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Subspace-Contrastive Multi-View Clustering
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CHUAN CHEN, School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China

Most multi-view clustering methods based on shallow models are limited in sound nonlinear information
perception capability, or fail to effectively exploit complementary information hidden in different views.
To tackle these issues, we propose a novel Subspace-Contrastive Multi-View Clustering (SCMC) approach.
Specifically, SCMC utilizes a set of view-specific auto-encoders to map the original multi-view data into compact
features capturing its nonlinear structures. Considering the large semantic gap of data from different modalities,
we project multiple heterogeneous features into a joint semantic space, namely the embedded compact features
are passed through the self-expression layers to learn the subspace representations, respectively. In order to
enhance the discriminability and efficiently excavate the complementarity of various subspace representations,
we use the contrastive strategy to maximize the similarity between positive pairs while differentiate negative
pairs. Thus, the graph regularization is employed to encode the local geometric structure within varying
subspaces for optimizing the consistent affinity matrix. Furthermore, to endow the proposed SCMC with
the ability of handling the multi-view out-of-samples, we develop a consistent sparse representation (CSR)
learning mechanism over the in-samples. To demonstrate the effectiveness of the proposed model, we conduct
alarge number of comparative experiments on ten challenging datasets, and the experimental results show that
SCMC outperforms existing shallow and deep multi-view clustering methods. In addition, the experimental
results on out-of-samples illustrate the effectiveness of the proposed CSR.
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1 Introduction

With the growing popularity of data generation and feature extraction, multi-view or multimedia
data are available in large quantities. To be specific, multi-view data refer to various feature
representations from multiple aspects of objects. For instance, an image can be characterized
by Wavelet Texture (WT), Local Binary Pattern (LBP), Histogram of Oriented Gradient
(HOG), and so forth. A piece of document can be expressed in numerous languages. Researchers
generally believe that multi-view data consist of rich and useful heterogeneous information, so
the technologies related to multi-view analysis [8, 35, 54, 62, 68] are receiving increasing attention.
Multi-View Clustering (MVC) [15] is one of the representative technologies, which aims to
explore the complementary and consistent information embedded in multi-view data to boost the
clustering performance.

Currently, there are extensive MVC methods. For example, graph-based MVC [40, 46, 70] learned
the connectivity graph matrices to reveal the relationship of samples, then the designed fusion
schemes were developed to merge these graph matrices into a global graph. Spectral embedding-
based MVC [14, 28, 47] exploited low-dimensional spectral embedding with orthogonal constraint
for each view, which portrayed important components of data, then a consensus representation
was further merged. The goal of nonnegative matrix based MVC [21, 22, 61] was to factorize a
nonnegative discrete cluster indicator matrix from varying representations, thus the argmax(-)
function was adopted to acquire the data labels without post-processing. Among multitudinous MVC
methods, multi-view subspace clustering is a research hotspot and widely studied for its superior
performance, which absorbs theory from conventional subspace clustering [3] and further develops
it. The works [16, 30, 36] were classic multi-view subspace clustering approaches, which aimed to
explore a uniform underlying subspace representation from multiple feature spaces. These shallow
models have yielded promising clustering results, but most real-world data are high-dimensional and
nonlinear, shallow models might not been equipped with the ability to fetch nonlinear structures.

Auto-Encoder (AE) is an effective unsupervised deep representation learning paradigm, which
non-linearly maps the original data features into a compact feature space via the encoders, then
passes the compact representations through the decoders to reconstruct the data. AE is frequently
used to condense data information in clustering tasks. [19, 56] were two well-known deep em-
bedding learning methods, which used Kullback-Leibler divergence regularization to maximize
the similarity of soft assignments and target distributions. During the past few years, AE is also
introduced to multi-view subspace clustering. Sun et al. [45] used self-supervised strategy to
improve the unified subspace representation learning. Zhu et al. [69] simultaneously learned a
set of view-specific self-expression representations, then which were combined into a common
self-expression representation. Wang et al. [50] learned a unified subspace representation from
multi-view discriminative feature spaces. Cui et al. [10] proposed the spectral supervisor to guide
the learning of consensus subspace representation. The clustering performance of the above deep
multi-view subspace clustering approaches are excellent, but their abilities of exploiting the associ-
ation between multiple subspace representations still need to be improved. For instance, [45, 50]
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directly learn the consistent self-expression representation from multi-view latent features refined
by AEs, which could not capture the disparate characteristics of varying views, thus failing to
utilizing the complementary information. [69] applies a Hilbert Schmidt Independence Crite-
rion (HSIC) regularization term to reinforce the diversity of different views, this indistinguishable
alienation of different views may render it difficult to obtain the agreement of them. As for [10],
a weighted fusion layer is used to integrate all self-expression representations, which does not
harness the view correlations in insightful ways. Contrastive learning [18] is an emerging self-
supervised strategy that aims to maximize the similarity between positive pairs whereas minimize
the similarity between negative pairs. In MVC scenarios, there is a natural contrastive relationship
between varying views, thus giving rise to some multi-view contrastive clustering methods [20,
26, 48, 58, 63]. These methods enhance the discrimination of latent representations by maximizing
the similarity of positive samples and minimizing the similarity of negative sample pairs from
different views, belonging to the feature-level calibration. Nonetheless, an important objective
reality in multi-view data are that there may be large modality gap of data under different views,
which can drive the distance between instance pairs to be extremely huge, rendering the contrast
process difficult. Hence, how to mitigate modal isolation and improve the contrast quality is an
vital motivation of this paper. Additionally, most of MVC methods cannot handle the multi-view
out-of-samples, which are not involved in the construction of the similarity graph or the training
of the clustering network. To cluster the out-of-samples, most clustering algorithms or networks
have to be reexecuted or retrained, which is time-consuming and laborious.

We are inspired by the idea of contrastive learning, and propose a Subspace-Contrastive
Multi-View Clustering (SCMC) method. Specifically, in order to perceive the nonlinear struc-
tures in multi-view data, we employ view-specific AEs to encode the initial features into multiple
compact spaces, wherein the respective subspace representations are further learned through the
self-expression layers, such that the semantic information of data belonging to disparate modalities
can be unified into a common semantic space. Thus, we consider the same sample under different
views as the positive pairs, and the rest of pairs are considered as negative, Figure 2 illustrates the
manner of constructing positive and negative pairs. By pairwisely contrasting multiple subspace rep-
resentations, we bring the sample affinities of positive pairs closer together and the sample affinities
of negative pairs further apart, belonging to the structure-level calibration. This operation enhances
the discriminability of each subspace representation and explores the complementary information
within them, which is also different from the discrimination-induced regularization achieved by
the indistinguishable mutual exclusion between various representations in literatures [50, 69]. To
obtain a consistent affinity matrix, we use a weighted fusion scheme to merge multiple subspace
representations. Moreover, the graph regularization is applied to encode the local structures inside
the learned subspaces, further fine-tuning the suitable affinities between samples. In addition, we
further propose an extension mechanism for the multi-view out-of-samples, namely, the Consis-
tent Sparse Representation (CSR) learning method over the multi-view in-samples, thus directly
achieving the clustering for out-of-samples instead of retraining the clustering network.

Finally, abundant experiments on ten challenging datasets are implemented to verify the effec-
tiveness of the proposed SCMC. The major contributions of this paper are summarized as follows:

—We nonlinearly map the multi-view data into compact feature subspaces via the AEs, then
regard different subspace representations as contrast entities and perform the structure-level
contrastive learning, thus exploring the complementarity between heterogeneous views.

—We obtain an initial unified affinity matrix through the weighted aggregation, to capture the
local geometric structures of multiple subspaces, the graph regularization is utilized to further
fine-tune the affinities between instances. Thus, the inter-view consistency is well guaranteed.
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—We propose an extension mechanism to handle the multi-view out-of-samples, that is, the
CSRs of out-of-samples over the in-samples are learned, thus directly obtaining the clustering
results for the out-of-samples.

—To demonstrate the validity of the proposed SCMC, we carry out comprehensive experiments
on ten multi-view datasets, and the experimental results show that SCMC possesses advanced
data clustering capability compared with other MVC methods. Moreover, the proposed CSR is
also verified to be effective via the designed experiments.

The rest of this paper are structured as follows. Section 2 briefly reviews the related works.
In Section 3, we explicate the proposed SCMC and CSR. In Section 4, we discuss the differences
between the existing works and this paper. Experimental details are narrated in Section 5. Finally,
the conclusion is summarized in Section 6.

2 Related Works
2.1 Multi-View Subspace Clustering

Multi-view subspace clustering [5] leverages heterogeneous features of data to group samples
into a union of diverse subspaces. Self-expression based subspace learning technology has gained
widespread attention due to its concise but sound feature characterization capabilities. Some works
aimed at exploring a shared subspace representation. For instance, Cai et al. [4] explicitly modeled
the consistency and the specificity of multi-view data, and learned a well-structured common
affinity matrix. Li et al. [25] proposed a kernel completion schema to learn the compact and
low-redundant subspace representations. Wang et al. [53] relied on the information bottleneck
theory to discard the superfluous information in raw data, and explored a common subspace
representation via the view-common encoder network. Chao et al. [6] leveraged the multiple
imputation and ensemble technology to cope with the incomplete multi-view data. Wang et al.
[52] adopted the Frobenius norm and I ;-norm to enhance the robustness of consistent graph
matrix. For capturing the high-order correlations among views, tensor-oriented methods have been
researched. Ji et al. [23] proposed an enhanced tensor nuclear norm to differentiate the contributions
of diverse singular values. Qin et al. [42] projected the initial multi-view features into nonlinear
subspaces, then captured the high-order correlations via minimizing the rank of representation
tensor. Wang et al. [51] considered the existence of data noise in multi-view data and removed it
with the help of entropy-regularized tensor learning. To improve the abilities for matching the
complex data distributions, some researchers used neural networks to model multi-view data. [50,
69] used deep network frameworks to learn the subspace representations, then they all adopted
an exclusive regularization term to boost the complementary information among varying views.
Du et al. [11] learned the discriminative multi-view features via adversarial training, based on
which the consistent subspace representation was explored. Gao et al. [17] aimed at learning the
semantic-invariant representations among multiple heterogeneous features, and sought the optimal
cluster divisions by the reinforcement learning.

