(ik)
k )Hk .

Theorem 4: For X ∗ ∈ R
n1×n2×···×nd with fixed

orthonormal matrix T k ∈ R
nk×nk and the mode-

k tensor-element SVD of Xk = Uk♦kSk♦kVHk
k with

tensor-element multi-rank ranktm(X ) =R, they are
satisfied with X ∗ =

∑d
k=1

1
dXk, Mk =

∏d
i�=k,k+1 ni,

n
(1)
k =max(nk, nk+1), n

(2)
k =min(nk, nk+1), and

ṅ=max(n
(1)
1 M1, · · · , n(1)

d Md). Suppose that the indices
set Ω ∼Ber (ρ) with |Ω|=m and the tensor incoherence
conditions (28)-(29) hold. Then, there exist universal constants
c1, c2, c3 > 0 such that X is the unique solution to (26) with
probability at least 1− c1ṅ

c2 , provided that

m≥ c3μ

d

d∑
k=1

Mk∑
i=1

R (k, i)n
(1)
k log

(
n
(1)
k Mk

)
. (30)
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The proof of Theorem 4 can be found in the supplementary
material.

C. Proposed Algorithm

Based on the Definition 14, we introduce the auxiliary vari-
ables Zk to solve the proposed models, for k ∈ [d], and the
models (26) and (27) can be reformulated as

min
X ,C,Zk,Tk

d∑
k=1

1

d
‖Hbdiag (Zk, k)‖∗, s.t. XΩ =OΩ ,

Ck = Zk,X = C ×1 T 1 ×2 · · · ×d T d,T
�
k T k = I, (31)

where Ck =Φ(Xk) (see Theorem 3). The model (31) serves as
a general format representing both the model (26) and model
(27), where it is equivalent to the model (26) when the T k

is orthogonal transform, and the model (27) when the T k is
semi-orthogonal transform, respectively. To convert problem
(31) into an unconstrained problem, we introduce the indicator
functions as

Φ(X ) =

{
0, XΩ =OΩ ,

+∞, otherwise.
(32)

Ψ (T k) =

{
0, T�

k T k = I,
+∞, otherwise.

(33)

Based on the ADMM algorithm [63], the augmented La-
grangian function of (31) is

Lβ (X , C,Zk,T k, Γk, Λ) (34)

=

d∑
k=1

1

d

{
‖Hbdiag (Zk, k)‖∗ +

β

2
‖Ck −Zk +

Γk

β
‖2F

}

+
β

2
‖X − C×1 T 1 ×2 · · · ×d T d +

Λ

β
‖2F +Φ(X ) +Ψ (T k) ,

where Γ〈k〉 and Λ are the Lagrange multipliers; k ∈ [d]; β
is the penalty parameter. Within the framework of ADMM,
X , C,Zk,T k, Γk, and Λ are alternately updated by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X t+1 = argmin
X

Lβ

(
X , Ct,Zt

k,T
t
k, Γ

t
k, Λ

t
)
,

Ct+1 = argmin
C

Lβ

(
X t+1, C,Zt

k,T
t
k, Γ

t
k, Λ

t
)
,

Zt+1
k = argmin

Zk

Lβ

(
X t+1, Ct+1,Zk,T

t
k, Γ

t
k, Λ

t
)
,

T t+1
k = argmin

T k

Lβ

(
X t+1, Ct+1,Zt+1

k ,T k, Γ
t
k, Λ

t
)
,

Γ t+1
k = Γ t

k + β
(
Ct+1
k −Zt+1

k

)
,

Λt+1 = Λt + β
(
X t+1 − Ct+1 ×1 · · · ×d T

t+1
k

)
.

(35)

1) The X subproblem is

X t+1 = argmin
X

β

2
‖X − Ct ×1 · · · ×d T

t
d +

Λt

β
‖2F +Φ(X ) .

(36)

The closed-form solution of (36) is

X t+1 =

(
Ct+1 ×1 T

t
1 ×2 · · · ×d T

t
d −

Λt

β

)

ΩC

+OΩ , (37)

where ΩC is the complementary set of Ω.
2) The C subproblem is

Ct+1 = argmin
C

d∑
k=1

1

d

{
β

2
‖Ck −Zt

k +
Γ t
k

β
‖2F

}

+
β

2
‖X t+1 − C ×1 T

t
1 ×2 · · · ×d T

t
k +

Λt

μ
‖2F . (38)

The closed-form solution of (38) is

Ct+1 =

∑d
k=1

1
d (Zt

k − Γ t
k

β ) +Ht

2
, (39)

where Ht = (X t+1 + Λt

β )× T t
1
� ×2 · · · ×d T

t
d
�

.
3) The Zk, k ∈ [d] subproblems are

Zt+1
k = argmin

Zk

‖Hbdiag (Zk, k)‖∗ +
β

2
‖Ct+1

k −Zk +
Γk

β
‖2F

= argmin
Zk

β

2
‖Ct+1

k −Zk +
Γk

β
‖2F

+

�1∑
i1=1

· · ·
�k−1∑

ik−1=1

�k+2∑
ik+2=1

· · ·
�d∑

id=1

‖Z(i1,···,ik−1,:,:,ik+2,···,id)‖∗.

