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A B S T R A C T

Noisy tensor recovery aims to estimate underlying low-rank tensors from the noisy observations.
Besides the sparse noise, tensor data can also be corrupted by the small dense noise. Existing
methods typically use the Frobenius norm to handle the small dense noise. In this work, we build
a new nonconvex model to decompose the low-rank and sparse components. To be specific, we
employ the 𝓁1 norm to handle the small dense noise term, the 𝓁0 ‘norm’ to enforce the sparse
outliers, and the tensor nuclear norm to model the underlying low-rank tensor. We develop
an effective alternating minimization-based algorithm. Under certain conditions, we prove that
the proposed method has a high probability of exactly recovering low-rank and sparse tensors.
Numerical experiments showcase the advantage of our method.

1. Introduction

Due to environmental factors or transmission equipment interference, the collected data is often contaminated by noise. Robust
principal component analysis (RPCA) is one of the most critical and fundamental approaches in data recovery [1–3]. Given the noisy
data 𝑿 ∈ R𝑛1×𝑛2 , RPCA aims to estimate a low-rank matrix 𝑳0 that captures the underlying structure of 𝑿 and a sparse matrix 𝑬0
that represents the sparse noise. Mathematically, RPCA [1] is formulated as

min
𝑳,𝑬

‖𝑳‖∗ + 𝜆‖𝑬‖1, s.t. 𝑿 = 𝑳 + 𝑬. (1)

Here ‖𝑳‖∗ and ‖𝑬‖1 respectively represent the nuclear norm and the 𝓁1 norm. Under suitable assumptions [1], one can exactly
recover 𝑳0 and 𝑬0 with a high probability by (1). In addition to the sparse corruption, 𝑿 may also be damaged by the small dense
noise 𝑵 , resulting in 𝑿 = 𝑳0+𝑬0+𝑵 . A number of works have been proposed to handle the dense noise; see references therein [4–8].

The aforementioned methods are primarily designed for matrix data and achieve the promising performance. Nevertheless, in
real applications, many data are multi-dimensional arrays or tensors [9–13]. For example, multi-spectral images can be formed as
3D tensors with one spectral and two spatial dimensions; color videos, known as 4D tensors, have one color channel, two spatial
and one time dimensions. Applying matrix-based methods to handle the multi-dimensional data, one should flatten tensor data into
a matrix, resulting in destroying the multi-dimensional structure of tensor data and then limiting recovery performance. Therefore,
one natural and effective strategy is to directly handle the multi-dimensional data to keep the intrinsic structure.

Given a corrupted 3D tensor  = 0 + 0 ∈ R𝑛1×𝑛2×𝑛3 , robust tensor recovery aims to identify the underlying data 0 and
the sparse noise 0. The tensor data in practice, e.g., multi-spectral images and videos, are generally low-rank due to the intrinsic
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correlations and redundancy. Many tensor decompositions and the corresponding ranks are utilized to explore the global low-rank
prior, such as the most representative CANDECOMP/PARAFAC [14] and Tucker decomposition [15]. The work in [16] recovered
the underlying low-rank tensor 0 by minimizing Tucker rank [17]. Similar to the matrix data, besides the outliers, there is also
he small dense tensor noise  . To proceed, the work in [18] studied the noisy Tucker tensor decomposition as follows:

min
,

1
2
‖ −  − ‖2𝐹 + 𝜇‖‖SNN + 𝜆‖‖1, (2)

where ‖‖SNN denotes the sum of nuclear norm (SNN) [19] (the convex envelope of Tucker rank), i.e., ‖‖SNN =
∑3

𝑖=1 ‖𝑳[𝑖]‖∗, where
𝑳[𝑖] represents the unfolding matrix [17] of tensor  along the 𝑖th mode, and ‖𝑳‖∗ denotes the matrix nuclear norm. Recently,
the tensor singular value decomposition (TSVD) is proposed [20], and the corresponding tensor tubal rank [9,20] has achieved
promising performance [9,21,22]. The work in [9] studied its convex surrogate, tensor nuclear norm (TNN), and proposed tensor
RPCA (TRPCA) as

min
,

‖‖∗ + 𝜆‖‖1, s.t.  =  +  , (3)

where ‖‖∗ represents the TNN (see Definition 3). Under certain conditions [9], one can exactly recover the ground-truth by solving
(3). To handle the small dense noise, the work in [23] proposed the following TNN-based model

min
,

1
2
‖ −  − ‖2𝐹 + 𝜇‖‖∗ + 𝜆‖‖1. (4)

In the fidelity items of (2) and (4), the authors used the Frobenius norm to model the small dense noise, which is reasonable.
However, it may not identify all sparse outliers when updating the sparse tensor, leading to the performance degradation.