2.2 Contrastive Learning

Contrastive learning is one of the research hot spots of the self-supervised learning paradigm over
recent years, its central concept is to enhance the similarity between positive instance pairs and
weaken the similarity between negative instance pairs. In practice, [7, 43, 67] were proposed in
computer vision and natural language processing filed, which successively enhanced the discrimi-
nation of data representations by means of contrastive learning. Owing to the presented favorable
performance, contrastive learning has gained attention and been applied in clustering field. Li et al.
[27] simultaneously contrasted the instance-level and cluster-level representations to strength the
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Fig. 1. The framework of the proposed SCMC. To effectively handle high-dimensional and nonlinear structures
in multi-view data, we use V view-specific encoders to encode the initial multi-view features {x@ }UV:1 as
the compact embedding features {C(")}le. Thus, {C(z’)T}XZ1 pass through the multiple self-expression
layers to obtain the features {C(”)TZ(U) }vvzl, which are fed into the V view-specific decoders to reconstruct
the recovered data {X(U)}le. Notably, {Z(Z’)}Z=1 are essentially the coefficient matrices of multiple self-
expression layers, also called the subspace representations. We contrast these subspace representations in
pairs to exploit the complementary information between them. Further, a weighted fusion of all subspace
representations is performed to obtain a unified affinity matrix while the graph regularization is adopted to
fine-tune the affinities. Finally, the spectral clustering algorithm is employed to acquire the clustering results.

separability of samples belonging to different clusters. Liu et al. [34] adopted the data preprocessing
and multilayer perceptions to achieve the simple contrastive graph clustering, alleviating the burden
of high computational complexity. Furthermore, researchers have extended single-view contrastive
clustering to multi-view cases, Xu et al. [58] conducted data reconstruction in a low-level space and
punished the consistent objectives via a contrastive scheme in a high-level space. Yan et al. [60]
proposed a structure-guided contrastive schema to align common and view-specific semantic infor-
mation. Furthermore, some works also made the progress for combining the contrastive learning
and multi-view subspace clustering. Du et al. [12] performed the pairwise contrast between multiple
heterogeneous features via binary cross-entropy loss. Cheng et al. [9] contrasted the multi-view
features in the latent space and utilized the HSIC regularization to strengthen the diversity of
different subspace representations. Zhang et al. [66] proposed an MVC-driven contrast regularizer,
which regarded the neighboring nodes of a node as the positive samples as well.

3 The Proposed Method

In this section, we first explain the motivations for proposing the SCMC method. Second, we
present the objective functions of the proposed SCMC. Thus, the specific network architectures are
summarized, which are also graphically illustrated in Figure 1 for better comprehension. Further,
we conduct a series of analyses on the proposed method, including the optimization method, the
training details, the extension for the out-of-samples, and the analysis of time complexity.
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3.1 Motivation

(1) Existing deep multi-view subspace clustering methods [50, 69] enhance the discrimination of
different representations through an exclusive regularization term, but this undifferentiated
disparity of all representations may render the models difficult to acquire the agreement
across views. Inspired by contrastive learning, we differentially treat samples from various
views, construct cross-view positive and negative pairs, and strengthen the discrimination of
subspace representations by bringing positive pairs closer and separating negative pairs.

(2) The semantic information gap between different modalities in multi-view data [57] could
be very large. For example, the HOG feature of an image describes completely different
semantic information from the LBP feature, then the corresponding feature representations
are extremely disparate. Most current multi-view contrastive clustering methods [9, 58] are
based on feature-level contrast and may suffer from the above drawback. In light of this, we
explore the subspace representations of all views to unify the semantic information from
heterogeneous views into a joint semantic space, achieving the structure-level contrast.

3.2 Objective Function
(1) Reconstruction and Subspace Losses: A multi-view dataset is denoted by {X(®) }le. Specifically,

X(® ¢ RN%d"” is feature matrix of the oth view, where N and d® represent the number of instances
and the feature dimension, respectively. For the original feature X(*), it may be high-dimensional
and nonlinear, which poses difficulties for the downstream tasks. Hence, we use multiple view-
specific encoders to nonlinearly map X into a latent low-dimensional space. For the vth view, its
encoder is formulated as

C = o (XO W b, M

where C() is the embedding feature after X(*) passing the encoder ¢,(-), Wgu) and b‘(zv) indicate
the weight matrix and bias vector in the encoder, respectively. Mathematically, nonlinearity [33,
44] expresses the fact that the dependent variables do not have a linear or direct relationship with
the independent variables, and the variation of output is not proportional to the variation of input.
In addition, [33, 44] indicate that the output of each layer for a neural network-based model is
actually a high-level semantic feature embedding. Under the action of activation functions such
as Relu, Sigmoid, and so forth, the data are nonlinearly mapped to a compact representation at
each layer. Finally, with the guidance of loss function, the output of last layer is a discriminative
representation that is strongly correlated with the downstream tasks.

Current multi-view contrastive clustering tends to first project multi-view data into compact
feature spaces and then perform contrast between them. However, the semantic information of data
from heterogeneous views can be very disparate. Even if some works such as [58] consider projecting
data from different views into a unified feature space through a shared network, the distance between
pairs could still be very large. It is difficult to pull together the positive pairs of different modalities.
Subspace representation is not only an informative low-dimensional representation form of data,
but it also contains an important property, i.e., it portrays the affinity relationship between sample
points. For example, given a subspace representation Z € RN*N, Z;: measures the affinity between
the ith instance and the jth instance. Thus, the ith row Z; can be considered as a low-dimensional
subspace representation of the ith instance, but also as the affinities of the ith instance with other
instances. Therefore, there are still differences in subspace representations {Z ) }Z‘le from diverse
views, but their semantic information remains consistent, alleviating the dilemma in the contrast
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*

(a) View 1 (b) View 2 (c) View 3

Fig. 2. The diagram of constructing the positive and negative pairs. Let us take three views as an example,
the first data point of view 2 and the same data points of the other two views are positive pairs (connected by
solid lines). The first data point of view 2 and the remaining data points of the other two views and its own
view are negative pairs (connected by dashed lines).

process. We learn the subspace representation Z®) of the vth view by

min || —c®'Zz@|2. @)
c@ 7

In the networks, Z() is coefficient matrix of the learnable self-expression layer, which is achieved
via one-layer fully connected layer without the bias part. The original data are projected to the
latent space via the encoder, how to ensure that the features in the latent space maintain highly
informative is a key issue. In the literature [49], the authors proved that the essence of the recon-
struction loss is to the maximize the lower bound of the mutual information between original
features and latent features, which guaranteed that the latent features contain as much important
information as possible in the original feature space. Inspired by the previous works, we intro-
duce the reconstruction loss to guide the training of encoders, thus obtaining the compact and
informative latent features. After the embedding feature C() ! passes through the self-expression
layer Z® to obtain C(“)TZ(”), we reconstruct the data via feeding it into the decoder «,(+), the
decoding process is formulated as

X = o, W b, 3)
where X(® denotes the reconstructed data, Wfiv) and bf;’) represent the coefficient matrix and the

bias vector of the decoder network, respectively. For V views, the reconstruction loss and subspace
representation learning loss are computed by Equations (4) and (5)

g = mln X(U) X(U) 2 4
@ E || || ( )

A = i E C(U)T — C(U)TZ(U) 2. 5
Sub (I;]l’)l}ll’}v) - ” ”F ( )

(2) Contrastive Loss: There is a natural contrast between multiple subspace representations
{Z@}V_ . To exploit this property, we first construct positive and negative pairs across views. For
Z;v), it mutually forms a positive pair with the same instances under different views, while its
negative samples contain all the instances except the positive samples. Figure 2 provides a graphical
illustration of how positive and negative pairs are constructed. Summarily, there are V — 1 positive
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instances and V(N — 1) negative instances for va). Thus, we apply consine distance to measure
the similarity between pairs, the mathematical form is expressed as follows

o))
o(z™.z") =

N (6)
7@ | ||7(2)
’ ; 1 i 2

Taking one view as an example, to achieve the goal of narrowing the positive pairs and widening
the negative pairs, we formulate the problem as

v N
b, 38
@ Z(k)
2O Ko =1

exp (@(va), ng))/r) @

log

¥, (@272 /0y +exp(©(2°) 2 1n)

where 7 denotes the temperature parameter. We can observe that the numerator is about the
calculation of positive pairs, while the denominator is about the calculation of negative pairs. The
contrastable loss of V' views is computed by

%
. 1
Zeon = min NV ; . (8)

(3) Fusion Loss: For aggregating the complementary information in different views, we integrate
multiple subspace representations into a consistent affinity matrix in a weighted fusion manner.
Specifically, a set of weight coefficients are assigned to varying views, and they can be adaptively
optimized in the back propagation process. The problem is written as

\4
A=£{ZVNL1Q) = ) oz
=1
v ’ ©)
s.t. Zw(”) =10 >0,

0=1
where £ (-) denotes the fusion function, Q represents the learnable coefficients in the fusion function.
In addition, an important assumption of graph embedding theory [39, 59] is that two samples closer
to each other in the original space retain this property in the new low-dimensional space. We follow
this assumption and consider that two instances similar in subspaces under any view, they should
have higher affinity in the unified space. Thus, the following minimum problem can be obtained

=iy DR T 2 S5
> v i Jj i J

Vv
10
= Y T ZOLAZO) + 1Al (10
v=1

st.Ajl=1A;;>0,A; =0,

where A;; is the (i,j)-th element in the uniform affinity matrix A, A; denotes the ith row of A, 1 is
a vector with all elements of 1. The constraints on A aim to avoid the trivial solutions. One may
think that a unified affinity A can be learned directly through Equation (10), and the weighted
fusion mechanism seems to be unnecessary. Our intension is to initially obtain a consistent affinity
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matrix A through Equation (9) to avoid that all elements of A are zeros, which makes Equation (10)
unable to optimize, then we use Equation (10) to further fine-tune the affinities between samples.
At present, we give the final objective function of the proposed SCMC, which is written as

&L =Lpe+ YlgSub + YZgCon + Y33Fu

(IX© = X2 + yalict - Oz 3)

exp (0(z",2(9)/7) (11)

¥ [exp(@(Z1Z)%) /1) +exp(0(Z,) 2, 1)

i i

log

v
+1s ) THZOLAZO") + p AL,
v=1
N
s.t. ZAU‘ = l,Aij >0,A; =0,
j=1
where y1, y2, and y3 are three nonnegative tradeoff parameters. After the optimization based on back
propagation, the consistent affinity A is obtained, we perform the spectral clustering algorithm on
the matrix (A + AT)/2 to get the data labels.