(40)

Then, the problem (40) is equivalent to solving
∏d

i�=k,k+1 �i
individual subproblems, i.e.,

argmin
Z

‖Z(i1,··· ,ik−1,ik+2,··· ,id)‖∗

+
β

2
‖Z(i1,··· ,ik−1,ik+2,··· ,id) −D(i1,··· ,ik−1,ik+2,··· ,id)‖2F ,

(41)

where Z(i1,··· ,ik−1,ik+2,··· ,id) = Z(i1, · · · , ik−1, :, :, ik+2,
· · · , id), D(i1,··· ,ik−1,ik+2,··· ,id) =D(i1, · · · , ik−1, :, :,

ik+2, · · · , id) ∈ R
nk×nk+1 , and Dk = Ct+1

k +
Γ t
k

β . The closed-
form solution to the variable Z is

Z(i1,··· ,ik−1,ik+2,··· ,id) = SVT 1
β
(D(i1,··· ,ik−1,ik+2,··· ,id)),

(42)

where SVTτ (·) is the singular value thresholding (SVT) oper-
ator [64] that associated with the threshold value τ .

4) The T k subproblems are as follows:

T t+1
k = argmin

Tk

β

2
‖X t+1−

[
Ct+1;T t

1:k−1,T k,T
t
k+1:d

]

+
Λt

β
‖2F +Ψ (T k)

= argmin
T k

β

2
‖
[
Ct+1;T t

1:k−1,T
t
k+1:d

]
−
(
X t+1 +

Λt

β

)

×k T�
k ‖2F + Ψ (T k) ,

(43)

where
[
Ct+1;T t

1:k−1,T k,T
t
k+1:d

]
is another symbol of

the mode-k product, i.e. [Ct+1; T t
1:k−1,T k,T

t
k+1:d] =

Ct+1 × T t
1 ×2 · · · ×d T

t
d. We let P = X t+1 + Λt

β and
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Algorithm 1 ADMM algorithm for the proposed models.

Input: The observed tensor O ∈ R
n1×···×nd , the index Ω, the

parameter of transform matrix �= (�1, · · · , �d) ∈ R
d, the

parameter β and γ, and the maximum iteration tmax =
1000.

Output: The reconstructed tensor X ∈ R
n1×···×nd .

1: Initialization: The iteration t= 0, X 0, C0, Z0, and T 0
k.

2: while not converged and t < tmax do
3: Update X t+1 via Eq. (37);
4: Update Ct+1 via Eq. (39);
5: Update Zt+1 via Eq. (42);
6: Update T t+1

k via Eq. (45);
7: Update Γ t+1

k and Λt+1 via Eq. (35);
8: Let βt+1 = γβt and t= t+ 1;
9: Check the convergence conditions

∥∥X t+1 −X t
∥∥
F
/
∥∥X t

∥∥
F
≤ 10−4;

10: end while

Q=
[
C;T t

1:k−1,T
t
k+1:d

]
, and then the equation (43) can be

converted into the following formulation:

T t+1
k = argmin

T k

β

2
‖Q〈k〉 − T�

k P 〈k〉‖2F + Ψ (T k)

= argmax
T k

Tr
((

βQ〈k〉P
�
〈k〉

)
T k

)
− Ψ (T k) . (44)

This is an orthogonal Procrustes problem [65], and the closed-
form solution of (44) is

T�
k

t+1
=U t+1

k V �
k

t+1
, (45)

where U t+1
k , St+1

k , and V t+1
k are results of SVD on

βQ〈k〉P
�
〈k〉. The orthogonality or semi-orthogonality of T t+1

k

depends on the size of the initially given T 0
k. For initially given

T 0
k ∈ R

nk×�k , the T 0
k is orthogonal and is the solution of model

(26) when �k = nk. The T t+1
k is semi-orthogonal and is the

solution of model (27) when 0< �k < nk.

D. Computational Complexity Analysis

In this section, we analyze the computational complexity of
the proposed models in Algorithm 1. For X ∈ R

n×n×···×n and
transform matrixT k ∈ R

n×�̄, the main computational complex-
ity at each iteration for the proposed algorithm can be con-
cluded by updating X , updating C, updating Zk, and updating

T k, which cost O
(∑d

k=1 �̄
knd−k+1

)
, O

(∑d
k=1 �̄

knd−k+1
)

,

O(d�̄d+1), and O
(
N�̄nd + dn2�̄+ dn�̄2

)
, respectively. There-

fore, the overall computational complexity at each iteration
of Algorithm 1 is O

(∑d
k=1 �̄

knd−k+1 + d�̄d+1 + d�̄nd
)

. In

addition, the computational complexities of the algorithms
of HaLRTC, TNN, UTNN, HTNN, and WSTNN methods
are O(dnd+1), O(nd log(nd−2) + nd+1), O(n2d−2 + nd+1),
O(n2d−2 + nd+1), and O((d(d+1)

2 ) (nd log(nd−2) + nd+1)),
respectively.

