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In the past few years, tensor robust principal component analysis (TRPCA) which is based on 
tensor singular value decomposition (t-SVD) has got a lot of attention in recovering low-rank 
tensor corrupted by sparse noise. However, most TRPCA methods only consider the global 
structure of the image, ignoring the local details and sharp edge information of the image, 
resulting in the unsatisfactory restoration results. In this paper, to fully preserve the local details 
and edge information of the image, we propose a new TRPCA method by introducing a total 
generalized variation (TGV) regularization. The proposed method can simultaneously explore 
the global and local prior information of high-dimensional data. Specifically, the tensor nuclear 
norm (TNN) is employed to develop the global structure feature. Moreover, we introduce the 
TGV, a higher-order generalization of total variation (TV), to preserve the local details and edges 
of the underlying image. Subsequently, the alternating direction method of multiplier (ADMM) 
algorithm is introduced to solve the proposed model. Sufficient experiments on color images and 
videos have demonstrated that our method is superior to other comparison methods.

1. Introduction

The tensor, which is a higher-order form of vector and matrix, is available for various realms, e.g., communication sys-

tems [1,2], color images and videos processing [3–6], the hyperspectral data recovery [7–9], and data clustering [10]. Data 
is always unavoidably contaminated by noise in the retrieving and transmitting courses. Therefore, image denoising has be-

come an essential step to get a clean image. Principal component analysis (PCA) [11], as a powerful tool for extracting 
the underlying low-dimensional structures, has received more and more attention. It can efficiently reconstruct data inter-

fered by low noise. Whereas, one major weakness to PCA is that its performance degrades rapidly with respect to data 
which is grossly corrupted or outlying. Therefore, the research on making PCA robust has become an active topic in the last 
decades.
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Motivated by theories about low-rank matrix analysis, Candès et al. [12] proposed the robust principal component analysis (RPCA) 
to decompose an acquired two-dimensional data 𝐗 ∈ℝ𝑛1×𝑛2 into a low-rank component 𝐋 and sparse component 𝐒. The RPCA is the 
mathematical solution for the following low-rank matrix restoration problem:

min
𝐋,𝐒

‖𝐋‖∗ + 𝜆‖𝐒‖1, s.t. 𝐗 = 𝐋+ 𝐒, (1)

where ‖𝐋‖∗ =
∑
𝑖 𝜎𝑖 denotes the nuclear norm of 𝐋, 𝜎𝑖(𝑖 = 1, 2, ⋯ , min(𝑛1, 𝑛2)) is the 𝑖-th singular value of 𝐋, ‖𝐒‖1 =

∑
𝑖,𝑗 |𝑠𝑖,𝑗 |

represents the 𝑙1 norm of sparse matrix 𝐒, 𝑠𝑖,𝑗 is the (𝑖, 𝑗)-th entry of 𝐒 and 𝜆 > 0 denotes a trade-off parameter. RPCA-based 
methods have been successfully employed in numerous machine learning and computer vision problems, such as image recovery 
[13,14], surveillance video processing [15], and image alignment [16]. Nevertheless, the main weakness to RPCA is its limited 
feasibility for processing two-dimensional data. As a matter of fact, most real-world data, like color images, videos and multi-

spectral remote sensing images, are generally high-dimensional. For application’s sake of RPCA, one must first permute the high-

dimensional data to form a matrix. This matricization pretreatment can generally lead to information loss or the destruction of 
the inherent structures of data. So studying a variant method of RPCA, which is appropriate for high-dimensional data, is signifi-

cant.