We summarize how the complementarity and consistency between views are captured by the
proposed SCMC. we first nonlinearly project the original features of each view into the subspaces to
unify their semantic meanings. Then, the strategy of contrastive learning is adopted to capture the
complementary information between different views. We specify that a sample forms the positive
instance pairs with the same samples from other views while forming the negative instance pairs
with other samples. Guided by the contrastive learning loss, the positive pairs are approaching
while the negative pairs are alienating. Essentially, the view-invariant features are learned via
the contrast manner while enhancing the discrimination of the samples in the feature space, thus
capturing the complementarity hidden in different views. Further, to explore the consistency across
different views, we use the graph regularization to learn the view-shared affinity matrix. Specifically,
the graph embedding theory reveals to us that two data points close together in the original space
retain the property in the projected subspace. Therefore, we constrain two samples similar in either
subspaces should have similarity in the view-shared affinity matrix.

3.3 Network Architecture

Based on the introduction of the objective function above, we sketch the network architecture
of the proposed SCMC herein. V three-layer encoders embed multi-view data {X(”)}X=1 into

compact features {C(®}V_ . Next, {C(”)T}X pass the V self-expression layers to obtain the matrix

{C(”)TZ(”) }le, respectively. Concretely, the self-expression layer is achieved by a one-layer linear

layer discarding the bias part. Then, {C(”>TZ(”)}Z=1 is fed into V decoders symmetrical to the
encoders’ structures to decode the reconstructed data {X(”)}vvzl, respectively. In the encoding
and decoding processes, the activation function Relu(-) is adopted. Furthermore, we contrast the
learned subspace representations {Z(®)}V_ with each other, and fuse them into a consistent affinity

matrix A with a group of learnable weights, then the nonnegative A is obtained via Relu(-) function.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 9, Article 211. Publication date: October 2024.



211:10 L. Fu et al.

Algorithm 1: SCMC

Input: Multi-view data {X(“) }Zzl, parameters y1, 2, ¥3, and number of clusters c.
Output: Consistent affinity matrix A.
1: Initialize multiple view-specific AEs with the parameters after pre-training, initialize the
learning rate to 0.0001, the training epochs to 500.

2: for epoch = 1 to training epochs do

Compute the reconstruction loss £z, by Equation (4);

Compute the subspace learning loss Zs,,;, by Equation (5);

Compute the contrast loss Z¢,, by Equation (8);

Obtain the initial consistent affinity matrix A by Equation (9);

Compute the local structures loss £, by Equation (10);

Compute the overall objective loss & by Equation (11) and update the network parameters
via back propagation;

9: end for .
10: Performing the spectral clustering algorithm on % to acquire the data labels.

N A L S

For fine-tuning the affinities between instances, the graph regularization is leveraged to protect the
local structures within multiple subspace representations.

3.4 Optimization of Multiple Variables

Herein, we derive the gradient of each variable in each loss. For simplicity, the bias of linear layer
is not considered. Furthermore, the activation function Relu(-) is used, that is, Relu(x) = x if x > 0,
otherwise Relu(x) = 0, so the activation function is not presented in the derivation. We recall the
four proposed losses, which are written as

Fre = |IX = X@)2
Psup = [|IC?" =@ 2O

(0) (k)
v N exp (@(zi Z! )/r)
Lo == 2, Qe © (0) (K 12
k=1 k%0 i=1 ijl (exp(@(Zi ,Zj ))/1')+exp(®(Zi ,Zj >)/7.'))
Lru= Y > N2 =25 [BAG + 1Al + (A - 1),
[ i J
where C® and X(® are computed by
c@ — X(U)wgu)
13
X = Z(U)TC(U)W;v) — Z(o)TX(u)Wgu)WC(lv). (13)
For the reconstruction loss Zg., taking the derivative of C®, we have
ac>?Re Z agRe axl(cilj) ( )
= 14

acy 4 aX(”) acty
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(v)

Expanding szf) leads to

i

K Ss (2 c(”)w(“)l) Z" cOw')

d.jl (U)T (0)
= Z delélj’

aC 5;’) aC f;’) aC lfj“

ifI = j, 8;; = 1, otherwise §;; = 0. Thus, it has

5

i 0%ss s, s _ g0 s o
acy o axy a7 5C @) xo

where aiR‘; = —2(X®@ — X)),

Taking the derivative with respect to Z(?), we have

x@7 = W;wTC(v)TZ(v).

N (U)T
0L Re _ Z 0Lre Xy
oz X" oz
(@’

Focusing on the (U) , it can be derived
oz,

N T T T T
X" ~ T (W c® )kazfj;) dW ),z ()7 (0)T

@ (@) (@) = (W™ 7 )by
9Z;; 9Z;; 9Z;;

if I = j, 8;; = 1, otherwise §;; = 0. Thus, we have

= 2 e (W ety = S = e cw Y,
20 L X az® ~ oX

Similar to the process of taking the derivatives for C(*) and Z(®), we can obtain

(L?Re X(U)TZ(D) 3$Re W(D)T'

HW‘EU) ax(v)
IZLRe _ 7 (@7 7(0) &
ow'” oX ()
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(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

For the subspace loss 5,5, taking the derivative with respect to c@ 7@ and W((f) , respectively,

we have
EA 7 1 C
acle)b 2 ©) (C(U) © (U))'
83 1
_(S'Z)b 2C(U) (C(v) C(U)] Z(U))

a~=?Sub _ X(U)T agSub
oW 2C@

(23)

(24)

(25)
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For the contrastive loss Lcop, taking the derivative of Zl@), it can be obtained

IOk k )T ()T v k v
e _ka: 1/ (tot)Z® -1/ ()22 2" —Z(Ajzﬁ. ) +BJ-Z§. ) —c;zl), (26)
i =1,k#0 j

where t) = ||Z§U)||2, b= ||Z§k)||2, ty = ||Z§.v)||2, t3 = tg and A;, B;, and C; are corresponding
coeflicients.
For the fusion loss ZF,, when taking derivative of Z®)  we can obtain

0L ry,
0Z)

\4
=2 Z(Z(”)LA +ZLD). (27)
0=1

When taking the derivative of A;, we have

OFr
A.” = ZZ 1z -z |2 + 24, + 17 (28)
i PR

o

From the above derivation, we can observe that each variable of each loss has its derivative.
Through the iterative optimization, the overall loss becomes decreasing and converges.

3.5 Training Details

The training process of the network is divided in two steps: Pre-training and overall training. First,
we pre-train V three-layer AEs to initial their parameters. The purpose of pre-training is to mitigate
the difficulties of training the overall network caused by all zeros in the AEs’ parameters and the
possibility of generating trivial solutions. Second, we train the overall network, the parameters of
V AEs, V self-expression layers, a group of learnable weights, and the uniform affinity matrix are
iteratively optimized. Adam is adopted as the optimizer, and the learning rate is set to 0.0001. The
experiments are run on a server equipped with Intel(R) Core(TM) i9-10980XE, RTX 3090 GPU, and
128G RAM. Algorithm 1 provides a summary of the main steps of the proposed SCMC.

3.6 Extension for the Out-of-Samples

In the practical applications, some samples fail to participate in similarity construction or deep
network training. these unseen samples are called out-of-samples [2]. Common clustering methods
cannot directly cluster the out-of-samples unless the clustering methods are reexecuted or the
network is re-trained, this challenge is equally faced in the MVC. Hence, how to empower the
proposed SCMC with the capability of handling the out-of-samples without retraining the network
is a matter we consider.

Herein, we propose a CSR construction method over the in-samples for the out-of-samples for
bridging the gap. Specifically, the sparsity theory [13, 41] states that any data point can be fitted
by a linear combination of a set of basis. Furthermore, assuming that the all samples (including
in-samples and out-of-samples) and the in-samples are in independently and identically distributed,
thus the subspaces spanned by the in-samples can approximate the subspaces spanned by the all
samples. Given the multi-view in-samples {X(?) }v_, and the multi-view out-of-samples {(x® o
where X(© € RN*4” and X(©) € RN e first use the proposed SCMC to generate the cluster
labels over the multi-view in-samples {X () }Y_,. Then, we expect to explore the CSR of multi-view
out-of-samples in the subspaces spanned by the multi-view in-samples. For the ith out-of-sample
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&fv), the objective function of learning the CSR is formulated as

\4
: ~(0) 2 2
nlgn; 1%~ X |13+ 115, (29)

where h; denotes the CSR for the ith out-of-sample, A denotes the tradeoff parameter. To obtain the
optimal solution of h;, we take the derivation of h; and have

y
by = > &Ox©"

o=1 u=1

v -1
Z X@x@" 4 /11) . (30)

Then, we compute the distance between the ith out-of-sample and the jth subspace, which is
expressed as

\4
dj(x) = D 1% = o;(h) X1, (31)
v=1

where the elements of ¢;(h;) are the entries in h; related to the jth subspace. Naturally, the label
belonging to the subspace closest to the ith out-of-sample is its label, i.e.,

p(x) = arg mjin({dj(ﬁi)}?:l), (32)

where p(%;) denotes the assigned label for the ith out-of-sample, c is the number of clusters. More
importantly, the proposed mechanism of handing the out-of-samples can be applied as a plugin to
any of MVC methods.

3.7 Analysis of Time Complexity

In this subsection, we analyze the time complexity of the proposed SCMC. Specifically, the time
complexity mainly arises from four aspects, including the encoding-decoding process, the calcula-
tion of self-expression layer, the implementation of contrastive loss, and the computation of graph
regularization. Suppose the sizes of hidden layers in the oth encoder are d*), hy, ..., by, p, respectively.
Then, the sizes of hidden layers in the vth decoder are in reverse order. First, multi-view features
{X(”>}X:1 are passed through the encoders, it takes the @((ZXZI d@hy + V(hihy + ... + hip))N)
complexity, and so is the decoding. Let hpar = max(Zle dOh, Vhih,, ..., Vhip), the encoding
complexity is simplified as O (AmaxN). Second, the intermediate latent features {C(®) }Y_, are fed
into the self-expression layer, which produces the ©(pN?) complexity. Third, when the contrast of
two views is performed, the O((N® + N(N — 1))) complexity is consumed. Considering V views, it
costs the O(V(V — 1)(N* + N(N — 1))) complexity. Fourth, computing the graph regularization
incurs O(VN?) complexity. In summary, the overall time complexity of the proposed SCMC is
O(hmaxN + pN2+V(V = 1)(N*+ N(N - 1)) + VN?3).