In this work, we develop a new nonconvex model for estimating the underlying low-rank tensor and the sparse outliers from the
noisy observation. Specifically, we directly utilize the 𝓁0 ‘norm’ to model the sparsity of outliers. More importantly, we employ the
𝓁1 norm rather than the Frobenius norm for the additive dense noise to help handle the unidentified outliers. For the nonconvex
model, we propose an alternating minimization optimization algorithm. Under certain conditions, we provide the exact recovery for
the sparse tensor and low-rank tensor. Experiments demonstrate the outstanding recovery performance of our method over classical
baselines.

2. Notations and preliminaries

We briefly present the related notations (shown in Table 1) and preliminaries.

Definition 1 (T-product [24]). Given two 𝑛1×𝑛2×𝑛3 and 𝑛2×𝑛4×𝑛3 tensors  and , the t-product  ∗  yields a tensor  ∈ R𝑛1×𝑛4×𝑛3 ,
whose (𝑖, 𝑚)th tube is computed by (𝑖, 𝑚, ∶) =

∑𝑛2
𝑗=1 (𝑖, 𝑗, ∶) ⋆ (𝑗, 𝑚, ∶), where ⋆ is the circular convolution of two vectors.

Definition 2 (TSVD and Tensor Tubal Rank [20]). Assuming a tensor  of size 𝑛1 × 𝑛2 × 𝑛3, its TSVD is

 =  ∗  ∗ 𝐻 ,

where  is a 𝑛1 × 𝑛2 × 𝑛3 f-diagonal tensor, and two tensors  (𝑛1 × 𝑛1 × 𝑛3) and  (𝑛2 × 𝑛2 × 𝑛3) are orthogonal. Then the tensor
tubal rank is rank𝑡() = #{𝑖 ∶ (𝑖, 𝑖, ∶) ≠ 0}. The rank-𝑟 skinny TSVD of  is  = 𝑟 ∗ 𝑟 ∗ 𝐻

𝑟 , where 𝑟 =  (∶, 1 ∶ 𝑟, ∶),
𝑟 = (1 ∶ 𝑟, 1 ∶ 𝑟, ∶), and 𝑟 = (∶, 1 ∶ 𝑟, ∶).

The definitions of conjugate transpose, f-diagonal tensor, and orthogonal tensor are listed in the supplement materials due to the
page limitation.

Definition 3 (TNN [9]). Assume  ∈ R𝑛1×𝑛2×𝑛3 can be decomposed as  =  ∗  ∗ 𝐻 , its TNN is defined as ‖‖∗ =
∑rank𝑡()

𝑖=1 (𝑖, 𝑖, 1).

3. Sparse TRPCA

3.1. Proposed model and algorithm

We study the following nonconvex minimization problem:

min
,

𝜆‖ −  − ‖1 + ‖‖∗ + 𝜃‖‖0. (5)

Compared with (4), we directly utilize the 𝓁0 ‘norm’ to enforce the sparse 0. Another main difference is that we substitute the
Frobenius norm with 𝓁1 norm to handle the small dense noise. But this substitute not only helps to identify outliers and improve
the recovery performance, but also admits the theoretical guarantee, which will be discussed later. We adopt the alternating
minimization method to alternately update the variables in (5), which is referred as Sparse TRPCA (STRPCA).

Update (𝑡+1): Fixed  (𝑡), we minimize the following problem

(𝑡+1) = argmin ‖‖∗ + 𝜆‖ −  −  (𝑡)
‖1. (6)
2


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Update  (𝑡+1): Fixed (𝑡+1), we minimize the following problem

 (𝑡+1) = argmin


𝜃‖‖0 + 𝜆‖ − (𝑡+1) − ‖1. (7)

Note that for the first term in (5), using Frobenius norm may be more suitable than 𝓁1 norm, especially when the observed  is
damaged by Gaussian noise. However, one should point out that in the step of updating  (6) of each iteration, we want to remove
sparse outliers, while it cannot be expected that all outliers are totally detected in the previous loop. It is highly probable that some
outliers still remain. Therefore, it is advisable to use the 𝓁1 norm instead of the Frobenius norm.

In the first iteration, we have no information about the sparse outlier, so we simply set  (0) = 0. Therefore, updating  at first
iteration turns to solve

min


‖‖∗ + 𝜆‖ − ‖1. (8)

One can easily get that (8) is actually TRPCA in (3). Next, we give the detailed solver for each subproblem. In updating , the
convex problem can be regarded as TRPCA with  −  (𝑡). The augmented Lagrange multiplier approach [25] is employed to handle
the -subproblem. In updating  , we can directly obtain its closed-form solution according to [7]:

[ (𝑡+1)]𝑖𝑗𝑘 =
{

0, |[ − (𝑡+1)]𝑖𝑗𝑘| ≤ 𝜃∕𝜆,
[ − (𝑡+1)]𝑖𝑗𝑘, otherwise. (9)

From (9), the entry [ −(𝑡+1)]𝑖𝑗𝑘 will be identified as a sparse outlier if its absolute value exceeds the threshold 𝜃∕𝜆. We summarize
the proposed method in Algorithm 1, which is shown in Appendix B of the supplemental materials. In future, we will analyze the
convergence of our algorithm.