E. Convergence Analysis

In this section, we provide the theoretical convergence of our
algorithm. The architecture of proof is to refer to [66], where
the algorithm satisfies the following conditions:

1) The sequence (X t, Ct,Zt
k,T

t
k, Γ

t
k, Λ

t)t∈N satisfies suffi-
cient decrease condition;

2) The sequence (X t, Ct,Zt
k,T

t
k, Γ

t
k, Λ

t)t∈N is bounded;
3) The Lμ(X , C,Zk,T k, Γk, Λ) is a proper lower semi-

continuous function and has the Kurdyka-Łojasiewicz
(K-Ł) property at (X t, Ct,Zt

k,T
t
k, Γ

t
k, Λ

t)t∈N;
4) The Lμ(X , C,Zk,T k, Γk, Λ) satisfies subgradient bound

condition.
Theorem 5: Suppose the sequence (X t, Ct,Zt

k,T
t
k, Γ

t
k,

Λt)t∈N is generated by the proposed algorithm, and it satisfies
the conditions 1-4. Then, the sequence converges to a critical
point of Lμ(X , C,Zk,T k, Γk, Λ).

The proof of Theorem 5 can be found in the supplementary
material.

VI. NUMERICAL EXPERIMENTS

In this section, we conduct experiments to verify the ef-
fectiveness of the proposed methods for LRTC on both syn-
thetic tensors and real-world data. For numerical experiments
on synthetic tensors, we investigate the probability of successful
recovery with simultaneous varying of the tensor-element rank
r and the sampling rate ρ. For numerical experiments on real-
world data, we investigate the performance of the proposed
METNN and METNN+ on fourth-order tensor data (i.e., color
videos and traffic data), fifth-order tenor data (i.e., light field
images), and sixth-order tensor data (i.e., light field videos).
Especially, we compare our models with several state-of-the-
art methods, including a Tucker rank baseline method–HaLRTC
[67], a third-order t-SVD baseline method–TNN [44], a third-
order unitary transform-based method–UTNN [50], dth-order
TNN method–HTNN [60] and WSTNN [57]. For third-order
tensor methods, we use dimensional merging to obtain a third-
order tensor X̃ ∈ R

n1×n2×(n3···nd)2 as input. All numerical
experiments are implemented in Windows 10 64-bit and MAT-
LAB R2022a on a desktop computer with an Intel(R) Core(TM)
i9-12900 CPU at 2.40 GHz with 64GB memory of RAM.

A. Simulations

To demonstrate Theorem 4, we conduct a series of inde-
pendent numerical experiments aimed at recovering randomly
missing tensors. For each independent experiment, we generate
a random tensor of size 30× 30× 30× 30 with Gaussian dis-
tribution. Subsequently, we perform the mode-k tensor-element
SVD of it to get X with tensor-element rank (r, r, r, r) ∈ R

4.
We randomly sample ρn1n2n3n4 entries from X and then try
to recover the missing tensors using various methods: TNN,
HTNN, WSTNN, and METNN. The success rate is defined as
the ratio of the number of successful recoveries to the total num-
ber of attempts. A test is deemed to be successful if the relative

2X̃ can be obtained by the MATLAB command reshape(X ,
[n1, n2, prod(n3 · · ·nd)])
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Fig. 2. The success rates for synthetic data with a varying tensor-element
rank r and varying SRs ρ.

squared error between the recovered tensor X ∗ and the ground-
truth tensor X satisfies ‖X ∗ −X‖2F /‖X‖2F ≤ 10−3. We repeat
our experiments 10 times and calculate the success rate. Fig. 2
reports the success rate of TNN, HTNN, WSTNN, and METNN
methods at different sampling rates (SRs) ρ and tensor-element
rank r. A larger yellow area indicates a higher recovery capa-
bility for the respective method. The observations from Fig. 2
reveal that the METNN method exhibits a reduced sampling re-
quirement for successfully recovering the underlying tensor, in
comparison to the TNN, HTNN, and WSTNN methods. These
simulation experiments further support the findings presented
in Theorem 4.

B. Experiments on Color Videos

We evaluate the performance of METNN and METNN+ on
seven videos from the NTT database3, including Rhino, Bird,
Horse, Fox, Board, Ski, and Flight. In our experiments, we
select the first 30 frames of each video, and each video is resized
to 144× 176× 3× 30. For the each data, SRs are set to be 0.05,
0.10, 0.15, and 0.20, respectively.