4 Discussion

At present, there is a lot of works on MVC, some of which are relevant to the proposed SCMC, it is
necessary to discuss the differences between them.

—Compared to the traditional shallow multi-view subspace clustering methods [16, 29, 36],
we use neural networks to perceive the nonlinear structures in multi-view data, and expect
the multi-view data with complex distributional properties to separate well in subspaces.
Then, the contrastive learning strategy and graph regularization are leveraged to explore the
complementary and consistent information.
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Table 1. Statistics of Eight Datasets

Dataset ‘ Views ‘ Samples | Clusters Features
ALOI 4 1,079 10 64/64/77/13
GRAZ02 6 1,476 4 512/32/256/500/500/680
NUS-WIDE-v1 6 1,600 8 64/144/73/128/225/500
NUS-WIDE-v2 5 2,000 31 65/226/145/74/129
Reuters 5 1,500 6 21,531/24,892/34,251/15,506/11,547
UCI 3 2,000 10 240/76/6
WikipediaArticles 2 693 10 128/10
Youtube 6 2,000 10 2,000/1,024/64/512/64/647
Animals 2 5,000 50 4,096/4,096
Cifar10 2 10,000 10 768/324

—Compared to the deep multi-view subspace clustering methods [10, 45, 50, 69], which either use
the feature fusion or exclusion-induced regularizers to mine the complementary information
in multi-view data, we adopt the contrastive learning strategy to explore the cross-view
complementarity. The main benefit of the introduction of contrastive learning is that it
differently treats different sample pairs, bringing the positive sample pairs closer together
while pulling the negative sample pairs farther apart, which facilitates both the learning of
view-invariant features and the enhancement of the feature discrimination in the latent space.

—Existing multi-view subspace clustering methods [9, 12, 58] with contrastive mechanism
perform the contrast in the latent feature space, aiming to align the latent representations of
positive sample pairs in different views while alienating the latent representations of negative
sample pairs, which belongs to the feature-level calibration. In contrast, we perform the
contrast at the self-expression representation level, it is worth noting that the self-expression
representation depict the affinity between samples. We bring the sample affinities of positive
sample pairs closer under different views while pulling the sample affinities of negative sample
pairs away, which belongs to the structure-level calibration.

—The focus of this work [11] is to explore the multi-view and multi-level self-expression
representations. To enhance the discrimination of latent features output by the encoder
networks, the adversarial training strategy is used to assist the training of encoder networks.
Our work aims to bring the same samples closer together and different samples farther apart
by contrasting the self-expression representations from different views, thus strengthening
the discrimination of self-expression representations.

5 Experiments
5.1 Multi-view Datasets

Table 1 summarizes the statistics of eight test multi-view datasets. Specifically, ALOI' contains 1,079
images from 10 objects, 4 features are extracted from these images: Haralick texture feature, HSV
color histograms, Color similarities, and RGB color histograms. GRAZ02? is object categorization
dataset, which is composed of 1,476 images with 4 kinds of objects. 6 visual features are extracted,
including WT, LBP, SIFT feature, pyramid HOG, SURF feature, GIST feature. NUS-WIDE® is a famous

Ihttps://elki-project.github.io/datasets/multi-view
Zhttp://www.emt.tugraz.at/pinz/data/ GRAZ_02

3https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide
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image database, we select two subsets from it. NUS-WIDE-v1 contains 1,600 images of 8 categories,
6 views are Color histograms, Edge direction histograms, Block-wise color moments, Bag of words,
Color correlograms, WTs, respectively. NUS-WIDE-v2 consists of 2,000 images from 31 objects, each
image is represented from 5 features: Color Histogram, Edge distribution, Color correlation, Color
moments, and WT. Reuters* contains 1,500 documents with 5 languages, each sample is represented
as a bag of words that extracted by the TFIDF-based weighting means. UCI [1] is comprised of
2,000 handwritten numeric images ranging in [0, 9], three views are FOU feature, PIX feature, and
MOR feature, respectively. WikipediaArticles® is a document dataset organized by editors, which
contains 693 short articles with 10 classes and 2 views. Youtube® is a multi-view video games dataset
with 2,000 instances divided into 10 classes. Each entry has 6 features including HOG feature, CH
feature, MFCC feature, VS feature, SS feature, and HME feature. Animals contains 5,000 samples
with 50 classes, two kinds of features are extracted from DECAF and VGG19 networks, respectively.
Cifar10” is famous image dataset consisted of 10 categories of objects, 10,000 samples is randomly
selected, and each item has two features: CH feature and HOG feature. Following the most of deep
clustering works [9, 11, 50, 53, 69], we use the all samples in a dataset as the training set and also
use all samples as the test set, i.e., the training set is the test set. When the training process using
the training samples is completed, we adopt the spectral clustering algorithm over the learned
consistent affinity matrix to generate the predicted labels of training samples. Finally, the values of
evaluation metrics are computed through comparing the ground truth and predicted labels.

In addition, we explain what complementarity and consistency are in the test datasets. In [57,
68], the authors clarified the meaning of complementarity and consistency in multi-view data. The
feature representations from different views characterize different aspects of a same object, one
view possesses some unique characteristics that other views do not possess. The data information
between multiple views is complementary with respect to the complete data information. Although
the characteristics of different views are diverse, they all agree on a consistent latent feature space.
In other words, the feature representations of different views can be regarded as the specific
projections from the consistent latent representations. Figure 3 illustrates the ideal stated above.
For each multi-view dataset, its complementarity is reflected in the feature representations from
multiple domains, taking the ALOI dataset as an example, four kinds of feature representations
from four domains consist of the dataset, including Haralick texture feature, HSV color histograms,
Color similarities, and RGB color histograms. Its consistency is reflected by the consistent affinity
matrix learned via the proposed SCMC.

5.2 Baseline and Compared Multi-View Methods

To illustrate the validity of the proposed SCMC, we select the k-means algorithm as the baseline
method. In practice, multiple features are concatenated together to form a unified feature represen-
tation, then it is fed into k-means to obtain the clustering labels. In addition, we collect thirteen
state-of-the-art MVC approaches as the compared methods, which are briefly introduced as follows.

—AMGL [37] proposed a auto-weighted multi-view fusion mechanism, then solved the consensus
spectral embedding.

—SwMC [38] proposed a self-weighted fusion method of multiple graphs, obtaining the consis-
tent graph with exact connection components.

4https://archive.ics.uci.edu/ml/datasets.html
Shttp://lig-membres.imag fr/grimal/data. html
Shttp://archive.ics.uci.edu/ml/datasets
Thttps://www.cs.toronto.edu/kriz/cifar.html
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View 1

Fig. 3. lllustration of multi-view data. The feature representations XM and X2 of View 1 and 2 depict
different aspects for the same object, and they can be regarded as the feature representations obtained from
a consistent latent feature through different projections.

— TBGL [55] learned a low-rank bipartite graph tensor representation, then acquired the unified
graph via auto-weighted integration.

— CSMSC [36] learned the consensus subspace representation while the specific representations
of different views were also explored.

—MCGC [65] designed a disagreement cost function to reinforce the consensus among different
graphs.

—SM?SC [64] pursued the view consistency via a variable splitting and a multiplicative decom-
position module.

—MvDSCN [69] proposed the diversity and uniformity networks to capture the view-specific
and consistent information, respectively.

—LMVSC [24] used anchor graph embedding to fit the global affinity matrix, thus resulting in
linear computational complexity.

—CGL [28] optimized the spectral embedding matrices in a low-rank tensor space.

—DMSC-UDL [50] learned a unified subspace representation while enhanced the discrimination
between diverse views.

— EOMSC-CA [32] fused the anchor graph scheme and graph construction into a uniform model.

— CoMSC [31] employed the eigendecomposition to obtain the robust representations of multi-
view data, from which the consistent self-expressive representation was explored.

—MFLVC [58] proposed a novel contrastive MVC framework that simultaneously learned
low-level and high-level features from multi-view data.

CSMSC, SM?SC, LMVSC, EOMSC-CA, and CoMSC are shallow models based on subspace learning,
MvDSCN and DMSC-UDL are deep subspace models. MCGC is a graph based model. CGL is a
low-rank tensor learning based model. MFLVC is a deep model using contrast strategy. We run
the codes published by the authors and set the parameters according to the intervals suggested in
these papers.

In the proposed SCMC, we use two kinds of three-layer AEs to encode the multi-view data.
The dimensions of each layer of one AE are [d(”), 500], [500, 200], and [200, c], respectively.
The dimensions of each layer of another AE are [d (o), 200], [200, 100], and [100, c], respectively.
d® and ¢ denote the feature dimension of the oth view’s data matrix and the number of clusters. The
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Fig. 4. The visualizations of AMGL and SCMC on Moon dataset.

temperature parameter 7 is fixed to 0.1. yy, y, are tuned in {500, 1, 000}, {0.01, 0.025, 0.03, 0.06, 0.3, 0.4},
respectively. y3 is set to 0.01. Herein, we illustrate how the selected values of y1, y2, and y3 are
obtained. To seek the best parameters, the two-stage grid search strategy is adopted. Specifically,
in the first stage, namely, the coarse-grained stage, we empirically set the values of y1, y2, and
¥3 in {0.001,0.01,0.1, 1, 10, 100, 1,000}, and perform the proposed SCMC on the small-size dataset
WikipediaArticles to find the general parameter intervals that can yield the acceptable clustering re-
sults. After the coarse-grained stage, we locate the appropriate values of y1, y2, and y3 in {100, 1, 000},
{0.01, 1}, {0.01}, respectively. To cope with different datasets having different characteristics, we
carry out the fine-grained grid search in the second stage on each dataset. For instance, we tune
the value of y; in [100, 1, 000] with a step of 100, tune the value of y, in [0.01, 1] with a step of 0.01.

5.3 Evaluation Metrics

Seven dominant clustering evaluation metrics are adopted to quantify the clustering performance,
which are Accuracy (ACC), Normalized Mutual Information (NMI), Purity, Adjusted Rand
Index (ARI), F-score, Precision, and Recall respectively. In view of the algorithm stability, each
experiment is run ten times, then the mean values are reported. The ranges of ACC, NMI, Purity,
F-score, Precision, and Recall are all [0, 1], while the range of ARI is [-1, 1]. For all metrics, higher
values correspond to better clustering effects. The details of the evaluation metrics are introduced
in Appendices A.