Complexity. The main computational cost of STRPCA is to update . Without loss of generality, assume 𝑛1 ≥ 𝑛2. Computing 
costs (𝑚𝑛3(𝑛1𝑛22 + 𝑛1𝑛2 log 𝑛3)) [9], where 𝑚 is the number of inner iterations of -subproblem. Practically, when updating  of the
(𝑡 + 1)th iteration, we utilize the previous (𝑡) as the initialization, which can decrease the complexity cost of our method.

3.2. Theoretical recoverability

Here, we establish the theoretical recoverability of STRPCA when the observed tensor is not damaged by the dense noise. Let e̊𝑖
of size 𝑛1 × 1 × 𝑛3 represents the tensor column basis, whose (𝑖, 1, 1)th entry is set to 1 and remaining entries are set to 0. Suppose
hat the rank-𝑟 skinny TSVD of 0 is 𝑟 ∗ 𝑟 ∗ ⊤

𝑟 , then 0 satisfies the tensor incoherence conditions [9] with parameter 𝜇0 if

max
𝑖=1,…,𝑛1

‖𝐻
𝑟 ∗ e̊𝑖‖𝐹 ≤

√

𝜇0𝑟
𝑛1𝑛3

, max
𝑗=1,…,𝑛2

‖𝐻
𝑟 ∗ e̊𝑗‖𝐹 ≤

√

𝜇0𝑟
𝑛2𝑛3

, and ‖𝑟 ∗ 𝐻
𝑟 ‖∞ ≤

√

𝜇0𝑟
𝑛1𝑛2𝑛23

. (10)

Next, we establish the exact recovery property of STRPCA, which is proved in Appendix C of the supplemental materials.

heorem 1. Assume that 0 ∈ R𝑛1×𝑛2×𝑛3 satisfies the conditions (10). Assume that the support set 𝛺 of 0 is uniformly distributed among
ll sets with a cardinality of 𝑚, and fixing any  ∈ R𝑛1×𝑛2×𝑛3 of signs, sgn([0]𝑖𝑗𝑘) = []𝑖𝑗𝑘, (𝑖, 𝑗, 𝑘) ∈ 𝛺. Without loss of generality,
assume 𝑛1 ≥ 𝑛2. If there exist two constants 𝜌𝑟, 𝜌𝑠 > 0, rank(0) ≤ 𝜌𝑟𝑛2𝑛3

𝜇0(log(𝑛1𝑛3))2
and 𝑚 ≤ 𝜌𝑠𝑛1𝑛2𝑛3, then STRPCA with 𝜆 = 1

√

𝑛1𝑛3
and

0 < 𝜃 < 1
√

𝑛1𝑛3
min{|[0]𝑖𝑗𝑘| ≠ 0} exactly recovers (0, 0) in two iterations with a probability at least 1 − 𝑐1(𝑛1𝑛3)−𝑐2 with 𝑐1, 𝑐2 > 0.

emark. We should point that the exact recovery property analysis of our STRPCA is inspired by the results in [9]. Nonetheless,
he optimization model of [9] is convex with one parameter, while the proposed model is nonconvex with two parameters. By the
ell-designed alternating optimization algorithm and the parameters settings, we prove that the proposed nonconvex optimization
ethod can still exactly recover the low-rank and sparse components.

. Simulations

In this section, we present numerical experiments using multi-spectral images (MSI)1 and videos2 to verify the advantage of our
TRPCA. The baselines include Robust Tensor Decomposition via SNN (RTD-SNN) [18], TRPCA [9], Robust Tensor Decomposition
ia TNN (RTD-TNN) [23]. To better show the advantage of using 𝓁1 norm rather than Frobenius norm, we also compare with the
ethod by using the 𝓁0 ‘norm’ to replace 𝓁1 norm in (4), termed as RTD-TNN𝓁0.
Parameter Settings. The proposed STRPCA involves two parameters 𝜆 and 𝜃. Empirically, we select the value of 𝜆 from a set

𝑎∕
√

max(𝑛1, 𝑛2)𝑛3} where 𝑎 = [0.6 ∶ 0.2 ∶ 2] and the value of 𝜃 from {0.05, 0.1, 0.2, 0.3}. For baselines, we carefully tune the
corresponding parameters following the baselines’ suggestions to achieve the best results within the context of the experimental
settings of this work. The detailed parameters settings of baselines are shown in Appendix D of the supplemental materials. All
numerical results are averaged from 10 random trials.