To effectively handle the recovery of high-dimensional data, tensor RPCA (TRPCA) methods have been exploited [17,18]. The 
tensor case TRPCA can be seen as the high-order form of the matrix case RPCA. In tensor case, TRPCA is proposed to recover a clean 
high-dimension data corrupted by sparse noise. Compared with RPCA, TRPCA can vividly express the essential spatial and spectral 
information inside multi-dimensional data. Given a tensor X ∈ ℝ𝑛1×𝑛2×⋯×𝑛𝑚 , TRPCA can be summarized as the following low-rank 
tensor recovery problem:

min
L,S

rank(L) + 𝜆‖S‖1, s.t. X = L + S. (2)

Unlike matrix rank, tensor rank has several definitions and measurements in TRPCA methods. Different definitions for tensor rank 
can be induced by different kinds of tensor decompositions [19]. The CANDECOMP/PARAFAC (CP) rank [20,21], defined as the 
minimum number of the rank-1 tensors generated from CP decomposition of a tensor, is NP-hard [22]. With no transparent algo-

rithms to determine CP rank, the TRPCA methods based on CP decomposition are difficult to solve [23]. Tucker rank, which is 
produced by Tucker decomposition, is a vector made up of ranks of the unfolding matrices along each mode of the tensor. The sum 
of nuclear norm (SNN) was proposed to be a convex substitute for Tucker rank [24]. A SNN-based TRPCA was proposed in [25]

and has presented the precise recover guarantee. However, the operations of unfolding the tensor along all modes may ignore the 
internal relationship between adjacent elements of high-dimensional data. To preserve the low-rankness of high-dimensional data 
without destroying the structure, tensor singular value decomposition(t-SVD)-based tensor tubal rank [26,27] is proposed. The ten-

sor tubal rank can maintain more structural information. The tensor nuclear norm (TNN) [28–31] can be regarded as the convex 
surrogate of tensor tubal rank. Lu et al. [32,33] have proposed a TNN-based TRPCA program and it can be mathematically expressed 
as:

min
L,S

‖L‖∗ + 𝜆‖S‖1, s.t. X = L + S, (3)

where X, L, and S denote respectively observed data, the underlying low-rank tensor and sparse component. ‖L‖∗ is the TNN 
of L (see section 2.2), which can force L to keep low tubal rank, and ‖S‖1 = ∑

𝑖,𝑗,𝑘 |𝑠𝑖,𝑗,𝑘| is 𝑙1 norm of S, whose function is to 
guarantee the reasonable sparsity of S. In recent years, tensor network decompositions, such as tensor train (TT) decomposition 
[34], tensor ring (TR) decomposition [35], and fully-connected tensor network (FCTN) decomposition [36,37], have attracted much 
attention for analysis of high-dimensional tensor data. Thus, tensor network decomposition-based TRPCA methods have also been 
studied. For example, Yang et al. [38] proposed a TRPCA model which minimizes the TT nuclear norm. Xu et al. [39] provided 
a TR decomposition-based program for the mixed noise removing of hyperspectral image. Liu et al. [40] leveraged the superior 
expression of FCTN for robust tensor completion problem. Although these TRPCA approaches work well in recovering corrupted 
images, they ignore the importance of local detail information due to only taking into account the global characteristic of im-

ages.

To preserve local detail information of image, some total variation (TV) regularization-based image recovery methods have ex-

tensively sprung up [41–43]. TV regularization, as a popular tool in image recovery, has the ability to effectively maintain edge 
information and facilitate piecewise smooth features of images. The work [44] proposed the low-rank matrix method based on 
TV regularization (LRTV) to remove mixed noise in images. Similarly, in [45], a model which denotes to minimizing TV and 
weighted nuclear norm (WNMM) was introduced. Via extending traditional TV to 3-D spatio-spectral total variation (SSTV) [46], 
Wang et al. [47] incorporated the anisotropic SSTV regularization into low-rank tucker decomposition (LRTDTV) for recovering 
images. Likewise, Chen et al. [48] developed a TRPCA approach based on TNN and SSTV. Besides, an image recovery method 
that used local low-rank matrix recovery and global spatial-spectral total variation (LLRGTV) is presented in [49]. Although the 
above mentioned denoising methods based on TV regularization show a series of advantages, TV still faces some problems, such 
as the undesirable staircase effect in smooth region. For the sake of getting over the unfavorable influence, total generalized 
variation (TGV) regularization was developed in [50], and it has been proven to reduce staircase effect caused by TV regular-

ization, keep the sharp edges, and have the ability to keep the detail features in images. Unlike TV, which is calculated by 
2

first-order derivative, TGV involves first-order and higher-order derivatives. TGV has already been successfully applied in vari-
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Fig. 1. The recovered results by TRPCA [33], LRTDTV [47], and the proposed TRPCA-TGV on color image pallon with noise level 10%.

ous applications, e.g., removing the additive noise [51–53] and gaussian noise [54,55], deblurring [56], and compressive imaging 
[57].