5.4 Experimental Results

To verifying the ability of capturing the nonlinear structures of SCMC, we first perform the
traditional method AMGL and the proposed SCMC on the Moon dataset, which is a typical nonlinear
multi-view dataset with 200 samples and 2 views, and visualize the clustering results in Figure 4. It
can be seen that AMGL achieves the inferior performance, misclassifying almost of upper part of
the dataset. While SCMC obtains the nearly perfect results, demonstrating the its superior ability
of capturing the nonlinear structures. The clustering performance of each view is reported in
Tables 20-22 of Appendices B. Tables 2-11 provide the numerical results of all experiments, the
best results are bolded and the second best results are underlined. These results reveal several
interesting phenomenons and they are explained below. From a holistic perspective, the proposed
SCMC outperforms other single-view and MVC methods, which shows that the strategies adopted
by the model to improve the representation learning ability is efficient. Especially, on the UCI
dataset, SCMC raises the clustering performance by 9%, 2.28%, 8.45%, 9.7%, 8.68%, 14.85%, and 1.47%
compared to the suboptimal results. MFLVC also leverages the contrast mechanism to improve
the information capability of different representations, whose clustering performance achieves
favorable status on several datasets such as GRAZ02, Youtube. While SCMC still achieves better
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Table 2. Comparison of Clustering Results (%) on ALOI Dataset

‘Datasets H Methods H ACC ‘ NMI ‘Purity‘ ARI ‘F—score ‘ Precision

ALOI

K-means
AMGL
SwMC

TBGL
CSMSC
MCGC
SM?SC

MvDSCN

LMVSC
CGL
DMSC-UDL
EOMSC-CA
CoMSC
MFLVC
SCMC

47.49
52.28
67.10
58.29
75.66
83.32
23.73
82.39
73.31
94.89
79.61
65.80
80.63
82.63
95.74

47.34
54.85
64.99
56.15
73.32
74.77
26.34
82.08
68.62
9154
80.16
76.36
81.31
78.57
92.72

48.58
55.70
69.42
61.35
76.68
83.32
28.64
74.88
73.59
94.89
72.93
66.27
84.62
72.85
95.74

32.98
33.18
37.29
26.24
63.61
65.51
13.86
74.56
58.50
89.18
67.33
47.24
71.96
69.59
90.91

41.04
41.03
45.71
36.74
67.42
69.06
25.29
79.56
62.89
90.25
77.71
54.49
74.95
73.89
92.16

33.97
34.71
33.77
25.59
63.80
66.61
18.90
77.87
58.77
90.03
76.22
39.33
69.63
73.84
92.18

The best results are bolded, and the second-best results are underlined.

Table 3. Comparison of Clustering Results (%) on GRAZ02 Dataset

‘ Dataset H Methods H ACC ‘ NMI ‘ Purity ‘ ARI ‘ F-score ‘ Precision
K-means 3591 | 3.20 3591 3.56 33.83 27.19
AMGL 46.61 | 12.70 | 46.61 10.61 33.94 32.81
SwMC 38.89 | 5.64 40.31 6.82 35.10 29.18
TBGL 46.54 | 12.56 | 46.68 | 11.16 40.23 29.18
CSMSC - - - - - -
MCGC 43.02 | 6.92 43.02 6.44 30.10 30.03
SM2SC 47.15 | 12.49 | 47.76 | 11.91 34.22 34.09
GRAZ02 MvDSCN 40.44 | 6.81 50.54 5.93 31.24 29.97
LMVSC 44.24 | 8.21 44.24 8.09 31.40 31.23
CGL 46.46 | 12.54 | 46.46 | 11.43 33.87 33.72
DMSC-UDL || 41.32 | 8.33 52.24 8.28 32.65 31.05
EOMSC-CA || 42.48 | 12.19 | 46.95 | 10.66 33.33 33.14
CoMSC 40.79 | 8.29 43.50 7.82 31.17 31.04
MELVC || 47.97 | 1376 | 5718 | 13.79 | 3564 | 3535
SCMC 51.90 | 16.16 | 59.55 | 14.11 37.34 37.72

The best results are bolded, and the second-best results are underlined.

L. Fu et al.

performance, this situation may be attributed to the fact that SCMC applies the subspace learning
technology to standardizes data from various modalities into a common semantic space, thus
alleviating the difficulties in the contrast process. MvDSCN and DMSC-UDL are two deep multi-
view subspace clustering models, from all experimental statistics, their clustering outcomes are

not stable. For example, their clustering effects on UCI dataset are relatively superior, and both
exceed the baseline method k-means. Nonetheless, on WikipediaArticles dataset, they both produce
inferior clustering results than k-means. An interesting observation is that although CGL is a
conventional shallow model, it yields promising clustering results, probably because it captures the
high-order correlations between views by virtue of the low-rank tensor learning. Furthermore, we
present the running time of all compared methods on the test time in the Figure 7. It can be seen
that due to the network training consuming time, the proposed SCMC needs relatively longer time
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Table 4. Comparison of Clustering Results (%) on NUS-WIDE-v1 Datasets

‘ Dataset H Methods H ACC ‘ NMI ‘Purity‘ ARI ‘F—score ‘ Precision‘

K-means 25.44 | 14.88 | 28.69 | 6.79 23.71 16.26
AMGL 26.13 | 16.83 | 29.63 | 9.09 26.07 17.37
SwMC 33.88 | 17.28 | 33.88 | 11.23 | 25.63 19.67
TBGL 27.19 | 14.43 | 28.63 | 6.40 24.33 15.81
CSMSC 3431 | 19.58 | 3838 | 13.29 | 24.46 23.63
MCGC 31.75 | 18.87 | 35.63 | 11.35 | 23.40 21.42
SM2SC 32.31 | 19.87 | 36.81 | 12.66 | 23.83 23.18

NUS-WIDE-v1 MvDSCN 31.13 | 16.76 | 35.19 | 10.01 23.66 23.72

LMVSC 31.88 | 20.63 | 36.19 | 12.38 | 24.34 22.19
CGL 31.35 | 20.36 | 36.91 | 12.57 | 24.52 22.31
DMSC-UDL || 27.19 | 12.74 | 32.88 | 6.91 23.88 19.40
EOMSC-CA || 3294 | 20.21 | 34.00 | 11.84 | 27.11 19.48
CoMSC 28.63 | 11.82 | 29.88 | 9.27 20.77 20.40
MFLVC 34.81 | 18.68 | 36.13 | 14.33 | 26.55 24.62
SCMC 36.56 | 21.83 | 40.06 | 14.33 | 27.92 28.15

The best results are bolded, and the second-best results are underlined.

Table 5. Comparison of Clustering Results (%) on four NUS-WIDE-v2

Dataset
‘ Dataset H Methods H ACC ‘ NMI ‘ Purity ‘ ARI ‘ F-score ‘ Precision ‘
K-means 15.15 | 19.62 | 25.55 | 491 9.88 11.16
AMGL 1590 | 17.63 | 23.50 | 3.34 8.83 9.18
SwMC 15.85 | 9.18 18.35 | 0.91 11.56 6.36
TBGL 14.65 | 4.13 15.40 | 0.01 11.07 5.92
CSMSC 13.60 | 15.89 | 21.90 | 3.08 7.55 9.68
MCGC 15.05 | 15.92 | 21.60 | 3.27 9.20 8.87
SM?SC 15.15 | 17.16 | 24.75 | 4.46 8.49 11.89
NUS-WIDE-v2 MvDSCN 14.55 | 17.90 | 25.80 | 3.71 10.05 12.87
LMVSC 15.40 | 18.13 | 24.35 | 4.66 8.76 12.04
CGL 14.37 | 17.53 | 23.85 | 3.79 7.96 10.86
DMSC-UDL || 15.85 | 14.55 | 20.35 | 1.69 | 14.26 10.84
EOMSC-CA || 15.05 | 13.33 | 18.90 | 3.92 11.17 6.10
CoMSC 12.85 | 14.39 | 20.60 | 2.39 6.69 8.98
MFLVC || 16.35 | 14.16 | 23.15 | 535 | 13.31 | 1045
SCMC 17.85 | 21.23 | 30.30 | 5.92 11.97 15.10

The best results are bolded, and the second-best results are underlined.

on the small datasets, while the running time is more satisfactory on the large datasets than that of
some compared methods such as CSMSC and TBGL.

5.5 Experimental Visualization

We undertake some visualization experiments to directly compare the divergence in representation
learning abilities of varying approaches. The t-SNE technology is used to downscale the concate-
nated UCI dataset to a two-dimensional planes. Figure 5 visualizes the clustering results of ten MVC
methods on the UCI dataset, and data points belonging to different clusters are painted in different
colors. It can be seen that the ten clusters divided by SCMC rarely involve the samples of other
clusters, the segmentation is nearly perfect. On the contrary, the clusters produced by EOMSC-CA
are heavily mixed with samples of the other clusters, and even cannot divide enough ten clusters.

Figure 6 presents the visualizations of consistent affinity representations learned by seven
compared MVC methods and the proposed SCMC. We can observe that SM?SC and DMSC-UDL
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Table 6. Comparison of Clustering Results (%) on Reuters Dataset

‘Datasets H Methods H ACC ‘ NMI ‘Purity‘ ARI ‘F—score ‘ Precision

K-means 42.47 | 22.09 | 50.67 16.19 36.63 32.40
AMGL 42.20 | 13.19 | 42.87 5.94 36.72 24.21
SwMC 4493 | 28.49 | 52.53 10.15 36.87 26.74
TBGL 32.07 | 6.27 | 34.27 | 0.84 35.02 21.92
CSMSC 50.27 | 30.12 | 58.67 | 24.83 | 42.06 39.58
MCGC 4540 | 19.06 | 51.27 | 17.66 | 39.37 32.21
SM?SC 47.93 | 26.06 | 52.40 | 24.76 | 41.25 40.59

Reuters MvDSCN 49.20 | 28.59 | 50.67 | 19.71 42.46 41.46

LMVSC 47.40 | 26.80 | 51.73 | 19.64 | 41.27 33.07
CGL 4459 | 21.21 | 4897 | 20.83 | 37.35 38.61
DMSC-UDL || 34.93 | 16.50 | 43.00 | 1.85 44.42 30.66
EOMSC-CA || 37.60 | 12.53 | 46.40 12.32 30.20 31.95
CoMSC - - - - - -
MFLVC 43.40 | 29.76 | 60.53 | 24.70 38.13 44.23
SCMC 51.80 | 34.47 | 58.13 | 21.83 50.97 44.93

The best results are bolded, and the second-best results are underlined.