Table II displays the numerical evaluation metrics of various
methods at different SRs. From Table II, it can be seen that the
proposed methods METNN and METNN+ achieve significant
advantages compared to other methods. With the increase in
SRs, the advantages being established by proposed methods
are expanding, whether in terms of PSNR, SSIM, or MSE.
Fig. 3 presents the recovered results, zoom-in regions, and the
corresponding residual images obtained by the HaLRTC, TNN,
UTNN, HTNN, WSTNN, METNN, and METNN+ methods
at SR=0.2. Observing Fig. 3, it becomes evident that our pro-
posed methods, METNN and METNN+, achieve superior re-
sults in both edge profile and fine details compared to the other
approaches. More visual results on videos Bird, Horse, Fox,
Board, and Ski can be found in the supplementary material.

3The data is available at http://www.brl.ntt.co.jp/people/akisato/saliency3.
html.

C. Experiments on Light Field Images

To evaluate the performance of METNN and METNN+, we
select some light field images with 9× 9 views from the Light
Field Database4, including Dish, Greek, Kitchen, Medieval,
Table, and Town. For each light field image, it is resized to
128× 128× 3× 9× 9 in our experiments. For each data, SRs
are set to be 0.05, 0.10, 0.15, and 0.20, respectively.

Table III reports the PSNR, SSIM, and MSE of all methods
on six light field images with different SRs. The proposed meth-
ods, benefiting from the exclusion of the unfolding operation
and the incorporation of the direction prior, outperform HaL-
RTC, TNN, UTNN, HTNN, and WSTNN in terms of PSNR,
SSIM, and MSE. Fig. 4 shows the visual restoration results by
different methods, where SR is 0.10 at Dish and Greek. From
Fig. 4, the visual results obtained by the proposed methods
are outperformed the comparison model on different light field
data. More visual results about Kitchen, Medieval, Table, and
Town can be found in the supplementary material.

D. Experiments on Light Field Videos

To evaluate the performance of METNN and METNN+, we
select two light field videos with 3× 3 views from [68]5. In
our experiments, we select the first 20 frames of each video,
and each video is resized to 256× 256× 3× 20× 3× 3 in our
experiments. For each data, SRs are set to be 0.05, 0.10, 0.15,
and 0.20, respectively.

Table IV provides a comprehensive overview of quanti-
tative evaluation metrics about different SRs. Remarkably,
the proposed methods (METNN and METNN+) consistently
demonstrate substantial advantages over their counterparts. In
Fig. 5, we present a detailed visual assessment encompassing
restoration results, magnified regions, and corresponding resid-
ual images obtained through HaLRTC, TNN, UTNN, HTNN,
WSTNN, METNN, and METNN+ under SR = 0.2. Similar to
color videos and light field images, Fig. 5 reflects the consis-
tently excellent performance of the proposed methods METNN
and METNN+ in light field videos, especially in preserving
edge contours and complex fine details.

E. Experiments on Traffic Data

To verify the effectiveness of the proposed methods on traffic
data, we choose two traffic data sets collected by the Cali-
fornia department of transportation through their Performance
Measurement System (PeMS)6 with a 5-min resolution. One
dataset covers 8 weeks with 200 sensors (referred to as PeMS-
8W), whose size is 200× 12× 24× 56, and the other covers 12
weeks with 100 sensors (referred to as PeMS-12W), whose size
is 100× 12× 24× 82. To evaluate the restoration results for
traffic data, we used three metrics [69] including MSE, MAPE,
RMSE. For each data, SRs are set to be 0.05, 0.10, 0.15, and
0.20, respectively. The lower MSE, MAPE, and RMSE values

4The data is available at https://lightfield-analysis.uni-konstanz.de/.
5The data is available at https://resources.mpi-inf.mpg.de/LightFieldVideo/

index.html.
6The data is available at https://zenodo.org/records/3939793.
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TABLE II
EVALUATION INDICES OF RESTORATION RESULTS BY DIFFERENT METHODS ON COLOR VIDEOS UNDER DIFFERENT SRS

SR=0.05 SR=0.10 SR=0.15 SR=0.20

Data Method PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE

Rhino

HaLRTC 17.467 0.370 0.297 21.827 0.525 0.177 23.288 0.591 0.148 24.618 0.653 0.127
TNN 23.809 0.559 0.139 25.888 0.662 0.109 27.164 0.723 0.094 28.292 0.770 0.083

UTNN 24.131 0.562 0.134 26.213 0.666 0.105 27.651 0.735 0.088 29.130 0.796 0.074
HTNN 23.943 0.567 0.137 26.322 0.687 0.104 27.948 0.761 0.086 29.430 0.817 0.073

WSTNN 25.366 0.662 0.117 27.576 0.765 0.090 29.303 0.831 0.074 30.888 0.877 0.061
METNN 26.237 0.684 0.104 28.621 0.785 0.079 30.998 0.869 0.060 32.767 0.910 0.049

METNN+ 26.465 0.678 0.101 29.083 0.786 0.075 31.347 0.873 0.058 33.098 0.908 0.047

Bird

HaLRTC 15.271 0.317 0.402 19.889 0.473 0.236 21.939 0.585 0.186 23.750 0.680 0.151
TNN 24.138 0.694 0.145 27.081 0.816 0.103 28.897 0.865 0.084 30.468 0.897 0.070