Enlightened by TGV, we exploit a novel TRPCA method by introducing TGV into TNN (TRPCA-TGV) to fully consider 
the global structural information and local detail information of high-dimensional data. Specifically, we employ TNN to pre-

serve the global low-rank prior information. Moreover, we introduce TGV to preserve the local detail information and sharp 
edge information. To show the advantages of TRPCA-TGV, in Fig. 1, taking color image pallon as an example, we show 
the restoration results of our method TRPCA-TGV and two representative comparison methods (one TRPCA-based method 
and one TV-based method) under the noise level 10%. We observe that due to only considering the global prior of the im-

age, the recovery result obtained by TRPCA loses some image details and preserves poorer edge effects. LRTDTV obtains 
the suboptimal result, but its detail features are not so well and it has the obvious staircase effect in smooth region. Sig-

nificantly, the proposed method TRPCA-TGV takes into account both the global and local prior information of the image, 
so the overall structure, edges, and some details of the image are well restored. These results of the experiment confirm 
the outstanding performance of the proposed method. The main contributions of this paper are summarized as three as-

pects.

• We develop a new TRPCA program by incorporating TGV regularization. The proposed TRPCA-TGV model simultaneously 
explores the global and local prior information of high-dimensional images.

• The well-know alternating direction method of multiplier (ADMM) [58] framework is introduced to convert the original complex 
problem into several easily solvable subproblems.

• Extensive numerical experiments on color images and videos demonstrate the superiority of our proposed method over the 
compared methods, from the aspects of both quantitative assessments and visual effects.

The rest of this paper organizes as follows. Section 2 gives some preliminary knowledge. We introduce the proposed model and 
algorithm in Section 3. Section 4 evaluates the performance of the experimental results. We present an overview of this work in 
Section 5.

2. Notations and preliminaries

In this section, we present the basic notations and the necessary definitions throughout this work.

2.1. Notations

We respectively employ lowercase letter (e.g., 𝑎), bold uppercase letter (e.g., 𝐀), and calligraphic letter (e.g., A) to represent 
vector, matrix, and tensor. Given a third-order tensor A ∈ ℝ𝑛1×𝑛2×𝑛3 , we use the symbols A(𝑖, ∶, ∶), A(∶, 𝑖, ∶), and A(∶, ∶, 𝑖) to 
express its 𝑖-th horizontal, lateral, and frontal slices. For convenience, A(∶, ∶, 𝑖) is written as A(𝑖). A(𝑖, 𝑗, ∶) denotes the mode-3
fiber of A. The element of A is represented by 𝑎𝑖,𝑗,𝑘. The inner product of tensors A and B of size 𝑛1 × 𝑛2 × 𝑛3 is computed 

as ⟨A, B⟩ = ∑
𝑖,𝑗,𝑘 𝑎𝑖,𝑗,𝑘 ⋅ 𝑏𝑖,𝑗,𝑘. The Frobenius and 𝑙1 norms of A are respectively defined as ‖A‖𝐹 =

√⟨A,A⟩ = √∑
𝑖,𝑗,𝑘 𝑎

2
𝑖,𝑗,𝑘

and ‖A‖1 = ∑
𝑖,𝑗,𝑘 |𝑎𝑖,𝑗,𝑘|. Â = ff t(A, [ ], 3) represents the Fourier transformation along the third mode of A. Conversely, the in-

verse Fourier transformation is expressed as A = iff t(Â, [ ], 3). We use ⌈𝑠⌉ to represent the smallest integral value that is 𝑠 or 
more.