Table 7. Comparison of Clustering Results (%) on UCI Dataset

| Datasets || Methods || ACC | NMI | Purity | ARI | F-score | Precision

K-means 38.76 | 46.64 | 44.23 | 31.35 | 38.86 35.39
AMGL 76.28 | 78.30 | 78.02 | 68.69 | 72.04 67.55
SwMC 72.95 | 79.09 | 75.55 | 67.17 | 70.80 63.85
TBGL 81.40 | 84.06 | 83.40 | 76.13 | 78.71 72.50
CSMSC 87.20 | 77.35 | 87.20 | 74.32 | 76.90 76.24
MCGC 80.20 | 79.74 | 83.55 | 73.90 | 76.63 72.87
SM2SC 84.20 | 79.94 | 84.20 | 74.86 | 77.37 77.18

UCI MvDSCN 81.85 | 71.72 | 73.05 | 65.82 | 69.47 69.31
LMVSC 87.75 | 80.55 | 87.75 | 76.58 78.93 78.27
CGL 84.25 | 90.52 | 88.55 | 83.22 | 85.02 78.86

DMSC-UDL || 78.25 | 76.66 | 81.80 | 66.54 | 74.75 72.62
EOMSC-CA || 54.80 | 67.09 | 55.10 | 46.28 53.57 39.29
CoMSC 77.80 | 78.41 | 81.55 | 69.28 72.60 66.85
MFLVC 79.95 | 78.36 | 79.95 | 69.73 73.31 72.51
SCMC 96.75 | 92.84 | 97.00 | 92.92 | 93.70 93.71

The best results are bolded, and the second-best results are underlined.

almost fail to engrave the diagonal-block structures, CGL can clearly highlight important structures
on the diagonal, but the boundaries between diagonal-blocks are not apparent. Fortunately, SCMC
achieves the clear depiction of diagonal-blocks. In addition, the view-specific and consistent affinity
representations produced by SCMC are also visualized in Figure 8. As Figure 8 shows, the abilities
to characterize the similarities between instances of the affinity matrices of four single views
are not good, Figure 8(e) is generated via averaging all subspace representations, namely Z-sum
= (ZW +72® 1723 + 7)) /4. Though Z-sum can also clearly portray the diagonal-blocks structures,
some non-diagonal elements are also easily observed. Its suppression of non-diagonal affinities is
insufficient, which means that it does not protect the local geometric structures of data well.

To evaluate the convergence of the proposed SCMC, we plot the curves of the objective function
values and metric values as the number of training epochs increases on eight datasets in Figure 9. It

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 9, Article 211. Publication date: October 2024.



Subspace-Contrastive Multi-View Clustering 211:21

Table 8. Comparison of Clustering Results (%) on WikipediaArticles
Dataset

‘ Datasets H Methods H ACC ‘ NMI

Purity ‘ ARI ‘ F-score ‘ Precision ‘

K-means 54.69 | 51.48 58.59 39.02 45.80 44.97
AMGL 55.99 | 52.69 60.89 39.31 46.10 45.03
SwMC 51.08 | 44.81 53.68 19.94 31.49 23.84
TBGL 29.44 | 21.40 32.61 6.04 20.80 14.46
CSMSC 52.03 | 46.47 55.70 38.36 4491 46.16
MCGC 54.40 | 40.79 56.85 31.68 38.91 40.13
SM2SC 55.12 | 50.83 59.31 40.67 46.95 48.46
WikipediaArtiCles MvDSCN 39.97 | 32.09 | 47.04 | 21.41 31.87 32.62
LMVSC 55.56 | 47.46 57.00 33.12 41.00 37.99
CGL 54.16 | 49.83 59.42 37.09 4411 43.21
DMSC-UDL || 44.30 | 35.01 47.33 22.30 35.53 36.15
EOMSC-CA || 56.13 | 52.91 | 61.04 | 4230 | 4847 | 49.56
CoMSC 21.07 7.18 23.23 2.90 13.13 13.61
MFLVC 43,15 | 31.54 | 47.61 24.97 34.09 32.61
SCMC 57.86 | 53.74 | 63.20 | 42.54 | 50.61 51.01

The best results are bolded, and the second-best results are underlined.

Table 9. Comparison of Clustering Results (%) on Youtube Dataset

| Datasets || Methods || ACC | NMI | Purity | ARI | F-score | Precision

K-means 24.56 | 15.16 27.85 8.19 19.48 15.78
AMGL 27.65 | 16.68 27.80 11.47 24.23 16.74
SwMC 23.00 | 11.18 24.25 6.27 17.54 14.52
TBGL 20.80 | 10.55 21.10 3.72 20.49 11.71
CSMSC - - - - - -
MCGC 28.35 | 13.66 | 29.70 8.34 17.62 17.33
SM?SC 30.58 | 18.12 | 34.08 11.14 20.11 19.83

Youtube MvDSCN 30.55 | 17.67 | 34.90 | 10.76 22.77 20.41

LMVSC 29.15 | 18.01 | 33.30 | 10.06 19.50 18.52
CGL 32.95 | 19.65 | 35.39 | 12.52 21.48 20.88
DMSC-UDL || 29.95 | 17.13 | 35.30 9.39 21.54 19.35
EOMSC-CA || 32.20 | 18.17 | 32.60 12.82 23.49 19.11
CoMSC 24.60 | 10.41 26.00 5.87 15.42 15.13
MFLVC || 31.80 | 2437 | 38.00 | 1598 | 2601 | 2222
SCMC 37.90 | 26.12 | 41.15 | 18.53 | 28.50 25.61

The best results are bolded, and the second-best results are underlined.

can be observed that the objective function values decrease quickly and the metric values increase
quickly, though there are fluctuations in the middle of training process, they eventually tend to
stabilize.

5.6 Ablation Study

The proposed SCMC consists of four loss components, i.e., Zre, Lsubs Lcon, and Lr,. We implement
experiments to verify the role played by each loss component. Tables 12, 13, and 14 report the
ablation results. When SCMC has only reconstruction loss Zg,, we obtain the consensus features
by averaging multiple embedding features, then they are fed into the k-means algorithm to yield
the clustering results. However, the results are inferior, which means that the latent representations
embedded only through AEs are not yet well discriminated. When the subspace loss is introduced,
ie., Lre + Lsup, the performance is somewhat improved. It is worth noting that once the contrast
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Table 10. Comparison of Clustering Results (%) on Animals Dataset
‘ Datasets H Methods H ACC ‘ NMI ‘ Purity ‘ ARI ‘ F-score ‘ Precision
K-means 30.50 | 39.78 | 34.52 | 17.52 19.33 20.64
AMGL 43.64 | 54.43 | 48.74 | 18.11 21.02 13.88
SwMC 54.04 | 62.47 | 60.80 | 14.24 17.63 10.45
TBGL 34.86 | 37.73 | 36.64 | 4.62 8.85 4.69
CSMSC 51.42 | 61.74 | 56.02 | 41.92 | 43.23 45.06
MCGC 53.44 | 62.39 | 58.96 | 19.59 22.67 13.90
SM2SC || 55.84 | 66.38 | 63.78 | 44.56 | 4579 | 48.63
Animals MvDSCN 55.18 | 65.99 | 60.62 | 44.38 | 45.23 48.36
LMVSC 37.90 | 57.15 | 47.54 | 28.59 | 30.22 31.18
CGL 42.57 | 53.82 | 47.75 | 28.96 | 30.73 29.01
DMSC-UDL || 49.16 | 62.45 | 55.06 | 22.41 | 47.20 43.35
EOMSC-CA || 54.88 | 67.21 | 59.72 | 47.54 | 42.94 53.24
CoMSC 32.50 | 40.80 | 37.96 | 17.30 19.16 20.02
MFLVC 28.10 | 41.45 | 29.56 | 18.99 21.42 18.02
SCMC 57.06 | 68.82 | 64.16 | 45.49 | 48.30 | 51.57

The best results are bolded, and the second-best results are underlined.

Table 11. Comparison of Clustering Results (%) on Cifar10 Dataset
‘ Datasets H Methods H ACC ‘ NMI ‘ Purity ‘ ARI ‘ F-score ‘ Precision
K-means 15.84 | 3.81 16.89 | 1.71 13.80 11.22
AMGL 10.74 0.37 10.82 | 0.00 18.17 10.00
SwMC 17.04 | 6.05 17.34 | 1.97 | 18.97 10.94
TBGL 10.59 | 0.15 10.60 | 0.00 18.18 10.00
CSMSC 17.30 4.26 17.79 | 2.16 12.23 11.88
MCGC 18.12 | 6.17 18.57 | 3.01 18.96 11.53
SM?sC 16.90 | 4.10 17.50 | 2.05 12.26 11.77
Cifar10 MvDSCN 17.68 6.65 25.40 | 2.62 16.07 13.04
LMVSC || 18.55 | 8.21 | 1951 | 405 | 1391 | 1354
CGL 19.03 | 6.74 19.84 | 3.67 14.46 12.91
DMSC-UDL || 18.76 7.46 23.05 | 3.39 15.96 13.39
EOMSC-CA || 18.36 | 7.90 18.43 | 3.38 10.95 13.18
CoMSC 17.15 | 4.09 18.29 | 2.11 12.60 11.76
MFLVC 19.62 | 6.68 24.53 | 3.26 13.15 13.19
SCMC 21.22 | 10.26 | 25.56 | 5.19 | 16.75 14.45

The best results are bolded, and the second-best results are underlined.

L. Fu et al.

loss is included, the improvements of clustering effects are significant, illustrating that the contrast
strategy dose help to augment the discrimination of subspace representations. In general, on the
basis of Zre + ZLsup, SCMC performs better with the fusion loss &£, than with contrast loss Zcon,
which indicates that the contribution of ZF,, is greater. Nevertheless, Zc,n is essential if the optimal
performance is to be achieved. To verify the necessity of weighted fusion manner, we use the method
of averaging multiple subspace representations for the ablation experiments, that is, the initial
consistent affinity matrix is obtained by A = 3, Z'*) /V. The experimental results are showed in
the Figure 10, we can see that the clustering results with weight fusion manner outperforms that of
average fusion approach, showing that integrating multiple subspace representations with weight

assignment is more beneficial for utilizing the complementary information.
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Fig. 5. Visualization of clustering results of ten MVC methods on UCI dataset via t-SNE technology.
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Fig. 6. Visualizations of consistent affinity representations learned via eight MVC approaches on ALOI
dataset.