UTNN 24.766 0.725 0.135 27.592 0.830 0.098 29.594 0.879 0.078 31.388 0.912 0.063
HTNN 24.170 0.695 0.144 27.243 0.821 0.101 29.228 0.872 0.081 30.960 0.906 0.066

WSTNN 26.043 0.815 0.117 29.363 0.901 0.080 31.699 0.935 0.061 33.758 0.956 0.049
METNN 26.200 0.799 0.115 30.215 0.906 0.072 33.070 0.945 0.052 35.482 0.965 0.039

METNN+ 27.006 0.816 0.105 31.293 0.914 0.064 33.883 0.945 0.047 36.227 0.968 0.036

Horse

HaLRTC 16.855 0.436 0.312 22.428 0.588 0.165 24.368 0.657 0.132 26.014 0.718 0.109
TNN 25.387 0.629 0.118 28.169 0.756 0.086 29.877 0.819 0.071 31.314 0.862 0.060

UTNN 25.994 0.656 0.110 28.674 0.773 0.081 30.439 0.836 0.066 31.977 0.879 0.055
HTNN 25.435 0.631 0.118 28.357 0.764 0.084 30.217 0.830 0.068 31.829 0.875 0.057

WSTNN 27.141 0.771 0.097 30.102 0.861 0.069 32.145 0.907 0.055 33.901 0.935 0.045
METNN 27.716 0.745 0.089 30.715 0.851 0.063 33.108 0.909 0.048 35.083 0.941 0.038

METNN+ 28.436 0.763 0.082 31.544 0.862 0.057 33.331 0.911 0.047 35.129 0.936 0.038

Fox

HaLRTC 11.408 0.240 0.357 21.763 0.671 0.110 24.075 0.750 0.085 25.929 0.805 0.069
TNN 24.296 0.689 0.085 27.267 0.775 0.062 29.172 0.827 0.050 30.747 0.863 0.042

UTNN 25.732 0.741 0.075 28.960 0.829 0.053 31.430 0.881 0.040 33.660 0.918 0.031
HTNN 24.473 0.695 0.083 28.025 0.798 0.056 30.693 0.863 0.041 32.879 0.904 0.032

WSTNN 27.420 0.862 0.062 31.241 0.924 0.041 34.042 0.952 0.030 36.339 0.967 0.023
METNN 29.184 0.876 0.049 33.579 0.940 0.030 36.879 0.966 0.021 39.265 0.979 0.016

METNN+ 29.845 0.872 0.049 34.331 0.939 0.028 37.205 0.965 0.020 39.136 0.976 0.016

Board

HaLRTC 16.585 0.551 0.268 23.454 0.761 0.121 25.646 0.810 0.094 27.422 0.849 0.077
TNN 26.251 0.743 0.090 28.960 0.826 0.067 30.631 0.866 0.055 31.934 0.893 0.048

UTNN 27.026 0.781 0.083 29.760 0.854 0.061 31.642 0.892 0.050 33.218 0.918 0.042
HTNN 26.293 0.744 0.089 29.150 0.832 0.065 31.061 0.876 0.052 32.561 0.905 0.044

WSTNN 28.181 0.874 0.073 31.158 0.921 0.053 33.341 0.945 0.042 35.051 0.960 0.035
METNN 29.296 0.885 0.064 32.625 0.937 0.044 35.141 0.963 0.033 37.131 0.973 0.026

METNN+ 29.812 0.887 0.061 33.391 0.939 0.041 35.547 0.962 0.032 37.227 0.973 0.026

Ski

HaLRTC 10.033 0.188 0.389 19.139 0.454 0.137 21.531 0.546 0.104 23.141 0.617 0.086
TNN 21.519 0.419 0.105 23.898 0.540 0.080 25.369 0.623 0.068 26.657 0.691 0.058

UTNN 22.179 0.443 0.097 24.470 0.572 0.075 26.348 0.680 0.060 28.267 0.771 0.048
HTNN 21.760 0.436 0.102 24.799 0.601 0.072 27.135 0.722 0.055 29.217 0.808 0.043

WSTNN 23.834 0.625 0.081 26.588 0.753 0.059 28.822 0.838 0.045 30.862 0.892 0.036
METNN 25.530 0.684 0.066 29.249 0.844 0.043 32.095 0.915 0.031 34.522 0.949 0.023

METNN+ 25.477 0.685 0.066 29.731 0.855 0.041 32.935 0.926 0.028 35.315 0.954 0.021

Flight

HaLRTC 14.734 0.385 0.292 23.349 0.815 0.104 25.062 0.858 0.085 26.626 0.890 0.071
TNN 25.249 0.794 0.084 28.220 0.856 0.060 30.017 0.890 0.049 31.373 0.911 0.042

