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ARTICLE INFO ABSTRACT

Keywords: Noisy tensor recovery aims to estimate underlying low-rank tensors from the noisy observations.
Noisy tensor recovery Besides the sparse noise, tensor data can also be corrupted by the small dense noise. Existing
Sparsity methods typically use the Frobenius norm to handle the small dense noise. In this work, we build

¢ regularization

° . a new nonconvex model to decompose the low-rank and sparse components. To be specific, we
Theoretical recoverability

employ the #, norm to handle the small dense noise term, the #, ‘norm’ to enforce the sparse
outliers, and the tensor nuclear norm to model the underlying low-rank tensor. We develop
an effective alternating minimization-based algorithm. Under certain conditions, we prove that
the proposed method has a high probability of exactly recovering low-rank and sparse tensors.
Numerical experiments showcase the advantage of our method.

1. Introduction

Due to environmental factors or transmission equipment interference, the collected data is often contaminated by noise. Robust
principal component analysis (RPCA) is one of the most critical and fundamental approaches in data recovery [1-3]. Given the noisy
data X € R"*"2, RPCA aims to estimate a low-rank matrix L, that captures the underlying structure of X and a sparse matrix E
that represents the sparse noise. Mathematically, RPCA [1] is formulated as

min [|L|l, + A|Ell;, st X =L+E. (€))

Here ||L||, and | E||, respectively represent the nuclear norm and the #; norm. Under suitable assumptions [1], one can exactly
recover L, and E, with a high probability by (1). In addition to the sparse corruption, X may also be damaged by the small dense
noise N, resulting in X = Ly+E)+N. A number of works have been proposed to handle the dense noise; see references therein [4-8].

The aforementioned methods are primarily designed for matrix data and achieve the promising performance. Nevertheless, in
real applications, many data are multi-dimensional arrays or tensors [9-13]. For example, multi-spectral images can be formed as
3D tensors with one spectral and two spatial dimensions; color videos, known as 4D tensors, have one color channel, two spatial
and one time dimensions. Applying matrix-based methods to handle the multi-dimensional data, one should flatten tensor data into
a matrix, resulting in destroying the multi-dimensional structure of tensor data and then limiting recovery performance. Therefore,
one natural and effective strategy is to directly handle the multi-dimensional data to keep the intrinsic structure.

Given a corrupted 3D tensor ¥ = L + & € R"*"X", robust tensor recovery aims to identify the underlying data £, and
the sparse noise &. The tensor data in practice, e.g., multi-spectral images and videos, are generally low-rank due to the intrinsic
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correlations and redundancy. Many tensor decompositions and the corresponding ranks are utilized to explore the global low-rank
prior, such as the most representative CANDECOMP/PARAFAC [14] and Tucker decomposition [15]. The work in [16] recovered
the underlying low-rank tensor £, by minimizing Tucker rank [17]. Similar to the matrix data, besides the outliers, there is also
the small dense tensor noise N'. To proceed, the work in [18] studied the noisy Tucker tensor decomposition as follows:

.1
min 11X = £ = €13 + ullLllswy + A1 @

where ||L||gyy denotes the sum of nuclear norm (SNN) [19] (the convex envelope of Tucker rank), i.e., ||£]lgny = 2,.3= y 1L, where
Ly; represents the unfolding matrix [17] of tensor £ along the ith mode, and ||L||, denotes the matrix nuclear norm. Recently,
the tensor singular value decomposition (TSVD) is proposed [20], and the corresponding tensor tubal rank [9,20] has achieved
promising performance [9,21,22]. The work in [9] studied its convex surrogate, tensor nuclear norm (TNN), and proposed tensor
RPCA (TRPCA) as

min (1], + A€M St X = £+ €, 3)

where || L||, represents the TNN (see Definition 3). Under certain conditions [9], one can exactly recover the ground-truth by solving
(3). To handle the small dense noise, the work in [23] proposed the following TNN-based model

1 )
min EIIX—£—€IIF+MII£II*+/1||5|I1~ 4

In the fidelity items of (2) and (4), the authors used the Frobenius norm to model the small dense noise, which is reasonable.
However, it may not identify all sparse outliers when updating the sparse tensor, leading to the performance degradation.