5.7 Investigation of Subspace-Contrastive Effects
We argue that learning subspace representations of multi-view data unifies the semantic information
between different modalities, thus facilitating the contrastive training of positive and negative
instance pairs. Some comparative experiments are designed to validate the subspace-contrastive
effects.

Firstly, we directly perform the contrast between latent representations learned by multiple
view-specific AEs, namely removing the subspace loss Zs,;. The reconstruction loss Zg, is
transformed as

14
Fre = D IIX = 2y (e XOWLE, bE) W DI IE. (33)

o=1

Meanwhile, the fusion loss ZFy, i.e., Equation (10) is modified as the following form:
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Fig. 7. Comparison of execution time of all compared MVC methods on the test datasets. Considering the
large gaps between some values of running time, we perform the log(-) with the base of 10.

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

(a) Z® (b) Z® (c) Z®

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

(d) z® (e) Z-sum HA

Fig. 8. Comparison of view-specific and consistent affinity matrices generated by the proposed SCMC on
ALOI dataset.
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Fig. 9. The convergence curves of the proposed SCMC on eight datasets.
Table 12. Ablation Results of the Proposed SCMC on Four Datasets
Loss \ ALOI | GRAZ02 | NUS-WIDE-v1 | NUS-WIDE-v2 |
‘ ACC NMI  Purity ‘ ACC NMI  Purity ‘ ACC NMI  Purity ‘ ACC NMI  Purity ‘
e 7136 - 8216 - 76.09- | 3828 - 730 - 5447 - | 27.00 - 1205- 3506 | 1440~ 18.29- 25.85-
Fre+ZLub 78687 81.16] 7247] | 39771 8741 55087 | 30697 19.827 36187 | 15357 1658 27401
FretLoup+TLeon | 88327 84177 79987 | 45337 12467 56.237 | 32507 19.887 36887 | 15807 17.59] 2575
Fre+Loup+TLru | 93.057 89871 84527 | 45127 11187 57187 | 32887 18827 36887 | 15707 19.037 27.801
Lsuv+Leon+ZLru | 89621 86587 85827 | 45397 11667 58277 | 33.007 17.287 36127 | 15457 18927 26907
| 4 | 95747 92727 9574751907 16.167 59.557 | 36.561 21.837 40.067 | 17.857 21237 30307 |
The best results are bolded.
Table 13. Ablation Results of the Proposed SCMC on Four Datasets
L ‘ Reuters UCI ‘ WikipediaArticles ‘ Youtube ‘
088 | ACC NMI Purity | ACC  NMI  Purity | ACC  NMI _ Purity | ACC  NMI _ Purity |
Lre 41.80 - 1753 - 4593 - | 7090 - 69.16 - 73.90- | 23.09- 959- 29.73- | 23.95- 13.00- 29.15-
Fre+ZLoub 3833] 28521 51077 | 75657 73887 78651 | 35647 24547 40697 | 27657 17.65T7 32407
LretLsuntZeon | 47607 31057 49937 | 91407 83707 81907 | 37.957 27727 41997 | 29207 18747 35407
Lret Loup+Lru | 48007 29347 51007 | 95557 90997 86257 | 56577 54.6717 62367 | 31.907 18907 37.601
Fsup+Leon+Lru | 48607 30107 57.537 | 93.001 86787 93157 | 52237 51.897 62047 | 34407 21177 38751
| & | 51.807 34477 5813796757 92.847 97.007|57.867 53747 63207 |37.907 26127 41157 |
The best results are bolded.
Table 14. Ablation Results of the Proposed SCMC on Two Datasets
L Animals Cifar10
0SS - -
ACC NMI Purity ACC NMI Purity
ZLre 48.10 - 63.59- 5394- | 1573 - 528 - 22,55 -
Lre + Lsup 50.34 T 65.877T 58467 | 17107 5.60T 23.637
Lre + Lsup + Lcon | 54.84T 66607 63207 | 1826T 7.00T 23577
Lre + Lsup + Lry | 54507 66967 62477 | 18367 8.08T 24.787
Lsub + Leon + Lry | 52727 68.02T 62907 | 18407 7347 24907
| <z | 57.067 68.827 64.167 | 21.227 10.26T 25.56 7 |

The best results are bolded.
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Fig. 10. The comparison of clustering results with weight fusion and average fusion.
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Fig. 11. The comparison of clustering results with respect to latent space contrast and subspace contrast.

Lru = CI{I%I}\ZU:Z Z,: lIci” — €5 l13A, + Z ;A?j

\4
= > Tr(CWLAC®) + ||AI[

v=1

(34)

st Aj1=1A;;>0,A; =0,

where C(® is the latent representation learned via C(?) = ¢, (x@ |W£0), bfj’) ). Besides, the weighted
fusion scheme is discarded. The designed ablation method is tentatively named Latent-Contrastive
Multi-view Clustering (LCMC). After the training ends, the clustering results are obtained
via performing the spectral clustering algorithm on the affinity matrix (A + AT)/2. Certainly, to
maintain the fairness of experiments, we also train the proposed SCMC without the weighted fusion
mechanism. Figure 11 shows the result comparisons under the two contrast methods. Obviously,
when executing the contrast at the subspace level, the experimental performance is much better
that when executing the contrast between latent representations.

Secondly, to further avoid the influence of fusion loss ZF,, we remove the fusion loss Z,, of
LCMC and SCMC, and obtain the unified latent and subspace representation via C = 23:1 c /V,
Z= szl Z(®) |V, respectively. Thus, the clustering results are acquired by adopting the spectral
clustering algorithm. We leverage the t-SNE method to reduce the dimensionality of C and Z
learned on ALOI and UCI datasets, respectively, and visualize the scatter plots. As Figure 12 shows,
many different clusters visualized by latent features adhesive with each other, the overall separation
is not good. On the contrary, the cluster shapes visualized by the subspace features are distinct,
and diverse clusters are pulled apart. This phenomenon illustrates the subspace features are more
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Fig. 12. Scatter comparison using latent features and subspace features on ALOI and UCI datasets via the
t-SNE technology.

Table 15. Clustering Performance of the Compared Methods on ALOI Dataset with In-Samples and
Out-of-Samples

Method ‘ In-Samples | Out-of-Samples |
‘ACC NMI  Purity ARI  F-score Precision‘ ACC NMI Purity ARI F-score Precision‘

K-means | 47.63 48.39 48.63 3428  42.22 34.66 49.10 49.02 52.69 30.45  38.50 33.06
SwMC | 67.88 6528 71.00 3832 46.45 34.95 70.61 65.52 70.61 40.80  48.86 35.65
MCGC | 80.38 7297 80.37 63.38 67.16 64.62 81.00 7795 81.00 6886 72.24 66.19
LMVSC | 71.00 73.21 7175 63.31 67.28 61.69 7312 73.56 7491 58.57  63.34 54.67

‘ SCMC ‘96.13 93.72 96.12 91.55 93.10 93.25 93.55 90.53 93.55 87.47 88.72 88.37

The best results are bolded.

Table 16. Clustering Performance of the Compared Methods on GRAZ02 Dataset with In-Samples and
Out-of-Samples

Method ‘ In-Samples ‘ Out-of-Samples ‘
‘ACC NMI  Purity ARI  F-score Precision‘ ACC NMI Purity ARI  F-score Precision‘

K-means | 36.56 3.40 36.56  3.93 33.55 27.42 36.67 4.69  37.33 3.57 33.36 27.18
SwMC 4286 11.76 4634 893 36.29 30.44 41.00  7.63 42.67 5.36 33.32 28.39
MCGC | 4515 9.16 45.15 8.75 31.74 31.75 41.67  8.35 44.00 7.79 30.94 31.01
LMVSC | 4235 8.01 42.35 7.54 31.24 30.71 4233  6.09 4233 5.90 30.65 29.33

‘ SCMC ‘49.82 15.03 59.77 13.73 36.43 36.90 49.66 15.55 59.66 13.95 36.75 37.19

The best results are bolded.

discriminative than the latent features, which means that the subspace learning does alleviate the
modality separation and help the contrastive training.

5.8 Experiments on Out-of-Samples

To verify the effectiveness of the proposed CSR, we plug it into several MVC methods SwMC,
CSMSC, LMVSC, and our SCMC to conduct the experiments. Specifically, 80% of all samples in a
multi-view dataset are randomly selected to consist of the in-samples, and the remaining 20% consist
of the out-of-samples. k-means is used as the most basic compared method. Actually, k-means does
not have the ability to handle the out-of-samples, so we have to perform it on the in-samples and
out-of-samples and obtain the clustering results, respectively. As for the other compared methods,
we first perform them on the in-samples to obtain their labels, then adopt the proposed CSR
mechanism on the out-of-samples to generate their labels. Tables 15-18 report the experimental
results of several compared methods on four multi-view datasets. It can be seen that the proposed

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 9, Article 211. Publication date: October 2024.



211:28 L. Fu et al.

Table 17. Clustering Performance of the Compared Methods on Reuters Dataset with In-Samples and
Out-of-Samples

In-Samples Out-of-Samples
ACC NMI Purity ARI F-score Precision | ACC NMI Purity ARI F-score Precision

K-means | 36.75 426 3692 547 35.22 24.08 41.67 9.11  42.67 10.20 3791 26.94
SwMC | 47.75 28.40 53.75 13.48  38.97 28.46 45.00 26.62 51.67 596 34.64 24.90
MCGC | 4633 18.01 51.50 18.66  40.31 32.58 44.67 2292 53.67 1556  37.65 31.56
LMVSC | 46.00 24.40 50.50 1893  41.19 32.28 47.33  27.23 5233 16.02 3847 31.55

| SCMC |50.25 29.24 56.75 2138 49.2 4137 |51.00 30.88 58.33 18.21 4188 3173 |

Method

The best results are bolded.