UTNN 26.206 0.826 0.075 29.113 0.882 0.054 31.080 0.913 0.043 32.821 0.934 0.035
HTNN 25.319 0.796 0.083 28.373 0.859 0.059 30.334 0.895 0.047 31.894 0.918 0.039

WSTNN 27.927 0.914 0.062 31.095 0.952 0.043 33.378 0.968 0.034 35.307 0.977 0.027
METNN 28.883 0.918 0.054 32.619 0.957 0.035 35.265 0.975 0.026 37.505 0.981 0.020

METNN+ 29.043 0.912 0.054 33.308 0.952 0.033 35.859 0.975 0.025 38.053 0.982 0.020

indicate better recovery performance. Table V reports the MSE,
MAPE, and RMSE of all methods on traffic data with differ-
ent SRs. The proposed methods outperform HaLRTC, TNN,
UTNN, HTNN, and WSTNN in terms of PSNR, SSIM, and
MSE.

F. Discussion

1) Parameter Study: In this part, we discuss regulariza-
tion parameter β and the parameter of transform matrix �=
(�1, �2, · · · , �d) ∈ R

d in the proposed models. To evaluate the

influence of these parameters, we use the color video Rhino
at SR = 0.10 as an example. Since METNN is a special case
of METNN+, i.e., �k = nk, k = 1, 2, 3, 4, we discuss only the
parameters of METNN+. Moreover, since n3 = 3 for color
video, �3 is set to n3 in our experiment.

We first analyze the influence of β on the proposed model.
Fig. 6(a) illustrates the PSNR and SSIM values corresponding
to different β, where β chosen from the set {10−3, 5× 10−3,
10−2, 5× 10−2, 10−1, 5× 10−1, 1, 5, 10, 50, 100}. From
Fig. 6(a), we are able to observe that PSNR and SSIM
values are stable for β falling within [10−1, 1], and the
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Fig. 3. The selected frame of restoration results by different methods on color videos (i.e., Rhino and Flight) under SR=0.2.

TABLE III
EVALUATION INDICES OF RESTORATION RESULTS BY DIFFERENT METHODS ON LIGHT FIELD IMAGES UNDER DIFFERENT SRS

SR=0.05 SR=0.10 SR=0.15 SR=0.20

Data Model PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE

Dish

HaLRTC 10.226 0.150 0.684 16.673 0.383 0.323 21.840 0.591 0.177 24.078 0.690 0.137
TNN 28.501 0.825 0.085 31.412 0.898 0.062 33.401 0.930 0.051 35.060 0.949 0.043

UTNN 29.029 0.844 0.079 32.611 0.923 0.054 35.071 0.954 0.042 37.076 0.970 0.033
HTNN 29.101 0.843 0.079 32.395 0.917 0.055 34.948 0.950 0.042 36.869 0.966 0.034

WSTNN 29.321 0.878 0.078 32.761 0.941 0.054 35.223 0.964 0.042 37.342 0.977 0.033
METNN 30.343 0.892 0.067 34.647 0.959 0.041 37.893 0.980 0.029 40.718 0.990 0.021

METNN+ 31.220 0.906 0.061 35.679 0.964 0.037 37.708 0.976 0.030 42.232 0.993 0.018

Greek

HaLRTC 7.747 0.109 0.733 12.872 0.294 0.407 18.811 0.528 0.206 23.699 0.735 0.117
TNN 28.858 0.875 0.068 32.743 0.938 0.045 35.019 0.960 0.035 36.919 0.972 0.029

UTNN 30.906 0.916 0.054 34.946 0.963 0.034 37.644 0.979 0.026 39.979 0.987 0.020
HTNN 30.131 0.902 0.058 33.897 0.953 0.039 36.964 0.974 0.028 39.141 0.983 0.022

WSTNN 31.208 0.934 0.053 35.673 0.973 0.033 38.551 0.985 0.024 40.908 0.991 0.019
METNN 32.936 0.946 0.041 37.547 0.980 0.024 40.709 0.990 0.017 43.541 0.995 0.012

METNN+ 34.036 0.957 0.037 38.560 0.983 0.022 41.291 0.991 0.016 45.532 0.997 0.010

Kitchen

HaLRTC 11.257 0.172 0.686 17.881 0.453 0.320 23.456 0.727 0.169 26.274 0.827 0.122
TNN 33.895 0.947 0.054 37.135 0.971 0.039 39.574 0.981 0.030 41.419 0.987 0.025

UTNN 35.643 0.962 0.044 41.204 0.986 0.025 43.861 0.992 0.018 46.553 0.995 0.013
HTNN 34.560 0.953 0.049 38.648 0.978 0.031 41.842 0.988 0.022 43.883 0.992 0.018

WSTNN 35.171 0.967 0.047 39.921 0.986 0.029 43.124 0.992 0.021 45.713 0.995 0.016
METNN 36.142 0.961 0.041 41.285 0.986 0.023 43.957 0.992 0.017 46.384 0.995 0.013