2.2. Tensor nuclear norm (TNN)

Definition 2.1 (t-product [33]). Let A ∈ ℝ𝑛1×𝑛2×𝑛3 and B ∈ ℝ𝑛2×𝑛4×𝑛3 , the t-product C = A ∗ B ∈ ℝ𝑛1×𝑛4×𝑛3 is defined as fol-

lows:

𝑛2∑

3

C(𝑖, 𝑗,∶) =
𝑘=1
A(𝑖, 𝑘,∶)⋆ B(𝑘, 𝑗,∶),
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where the notation ⋆ represents the circular convolution of A(𝑖, 𝑘, ∶) and B(𝑘, 𝑗, ∶).

Definition 2.2 (tensor conjugate transpose [33]). For A ∈ ℝ𝑛1×𝑛2×𝑛3 , its conjugate transpose is a tensor A𝐻 ∈ ℝ𝑛2×𝑛1×𝑛3 , which 
can be got via conjugate transposing all frontal slices and then reversing the order of transposed frontal slices from 2 to 
𝑛3.

Definition 2.3 (identify tensor [33]). I ∈ ℝ𝑛1×𝑛1×𝑛3 is a identity tensor if its first frontal slice is the 𝑛1 × 𝑛1 identify matrix, and all 
other frontal slices are zeros.

Definition 2.4 (orthogonal tensor [33]). If a tensor A ∈ℝ𝑛1×𝑛1×𝑛3 satisfies

A𝐻 ∗A =A ∗A𝐻 = I,

then A is orthogonal.

Definition 2.5 (f-diagonal tensor [33]). A third-order tensor A ∈ℝ𝑛1×𝑛2×𝑛3 is f-diagonal whose all frontal slices A(𝑖), 𝑖 = 1, ⋯ , 𝑛3 are 
diagonal matrices.

Theorem 2.1 (t-SVD [33]). For A ∈ℝ𝑛1×𝑛2×𝑛3 , then A can be decomposed into

A =U ∗ S ∗V𝐻, (4)

where U ∈ℝ𝑛1×𝑛1×𝑛3 and V ∈ℝ𝑛2×𝑛2×𝑛3 are both orthogonal, and S ∈ℝ𝑛1×𝑛2×𝑛3 is f-diagonal.

Definition 2.6 (tensor tubal-rank and multi-rank [33]). For A ∈ℝ𝑛1×𝑛2×𝑛3 , the tubal-rank of A, denoted as rank𝑡(A), is defined to be 
the maximum rank of all frontal slices S(𝑖) ,

rank𝑡(A) = #{𝑖 ∶ S(𝑖, 𝑖,∶) ≠ 0}, (5)

where S is f-diagonal, and can be obtained by t-SVD of A. The multi-rank of A, denoted by rank𝑚(A) ∈ℝ𝑛3 , is a vector whose 𝑖-th 
entry is the rank of 𝑖-th frontal slice of Â. And rank𝑡(A) =max(rank𝑚(A)).

Definition 2.7 (TNN [33]). The tensor nuclear norm of A ∈ℝ𝑛1×𝑛2×𝑛3 is the average of the sum of singular values of all the frontal 
slices of Â, i.e.,

‖A‖∗ ∶= 1
𝑛3

𝑛3∑
𝑖=1

‖𝐀̂(𝑖)‖∗, (6)

where 𝐀̂(𝑖) is the 𝑖-th frontal slice of Â.

2.3. Total generalized variation (TGV)

To illustrate the definition of TGV, assuming that Ω ∈ ℝ𝑑 , 𝑑 ∈ 𝐍, 𝑑 ≥ 1 is a domain which is a non-empty and bounded domain. 
TGV [50] of order 𝑘 with weights 𝜶 = (𝛼0, 𝛼1, ⋯ , 𝛼𝑘−1) > 0 for an image 𝑢 ∶ Ω →ℝ+ is defined as:

TGV𝑘
𝜶
(𝑢) = sup

⎧⎪⎨⎪⎩∫Ω 𝑢div𝑘𝑣𝑑𝑥|𝑣 ∈ 𝐶𝑘𝑐 (Ω,Sym𝑘(ℝ𝑑 )),‖div𝑗𝑣‖∞ ≤ 𝛼𝑗 , 𝑗 = 0,1,⋯ , 𝑘− 1
⎫⎪⎬⎪⎭ , (7)

where 𝐶𝑘𝑐 (Ω, Sym
𝑘(ℝ𝑑 )) denotes the space of symmetric tensor fields with the compact support in Ω, and Sym𝑘(ℝ𝑑 ) is the space of 

symmetric 𝑘th-order tensors on ℝ𝑑 which can be formulated as:

Sym𝑘(ℝ𝑑 ) = {𝜉 ∶ℝ𝑑 ×⋯ ×ℝ𝑑
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑘

⟶ℝ|𝜉 is multilinear and symmetric}.

Clearly, TGV1
1(𝑢) is the TV of 𝑢 when 𝑘 = 1, 𝜶 = 1, Sym1(ℝ𝑑 ) =ℝ𝑑 . In the case of 𝑘 = 2, Sym2(ℝ𝑑 ) is the space 𝐒𝑑×𝑑 made up of all 

symmetric 𝑑 × 𝑑 matrices.

Since TGV𝑘
𝜶
(𝑢) contains high-order regularization compared with traditional TV, it can better preserve sharp image edges 

and detail information [59]. Inspired by the above, we use 𝑘 = 2 in this work. The second-order TGV can be formulated 
4

as:
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TGV2
𝜶
(𝑢) = sup

⎧⎪⎨⎪⎩∫Ω 𝑢div2𝑣𝑑𝑥|𝑣 ∈ 𝐶2
𝑐 (Ω,Sym

2(ℝ𝑑 )),‖𝑣‖∞ ≤ 𝛼0,‖div𝑣‖∞ ≤ 𝛼1
⎫⎪⎬⎪⎭ . (8)

For 𝑣 ∈ 𝐒𝑑×𝑑 , the divergences are given by:

(div𝑣)𝑖 =
𝑑∑
𝑗=1

𝜕𝑣𝑖𝑗

𝜕𝑥𝑗
,1 ≤ 𝑖 ≤ 𝑑, div2𝑣 =

𝑑∑
𝑖,𝑗=1

𝜕2𝑣𝑖𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
,

and the infinity norms of 𝑣 and div𝑣 can be expressed as:

‖𝑣‖∞ =max
𝑥∈Ω

(
𝑑∑

𝑖,𝑗=1
|𝑣𝑖,𝑗 (𝑥)|2)1∕2

, ‖div𝑣‖∞ =max
𝑥∈Ω

(
𝑑∑
𝑖=1

|(div𝑣)𝑖(𝑥)|2)1∕2

.

We derive another form of TGV2
𝜶
(𝑢) to solve it efficiently. We have 𝑑 = 2 for images. Here we define 𝐔, 𝐕, 𝐖 as:

𝐔 = 𝐶2
𝑐 (Ω,ℝ), 𝐕 = 𝐶2

𝑐 (Ω,ℝ
2), 𝐖 = 𝐶2

𝑐 (Ω,𝐒
2×2). (9)

According to [51,59], TGV2
𝜶
(𝑢) can be simply reformulated as:

TGV2
𝜶
(𝑢) = min

𝑝∈𝐕
𝛼1‖𝐷𝑢− 𝑝‖1 + 𝛼0‖E(𝑝)‖1, (10)

where E(𝑝) = 1
2 (𝐷𝑝 + (𝐷𝑝)𝑇 ), 𝐷 = (𝐷1; 𝐷2), 𝐷1 and 𝐷2 respectively denote the first-order forward finite difference operators in 

𝑥-direction and 𝑦-direction. In particular, the operations 𝐷 ∶𝐔 →𝐕 and E ∶𝐕 →𝐖 can be expressed as:

𝐷𝑢 =
(
𝐷1𝑢
𝐷2𝑢

)
, E(𝑝) =

(
𝐷1𝑝1

1
2 (𝐷2𝑝1 +𝐷1𝑝2)

1
2 (𝐷2𝑝1 +𝐷1𝑝2) 𝐷2𝑝2

)
.