In this work, we develop a new nonconvex model for estimating the underlying low-rank tensor and the sparse outliers from the
noisy observation. Specifically, we directly utilize the £, ‘norm’ to model the sparsity of outliers. More importantly, we employ the
¢, norm rather than the Frobenius norm for the additive dense noise to help handle the unidentified outliers. For the nonconvex
model, we propose an alternating minimization optimization algorithm. Under certain conditions, we provide the exact recovery for
the sparse tensor and low-rank tensor. Experiments demonstrate the outstanding recovery performance of our method over classical
baselines.

2. Notations and preliminaries
We briefly present the related notations (shown in Table 1) and preliminaries.

Definition 1 (T-product [24]). Given two n; Xn,Xn3 and n, Xn,Xn; tensors .4 and B, the t-product A = B yields a tensor C € R"1>"4%"3,
whose (i, m)th tube is computed by C(i,m, :) = Z;’il A(i, j, ) x B(j,m, :), where x is the circular convolution of two vectors.

Definition 2 (TSVD and Tensor Tubal Rank [20]). Assuming a tensor X of size n; X n, X n3, its TSVD is
X=U=x*Sx*VH,

where S is a n; X n, X n; f-diagonal tensor, and two tensors U (n; X n; X n3) and V (n, X n, X n3) are orthogonal. Then the tensor
tubal rank is rank,(X) = #{i : S(,i,:) # 0}. The rank-r skinny TSVD of X is X = U, * S, * er, where U, = U'(:,1 : r,2),
S =SU:rl:r:),and YV, =V, 1 :r0).

The definitions of conjugate transpose, f-diagonal tensor, and orthogonal tensor are listed in the supplement materials due to the
page limitation.

Definition 3 (TNN [9]). Assume X € R"*™X13 can be decomposed as X = U % S * VH its TNN is defined as ||X|, =
Sk ;i 1),

i=1

3. Sparse TRPCA
3.1. Proposed model and algorithm

We study the following nonconvex minimization problem:
min A& — L= Ell; + L]l + Ol €lo- (5)

Compared with (4), we directly utilize the ¢, ‘norm’ to enforce the sparse &,. Another main difference is that we substitute the
Frobenius norm with #; norm to handle the small dense noise. But this substitute not only helps to identify outliers and improve
the recovery performance, but also admits the theoretical guarantee, which will be discussed later. We adopt the alternating
minimization method to alternately update the variables in (5), which is referred as Sparse TRPCA (STRPCA).

Update £0*D: Fixed £, we minimize the following problem

£ = argmin ||£]|, + 41X - £ - €D, ©)
L



M. Ding et al. Applied Mathematics Letters 157 (2024) 109170

Update £7+D: Fixed £*), we minimize the following problem

WD = argmin ||€||o + A|X — LD —&]),. )
&

Note that for the first term in (5), using Frobenius norm may be more suitable than #;, norm, especially when the observed X’ is
damaged by Gaussian noise. However, one should point out that in the step of updating £ (6) of each iteration, we want to remove
sparse outliers, while it cannot be expected that all outliers are totally detected in the previous loop. It is highly probable that some
outliers still remain. Therefore, it is advisable to use the #; norm instead of the Frobenius norm.

In the first iteration, we have no information about the sparse outlier, so we simply set £© = 0. Therefore, updating £ at first
iteration turns to solve

min [l + A& = LIl ®

One can easily get that (8) is actually TRPCA in (3). Next, we give the detailed solver for each subproblem. In updating £, the
convex problem can be regarded as TRPCA with X — £0. The augmented Lagrange multiplier approach [25] is employed to handle
the £-subproblem. In updating &, we can directly obtain its closed-form solution according to [7]:

0, [[X = £0D];5 ] < 0/,
g+ — ik
[ Lijk [X —£0+D],,  otherwise. v

From (9), the entry [X — [i(’+”],- K will be identified as a sparse outlier if its absolute value exceeds the threshold §/4. We summarize
the proposed method in Algorithm 1, which is shown in Appendix B of the supplemental materials. In future, we will analyze the
convergence of our algorithm.