Table 18. Clustering Performance of the Compared Methods on UCI Dataset with In-Samples and
Out-of-Samples

Method ‘ In-Samples | Out-of-Samples |
‘ACC NMI  Purity ARI  F-score Precision‘ ACC NMI Purity ARI F-score Precision‘

K-means | 39.12 47.01 44.56 3193 3941 35.75 37.75 45.03 41.25 26.25  34.52 30.88
SwMC 7325 7949 7594 68.05 71.58 64.58 75.25 7899 7750 66.10  70.06 60.66
MCGC | 83.06 78.77 83.06 72.63 7537 74.86 82.50 78.62 83.00 7275  75.65 71.43
LMVSC | 89.56 82.51 89.56 79.35 81.42 80.96 87.50 82.44 87.50 76.12 7854 77.65

SCMC | 95.56 90.75 96.19 90.41 91.49 91.51 95.00 90.56 95.00 88.82 89.93 90.15

The best results are bolded.

Evaluation metrics
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Fig. 13. The parameter sensitivity analysis of the proposed SCMC on ALOI and WikipediaArticles datasets.

SCMC achieves the optimal performance on both in-samples and out-of-samples. Moreover, the
proposed CSR has excellent adaptability and can be combined with any MVC algorithms to yield
the superior performance on the out-of-samples.

5.9 Parameter Sensitivity Analysis

Three nonnegative tradeoff parameters are used to balance the overall objective loss, their impacts
on the clustering outcomes are investigated via sensitivity experiments. Specifically, we tune y1, y2,
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and y3 in {10, 50, 100, 200, 500, 1, 000}, {0.0001, 0.001, 0.01, 0.1, 0.5, 1}, and {0.0001, 0.001, 0.01, 0.1,
0.5, 1}, respectively. Figure 13 shows the numerical results of SCMC under different settings of y,
Y2, and y3. When evaluating y; and y,, we fix y3, the same operation is done for evaluating ys. It can
been seen that a small y; is not conducive to learning an informative subspace representation, this is
caused by the insufficient penalty for ||C(”)T —c'z© |3 in the optimization. Similarly, when y;
is set to be small, the clustering performance is not ideal, because the contrast mechanism has little
effects to enhance the discrimination of subspace representations. Interestingly, selecting a relatively
lager y; can degrade the effectiveness of SCMC, this situation may result from over-smoothing.

6 Conclusion

In this paper, we propose a novel SCMC approach. In SCMC, the subspace representation of each
view is nonlinearly explored through a extraction network. Inspired by the idea of contrastive
learning, we regard the subspace representation of each view as a contrastable entity. By pairwise
comparison of multiple subspace representations, we exploit the complementary information in
them and augment the discriminability of each subspace representation. Guided by the important
principle of multi-view consensus, we obtain a consistent affinity matrix by the graph regularization.
Furthermore, to handle the out-of-samples, the CSR learning method over the in-samples is proposed.
In future work, we focus on three important challenges in deep multi-view subspace clustering. First,
how to achieve more effective contrast between subspace representations. The proposed SCMC uses
a cross-view comparison approach while ignoring the intra-view comparison relationship, which
needs to be paid attention to. Second, how to improve the efficiency of subspace representation
learning and reduce its memory overhead. Self-expression based subspace representation learning
suffers from huge time and space overhead, which severely limits its practical applications, and the
development of efficient multi-view subspace learning methods is necessary. Third, how to deal with
possible missing values in multi-view data. Due to various negative problems such as sensor failures,
multi-view data are often incomplete, which affects the learning of subspace representations, it is
significant to study a multi-view subspace learning algorithm that can adaptively deal with missing
data.

Appendices
A The Definition of Evaluation Metrics

Following the compared methods [28, 31, 36, 55, 65], we select six frequently-used clustering
evaluation metrics to evaluate the clustering results, including ACC, NMI, Purity, ARI, F-score, and
Presion. To elaborate on which aspect of the clustering results they characterize respectively, their
definitions need to be introduced.

Suppose y; is the ith sample’s true label, g; is the ith sample’s predicted label, and ®(-) is the
best mapping function from the predicted label to the true label, then ACC is defined as

i ¥ (Y, @ (9;))
SR —

ACC = (35)

where N is the number of instances, (-, ) is the binary criterion function and defined as

1, ifx=y;
Ylxy) = {O, otherwise.
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Given that Y = {¥;}¢ | is the true clusters and Y= {flj}?:l is the predicted clusters, then NMI is
defined as
M= — 1N (36)
(F(Y) +F(Y))/2
where I(+, -) denotes the mutual information between two variables, F(-) denotes the entropy of
certain variable. The mutual information I(, -) is computed by

N Y,nYy;
10,112 Y 3 P AT log o )
j=1 i=1

where P(-) denotes the probability. The entropy F(Y), F(Y) are respectively computed by
¢ c
F(¥) == " P(Iplog(P(¥))), F(Y) = = 3" P(¥)log(P(Yy)). (38)
=1 i=1
Purity indicates the ratio of correctly grouped samples and is calculated as
1 ¢
Purity = N Z:; max;|Y; N (39)

Assume that TP, FP, TN, and FN represent the number of entries correctly predicted as positive
instances, the number of entries erroneously predicted as positive instances, the number of entries
correctly predicted as negative instances, the number of erroneously predicted as negative instances,
respectively. Thus, the definition of Rand Index (RI) is written as

TP+TN
RI = . (40)
TP+FP+TF+FN
RI cannot guarantee that the evaluation value of clustering results of randomized division tends to

be zero, ARI is introduced as follows,

_ RI-E[R]]
ARL= max(RI) — EI[RI]
S () =12 (%) %5 (1) 4

JIZ () + 2 (01 =12 (5) 25 )1/ ()

where n;; denotes the number of samples overlap between the true ith cluster and the predicted jth
cluster, a; denotes the number of samples belonging to the ith true cluster, b; denotes the number
of samples belonging to the jth predicted cluster.

Precision denotes the proportion of correctly predicted positive samples to all predicted positive
samples, which is defined as

.. TP
Precision = ——. (42)
TP+ FP

Recall denotes the proportion of correctly predicted positive samples to all true positive samples,

which is defined as

TP
Recall = ———. (43)
TP+FN

To balance the Precision and Recall, the F-score is proposed and defined as

Precision * Recall
F-score = 2 — . (44)
Precision + Recall
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Table 19. Characteristics of Six Metrics

‘ Metric ‘ Characteristic ‘
ACC Computes the clustering accuracy from a overall view, but is susceptible to the class imbalance problem.
NMI Measures the similarity degree between the predicted labels and true labels.
Purity | Computes the ratio of correctly clustered samples, but cannot balance the quality of clustering against the number of clusters.
ARI Measures the similarity degree between the predicted labels and true labels.

Computes the proportion of correctly predicted positive samples to all predicted positive samples for each category,

Precision . . :
then averages the Precision values of all categories.
Computes proportion of correctly predicted positive samples, is a balanced solution of Precision and Recall,
F-score - .
and adapts to the situation of class imbalance.
Table 20. Clustering Results on Each View of Four Datasets Via Spectral Clustering
View Index (Method) ALOI GRAZ02 NUS-WIDE-v1 NUS-WIDE-v2
1ew tnaex (Ve ACC NMI Purity | ACC NMI Purity | ACC NMI Purity | ACC NMI  Purity
View 1 (SC) 57.58 7198 67.82 | 3537 3.80 37.26 | 13.19 085 13.38 | 1230 183  13.85
View 2 (SC) 62.09 62.05 6423 | 36.04 9.11  40.11 | 1938 4.03  20.19 | 1235 1.53  13.25
View 3 (SC) 58.33 59.59 60.50 | 2852 0.23  28.66 | 17.69 3.65 19.38 | 12.65 185 13.70
View 4 (SC) 51.96 51.04 54.46 | 2852 023 28.66 | 15.69 2.62 16.81 | 1250 1.82  13.40
View 5 (SC) - - - 35.77 9.08 2094 | 20.94 886 2475 | 13.75 417  14.80
View 6 (SC) - - - 36.11 5.88 3821 | 1475 7.75 19.75 - - -
‘ - (SCMC) ‘ 95.74 92.12 95.74 | 51.90 16.16 59.55 | 36.56 21.83 40.06 | 17.85 21.23 30.30

The best results are bolded.

Table 21. Clustering Results on Each View of Four Datasets Via Spectral Clustering

View Index (Method) Reuters UCI WikipediaArticles Youtube

ACC NMI Purity | ACC NMI Purity | ACC NMI Purity | ACC NMI Purity

View 1 (SC) 28.00  0.39 28.13 | 30.55 3342 3190 | 19.77 6.55 2193 | 2220 874  22.65
View 2 (SC) 2793 034  28.07 | 7095 64.10 70.95 | 55.12 5191 60.03 | 22.40 10.51 24.60

View 3 (SC) 2793 034  28.07 | 22.25 1146 23.90 - - - 19.20  8.38 20.70

View 4 (SC) 26.20  0.38 28.60 - - - - - - 30.75 20.22  33.15

View 5 (SC) 27.80  0.28 28.00 - - - - - - 2990 1691 31.95
View 6 (SC) - - - - - - - - - 27.55 15.16  29.80

‘ - (SCMC) ‘ 51.80 34.47 58.13 | 96.75 92.84 97.00 | 57.86 53.74 63.20 | 37.90 26.12 41.15

The best results are bolded.

It is worthy emphasizing that when calculating the overall values of Precision, Recall, and F-
score, the values for each class are first calculated separately and then averaged. Furthermore,
Recall focuses on the retrieval rate of correctly categorized samples. Metaphorically speaking, it is
preferred to misclassify more samples than to miss one. In the scenario of multi-class clustering,
the Recall metric is easily biased by certain categories and cannot objectively reflect the sample
division, so we discard the metric.

Ultimately, we summarize the characteristics of the six metrics in the following Table 19.

B The Verification of Capturing the Complementary Information

To demonstrate that the proposed SCMC can capture the complementary information in different
views, we execute the spectral clustering algorithm on each view of the test multi-view datasets
and report the clustering results in Tables 20-22. It can be observed that the clustering results
under any of the views are worse than those obtained by the proposed SCMC, which is a good
indication that SCMC captures the complementarity information among multiple views.
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Table 22. Clustering Results on Each View of Two Datasets Via Spectral

Clustering
. ‘ Animals ‘ Cifar10 ‘
View Index (Method) \—ee—RMI Purity | ACC  NMI Purity |
View 1 (SC) 28.88 36.63 33.18 | 1046 010  10.54
View 2 (SC) 33.76 5151 4098 | 1192 461 1534
| - (SCMC) | 57.06 68.82 64.16 | 21.22 10.26 25.56 |

The best results are bolded.
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