METNN+ 38.667 0.976 0.031 43.321 0.989 0.018 45.061 0.992 0.015 48.934 0.997 0.010

Medieval

HaLRTC 13.777 0.242 0.640 21.112 0.570 0.274 25.604 0.750 0.163 28.176 0.831 0.121
TNN 34.964 0.948 0.058 38.119 0.971 0.042 40.357 0.981 0.033 42.001 0.986 0.028

UTNN 36.370 0.961 0.050 41.218 0.985 0.029 43.999 0.991 0.022 45.602 0.994 0.017
HTNN 35.775 0.955 0.052 39.526 0.978 0.035 42.191 0.987 0.026 43.901 0.991 0.021

WSTNN 36.209 0.966 0.051 40.582 0.985 0.032 43.311 0.991 0.024 45.482 0.994 0.019
METNN 37.087 0.962 0.045 41.186 0.984 0.028 43.866 0.991 0.021 45.809 0.994 0.016

METNN+ 39.017 0.975 0.036 42.916 0.988 0.023 44.537 0.991 0.019 47.727 0.996 0.013

Table

HaLRTC 9.021 0.152 0.724 14.353 0.341 0.390 19.914 0.580 0.205 23.542 0.743 0.135
TNN 30.342 0.907 0.064 33.833 0.950 0.045 36.049 0.967 0.035 37.813 0.976 0.029

UTNN 32.084 0.937 0.053 37.208 0.975 0.031 40.760 0.987 0.021 43.499 0.992 0.016
HTNN 30.944 0.917 0.060 34.456 0.957 0.041 37.270 0.975 0.030 39.210 0.983 0.025

WSTNN 32.482 0.951 0.052 36.842 0.978 0.033 39.828 0.988 0.025 42.284 0.992 0.019
METNN 33.637 0.949 0.043 38.523 0.980 0.025 41.810 0.990 0.017 44.452 0.994 0.013

METNN+ 35.652 0.961 0.036 40.372 0.983 0.021 42.080 0.988 0.017 46.855 0.996 0.010

Town

HaLRTC 7.964 0.106 0.738 12.782 0.292 0.427 18.171 0.525 0.232 22.903 0.715 0.135
TNN 29.862 0.896 0.062 33.544 0.947 0.043 35.760 0.965 0.034 37.572 0.975 0.028

UTNN 32.332 0.936 0.048 37.076 0.975 0.029 40.578 0.987 0.020 43.376 0.993 0.015
HTNN 30.753 0.912 0.057 33.959 0.952 0.040 36.614 0.971 0.030 38.498 0.980 0.025

WSTNN 32.503 0.950 0.048 36.548 0.977 0.032 39.532 0.987 0.024 41.993 0.992 0.019
METNN 33.442 0.946 0.041 37.734 0.978 0.025 40.859 0.989 0.018 43.358 0.993 0.013

METNN+ 35.306 0.959 0.033 40.297 0.985 0.019 41.864 0.989 0.016 46.150 0.996 0.010
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Fig. 4. The selected band of restoration results by different methods on light field images (i.e., Dish and Greek) under SR=0.1.

TABLE IV
EVALUATION INDICES OF RESTORATION RESULTS BY DIFFERENT METHODS ON LIGHT FIELD VIDEOS UNDER DIFFERENT SRS

SR=0.05 SR=0.10 SR=0.15 SR=0.20

Data Model PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE

Wonam01

HaLRTC 10.569 0.213 0.609 16.148 0.392 0.320 19.092 0.535 0.228 21.112 0.638 0.181
TNN 18.112 0.456 0.258 25.926 0.773 0.110 28.461 0.841 0.083 30.074 0.877 0.069

UTNN 23.395 0.680 0.145 26.847 0.798 0.099 29.500 0.864 0.074 31.564 0.902 0.058
HTNN 18.879 0.509 0.235 28.080 0.834 0.084 30.723 0.889 0.062 32.355 0.916 0.051

WSTNN 25.007 0.783 0.121 29.067 0.887 0.078 31.439 0.923 0.060 33.299 0.944 0.048
METNN 27.011 0.822 0.094 30.508 0.901 0.064 32.701 0.933 0.050 34.371 0.951 0.042

METNN+ 27.903 0.844 0.085 31.272 0.911 0.058 33.397 0.939 0.045 34.620 0.950 0.039

Wonam02

HaLRTC 13.070 0.290 0.557 19.380 0.441 0.264 21.996 0.538 0.194 23.655 0.611 0.160
TNN 21.225 0.458 0.215 27.048 0.727 0.111 28.823 0.794 0.090 30.097 0.834 0.078

UTNN 24.517 0.612 0.146 27.289 0.746 0.106 29.432 0.822 0.083 31.042 0.865 0.069
HTNN 21.733 0.512 0.202 28.320 0.794 0.094 30.395 0.853 0.074 31.920 0.886 0.062