Complexity. The main computational cost of STRPCA is to update £. Without loss of generality, assume n; > n,. Computing £
costs O(mn;(n, n% +nyny log ny)) [91, where m is the number of inner iterations of £-subproblem. Practically, when updating £ of the
(¢ + Dth iteration, we utilize the previous £ as the initialization, which can decrease the complexity cost of our method.

3.2. Theoretical recoverability

Here, we establish the theoretical recoverability of STRPCA when the observed tensor is not damaged by the dense noise. Let ¢;
of size n; X 1 X ny represents the tensor column basis, whose (i, 1, 1)th entry is set to 1 and remaining entries are set to 0. Suppose
that the rank-r skinny TSVD of £ is U, * S, = VT, then £, satisfies the tensor incoherence conditions [9] with parameter 4 if

o Hol " Hor Hor
- max ||1/'rH #* ¢llp <4/ ——, max ”er *¢llp <4/ ——, and ||V, * VrH||oo < (10)
i=1,...,ny niny  j=l...nm nyh3 ;11;12;13

Next, we establish the exact recovery property of STRPCA, which is proved in Appendix C of the supplemental materials.

Theorem 1. Assume that L, € R">"2*"3 satisfies the conditions (10). Assume that the support set Q of &, is uniformly distributed among
all sets with a cardindlity of m, and fixing any M € R"*"2X"s of signs, sgn([&lij) = [Ml;je, (. J,k) € Q. Without loss of generality,

assume n, > n,. If there exist two constants p,,p, > 0, rank(L,) < M(IZ’;% and m < p,n nyn;, then STRPCA with 4 = —— and

0<0< ﬁ min{|[&y];;| # 0} exactly recovers (L, &) in two iterations with a probability at least 1 — ¢, (n n3)~2 with ¢;,¢; > 0.
113

Wi

3

nin

Remark. We should point that the exact recovery property analysis of our STRPCA is inspired by the results in [9]. Nonetheless,
the optimization model of [9] is convex with one parameter, while the proposed model is nonconvex with two parameters. By the
well-designed alternating optimization algorithm and the parameters settings, we prove that the proposed nonconvex optimization
method can still exactly recover the low-rank and sparse components.

4. Simulations

In this section, we present numerical experiments using multi-spectral images (MSI)! and videos? to verify the advantage of our
STRPCA. The baselines include Robust Tensor Decomposition via SNN (RTD-SNN) [18], TRPCA [9], Robust Tensor Decomposition
via TNN (RTD-TNN) [23]. To better show the advantage of using #; norm rather than Frobenius norm, we also compare with the
method by using the £, ‘norm’ to replace £, norm in (4), termed as RTD-TNN¢,,.

Parameter Settings. The proposed STRPCA involves two parameters A and 6. Empirically, we select the value of A from a set
{a/+/max(n;,ny)n;} where a = [0.6 : 0.2 : 2] and the value of 6 from {0.05,0.1,0.2,0.3}. For baselines, we carefully tune the
corresponding parameters following the baselines’ suggestions to achieve the best results within the context of the experimental
settings of this work. The detailed parameters settings of baselines are shown in Appendix D of the supplemental materials. All
numerical results are averaged from 10 random trials.