MSI Recovery. The testing multi-spectral images include Toy, Flowers, and Feathers of size 256 × 256 × 31. We randomly add the
sparse noise with noise ratio (NR) = 0.3 and the white Gaussian noise with zero mean and variance 0.05. To measure the quality of
3

recovery, we use two metrics, including the structural similarity (SSIM) [26] and the peak signal-to-noise ratio (PSNR).
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Table 1
Notations.

Symbol Explanation Symbol Explanation

𝑥, 𝒙 Scalar, vector ‖‖𝐹 Frobenius norm ‖‖𝐹 =
√

∑

𝑖,𝑗,𝑘[]2𝑖𝑗𝑘
𝑿,  Matrix, tensor ‖‖0 𝓁0 ‘norm’ ‖‖0 = #{(𝑖, 𝑗, 𝑘) ∶ []𝑖𝑗𝑘 ≠ 0}

[]𝑖𝑗𝑘 (𝑖, 𝑗, 𝑘)th entry of  ∈ R𝑛1×𝑛2×𝑛3 𝐻 Conjugate transpose (𝑛2 × 𝑛1 × 𝑛3) of 
‖‖1 𝓁1 norm ‖‖1 =

∑

𝑖,𝑗,𝑘 |[]𝑖𝑗𝑘| sgn(⋅) Signum function

Fig. 1. Denoising results (R-G-B: 30-20-10 bands) on MSIs (from top to bottom: Toy, Flowers, and Feathers).

Table 2
Recovery performance (PSNR, SSIM) on three MSIs under NR=0.3.
MSIs Metrics Noisy RTD-SNN TRPCA RTD-TNN RTD-TNN𝓁0 STRPCA

Toy PSNR 10.94 24.56 28.25 28.41 30.21 31.72
SSIM 0.0892 0.6306 0.7016 0.6831 0.7725 0.8762

Flowers PSNR 10.80 24.51 27.49 27.57 29.03 30.40
SSIM 0.0598 0.5382 0.5561 0.5902 0.7056 0.8101

Feathers PSNR 11.06 24.05 27.50 27.62 29.20 29.59
SSIM 0.0719 0.6487 0.7145 0.7119 0.7427 0.8529

Fig. 1 presents the images estimated by all methods. One can see that all methods can reduce the noise, outputting less noise
images compared to the observed ones. Nevertheless, one can see that RTD-SNN oversmooths the edges of recovered images. TRPCA
and RTD-TNN lose the structures of images. The method RTD-TNN𝓁0 works well. In comparison, the proposed STRPCA performs
better in preserving the sharp edges and smoothness of the recovered images. Note that the only difference between RTD-TNN𝓁0
and the proposed STRPCA is that replacing Frobenius norm, we employ the 𝓁1 norm on the small dense noise term. The denoising
images demonstrate that this replacement can effectively reduce the noise and improve the recovered performance. The values of
PSNR and SSIM listed in Table 2 also show that STRPCA performs better than baselines.

Video Background Modeling. We test STRPCA to separate the foreground and background from the videos. Due to the high
correlation, the background of all frames generally admits the low-rank prior. The foreground contains a small amount of moving
objects and thus admits the sparse prior. We choose two videos, including Hall of size 240 × 352 (spatial) × 80 (frame) and Highway
of size 240 × 320 (spatial) × 100 (frame). Fig. 2 shows the visual effects of the foreground and background.

One can see that for Hall, there exist some ghosting of the person (at the left of the frame) in the backgrounds recovered by the
baselines. The proposed STRPCA performs well in modeling the background. For Highway, all methods can effectively separate the
background and foreground from the frame. However, our STRPCA can keep the details of background, better than baselines.

1 https://www.cs.columbia.edu/CAVE/databases/multispectral/
2 https://sbmi2015.na.icar.cnr.it/SBIdataset.html
4
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Fig. 2. The visual effects of the foreground and background of videos. First and second rows: the background and foreground of Hall; Third and fourth rows:
the background and foreground of Highway.

5. Conclusions

We propose a new nonconvex optimization model for decomposing the low-rank tensor and sparse tensor from the observation
that is also corrupted by the small dense noise. Different from the existing tensor-based methods, we impose 𝓁1 norm on the additive
dense noise term. Under certain conditions, we establish the theoretical exact recovery guarantee. The promising performance of the
proposed method is shown by the experiments on multi-spectral image recovery and video background modeling. One can use the
nonconvex low-rank surrogate for further performance improvement and study the theoretical guarantee, which will be considered
in our ongoing work.
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Supplementary material related to this article can be found online at https://doi.org/10.1016/j.aml.2024.109170.
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