WSTNN 26.102 0.730 0.122 28.993 0.847 0.088 30.931 0.895 0.070 32.499 0.923 0.059
METNN 27.594 0.751 0.101 30.852 0.873 0.070 33.034 0.918 0.055 34.703 0.941 0.045

METNN+ 28.187 0.781 0.095 31.048 0.874 0.068 33.260 0.916 0.053 34.810 0.940 0.045

Fig. 5. The selected band of restoration results by different methods on light field videos under SR=0.1 on Woman01 and Woman02.

optimal parameter β is set to 5× 10−1 for the color video
Rhino. Immediately after that, we discuss the influence
of �1, �2, and �4. In Fig. 6(b)–6(d), we display the PSNR
and SSIM values for different settings of �1, �2, and �4,

where �1 is selected from {50, 60, · · · , 130, 140, 144}, �2 is
selected from {70, 80, · · · , 160, 170}, and �4 is selected from
{6, 7, · · · , 27, 28}. In this case, the optimal parameters of �1
is 90, �2 is 100, and �4 is 15.
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TABLE V
THE RESTORATION RESULTS OF DIFFERENT METHODS ON TRAFFIC DATA

Data Method
SR=0.05 SR=0.1 SR=0.15 SR=0.2

MSE MAPE RMSE MSE MAPE RMSE MSE MAPE RMSE MSE MAPE RMSE

Pems-8W

Observed 0.975 95.001 0.744 0.949 89.995 0.724 0.922 84.995 0.703 0.894 79.998 0.682
HaLRTC 0.098 9.290 0.075 0.071 5.973 0.054 0.061 4.689 0.046 0.054 3.892 0.041

TNN 0.055 3.959 0.042 0.044 2.976 0.034 0.037 2.385 0.028 0.032 1.986 0.025
UTNN 0.052 3.642 0.039 0.040 2.633 0.031 0.034 2.085 0.026 0.029 1.794 0.022
HTNN 0.055 3.958 0.042 0.044 2.978 0.034 0.037 2.385 0.028 0.032 1.987 0.025

WSTNN 0.051 3.653 0.039 0.040 2.658 0.031 0.034 2.125 0.026 0.030 1.792 0.023
MTENN 0.047 3.112 0.036 0.038 2.365 0.029 0.032 1.935 0.025 0.029 1.653 0.022

MTENN+ 0.047 3.083 0.036 0.038 2.333 0.029 0.032 1.909 0.025 0.029 1.628 0.022

Pems-12W

Observed 0.975 95.002 0.799 0.949 90.006 0.777 0.922 85.013 0.756 0.895 80.022 0.733
HaLRTC 0.090 7.923 0.074 0.063 4.709 0.052 0.053 3.625 0.043 0.046 2.974 0.038

TNN 0.049 3.047 0.040 0.040 2.381 0.032 0.033 1.931 0.027 0.029 1.605 0.024
UTNN 0.045 2.822 0.037 0.036 2.116 0.029 0.030 1.703 0.024 0.026 1.420 0.021
HTNN 0.049 3.048 0.040 0.040 2.388 0.033 0.033 1.931 0.027 0.029 1.606 0.024

WSTNN 0.042 2.563 0.034 0.033 1.914 0.027 0.028 1.540 0.023 0.024 1.298 0.020
MTENN 0.040 2.284 0.033 0.032 1.745 0.026 0.027 1.447 0.023 0.024 1.231 0.020

MTENN+ 0.039 2.208 0.032 0.031 1.704 0.026 0.027 1.416 0.022 0.024 1.206 0.020

Fig. 6. The PSNR and SSIM values with respect to different parameter
settings on color video Flight under SR = 0.1.

Fig. 7. The PSNR, SSIM, and relative error curves versus the number of
iterations on color video Rhino.

2) Convergence Analysis: In this part, to corroborate Theo-
rem 5, we conduct numerical experiments to analyze the con-
vergent behavior of the proposed model on color video Rhino.
Fig. 7 displays the PSNR, SSIM, and relative error curves
versus the number of iterations at different SRs. As the number
of iterations increases, the PSNR and SSIM values stabilize,

and the relative error gradually decreases to 10−4. This further
confirms that the proposed ADMM algorithm is convergent.

VII. CONCLUSION

In this paper, we propose a novel elt-product as a general-
ization of third-order t-product for dth-order tensor, where its
basic element is a (d− 2)th-order tensor instead of a vector.
The elt-product can avoid the unfolding operation and explore
more complex interactions via higher-order convolution instead
of limiting the first-order convolution, which better explores the
underlying structure of high-order tensor data. Based on the elt-
product, we establish the corresponding LRTC model and prove
the exact recovery guarantee of the proposed LRTC model.
To harness the resulting nonconvex optimization problem, we
apply an ADMM algorithm and prove the convergence of the
developed algorithm. Extensive experimental results on the sim-
ulated and real-world data (color videos, light-field images, and
light-field videos) demonstrate the superiority of the proposed
models against the state-of-the-art baseline models.
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