MSI Recovery. The testing multi-spectral images include Toy, Flowers, and Feathers of size 256 x 256 x 31. We randomly add the
sparse noise with noise ratio (NR) = 0.3 and the white Gaussian noise with zero mean and variance 0.05. To measure the quality of
recovery, we use two metrics, including the structural similarity (SSIM) [26] and the peak signal-to-noise ratio (PSNR).
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Table 1

Notations.
Symbol Explanation Symbol Explanation
X, X Scalar, vector X1 Frobenius norm ||X|» = Z',/,k[(v]ik
X, X Matrix, tensor 1€y ¢y ‘norm’ || Xy = #{(i, j, k) : [X];; # 0}
[X];k (i, j, k)th entry of X € Rm>mxns xH Conjugate transpose (n, X n; X n3) of X
&1, ¢, norm || X, = Z,M 10Tl sgn(-) Signum function

ee | cean

Original Noisy RTD-SNN TRPCA RTD-TNN RTD-TNN¢, STRPCA

Fig. 1. Denoising results (R-G-B: 30-20-10 bands) on MSIs (from top to bottom: Toy, Flowers, and Feathers).

Table 2
Recovery performance (PSNR, SSIM) on three MSIs under NR=0.3.
MSIs Metrics Noisy RTD-SNN TRPCA RTD-TNN RTD-TNN?, STRPCA
To PSNR 10.94 24.56 28.25 28.41 30.21 31.72
ol SSIM 0.0892 0.6306 0.7016 0.6831 0.7725 0.8762
Flowers PSNR 10.80 24.51 27.49 27.57 29.03 30.40
SSIM 0.0598 0.5382 0.5561 0.5902 0.7056 0.8101
Feathers PSNR 11.06 24.05 27.50 27.62 29.20 29.59
SSIM 0.0719 0.6487 0.7145 0.7119 0.7427 0.8529

Fig. 1 presents the images estimated by all methods. One can see that all methods can reduce the noise, outputting less noise
images compared to the observed ones. Nevertheless, one can see that RTD-SNN oversmooths the edges of recovered images. TRPCA
and RTD-TNN lose the structures of images. The method RTD-TNN¢,, works well. In comparison, the proposed STRPCA performs
better in preserving the sharp edges and smoothness of the recovered images. Note that the only difference between RTD-TNN¢,
and the proposed STRPCA is that replacing Frobenius norm, we employ the #; norm on the small dense noise term. The denoising
images demonstrate that this replacement can effectively reduce the noise and improve the recovered performance. The values of
PSNR and SSIM listed in Table 2 also show that STRPCA performs better than baselines.

Video Background Modeling. We test STRPCA to separate the foreground and background from the videos. Due to the high
correlation, the background of all frames generally admits the low-rank prior. The foreground contains a small amount of moving
objects and thus admits the sparse prior. We choose two videos, including Hall of size 240 x 352 (spatial) x 80 (frame) and Highway
of size 240 x 320 (spatial) x 100 (frame). Fig. 2 shows the visual effects of the foreground and background.

One can see that for Hall, there exist some ghosting of the person (at the left of the frame) in the backgrounds recovered by the
baselines. The proposed STRPCA performs well in modeling the background. For Highway, all methods can effectively separate the
background and foreground from the frame. However, our STRPCA can keep the details of background, better than baselines.

1 https://www.cs.columbia.edu/CAVE/databases/multispectral /
2 https://sbmi2015.na.icar.cnr.it/SBIdataset.html


https://www.cs.columbia.edu/CAVE/databases/multispectral/
https://sbmi2015.na.icar.cnr.it/SBIdataset.html

M. Ding et al. Applied Mathematics Letters 157 (2024) 109170

Original RTD-TNN RTD-TNNZ,

Fig. 2. The visual effects of the foreground and background of videos. First and second rows: the background and foreground of Hall; Third and fourth rows:
the background and foreground of Highway.

5. Conclusions

We propose a new nonconvex optimization model for decomposing the low-rank tensor and sparse tensor from the observation
that is also corrupted by the small dense noise. Different from the existing tensor-based methods, we impose #| norm on the additive
dense noise term. Under certain conditions, we establish the theoretical exact recovery guarantee. The promising performance of the
proposed method is shown by the experiments on multi-spectral image recovery and video background modeling. One can use the
nonconvex low-rank surrogate for further performance improvement and study the theoretical guarantee, which will be considered
in our ongoing work.
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