More details can be seen in [50,54].

3. The proposed model and algorithm

We develop a novel TRPCA model via incorporating the advantage of TGV. Specifically, giving an observed tensor X ∈ℝ𝑛1×𝑛2×𝑛3
which is corrupted by sparse noise, the proposed optimization program can be formulated as:

min
L,S

𝛽‖L‖∗ + 𝜆‖S‖1 + TGV2
𝜶
(L)

s.t. X = L + S,
(11)

where L and S are low-rank and sparse components with the same size to X, 𝛽, and 𝜆 are trade-off parameters to adjust the propor-

tion of the above three terms. Our proposed model is formed by three parts. The first part uses TNN to capture the global features of 
underlying image L. The second part is to suppress sparse noise S by 𝑙1 norm. The third part introduces the TGV to preserve local 
detail information. In summary, our method has the following advantages:

• Compared with the general TRPCA recovery models which only consider the global prior information, our model con-

siders both the global and local prior information of high-dimensional data for achieving satisfactory restoration perfor-

mance.

• Compared with the common TV-based restoration methods which often come with some unfavorable staircase effects in smooth 
regions of the image, we adopt TGV which can not only fully preserve the local detail information of the image but also effectively 
suppress the staircase effect.

Solving the minimization problem (11) directly is difficult. Since ADMM [58] is efficient in solving the large-scale optimization 
problem, we exploit ADMM to solve this minimization problem (11).

Specifically, by introducing the auxiliary variable Z, (11) can be reformulated as:

min
L,S,Z

𝛽‖L‖∗ + 𝜆‖S‖1 + TGV2
𝜶
(Z)

s.t. X = L + S,L =Z.
(12)

And then, the augmented Lagrangian function of (12) is

𝐿(L,S,Z,W ,B) = 𝛽‖L‖∗ + 𝜆‖S‖1 + TGV2
𝜶
(Z)+ <W ,L + S −X > + 𝛾

2
‖L + S −X‖2

𝐹
+ < B,L −Z > + 𝛾

2
‖L −Z‖2

𝐹
, (13)
5

where W and B are the Lagrangian multipliers, 𝛾 > 0 is a penalty parameter.
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In ADMM scheme, we alternately update each variable at a time, while fixing the others. The solutions to solving a sequence of 
subproblems are given as follows:

1)L-subproblem: Retaining all terms about L, we can get

L𝑘+1 = argmin
L

𝛽‖L‖∗ + 𝛾𝑘2
(‖L + S𝑘 −X +

W𝑘

𝛾𝑘
‖2
𝐹
+ ‖L −Z𝑘 +

B𝑘
𝛾𝑘

‖2
𝐹

)
= argmin

L

𝛽

𝛾𝑘
‖L‖∗ + 1

2
‖L − C𝑘‖2𝐹 , (14)

where C𝑘 =
𝛾𝑘(X+Z𝑘−S𝑘)−(W𝑘+B𝑘)

2𝛾𝑘
. Assume U ∗D ∗V𝐻 is the t-SVD of C𝑘, (14) can be solved under tensor singular value thresholding 

(t-SVT) [33] as follows:

L𝑘+1 =U ∗D 𝛽
𝛾𝑘

∗V𝐻, (15)

where

D 𝛽
𝛾𝑘

= iff t((D̂ − 𝛽

𝛾𝑘
)+, [ ],3).

Note that D̂ = ff t(D, [ ], 3), and 𝑎+ = max(𝑎, 0).
2)S-subproblem: Extracting all terms containing S from (13), we can update S by solving:

S𝑘+1 = argmin
S

𝜆‖S‖1 + 𝛾𝑘2 ‖L𝑘+1 + S −X +
W𝑘

𝛾𝑘
‖2
𝐹

= argmin
S

𝜆

𝛾𝑘
‖S‖1 + 1

2
‖S − (X − L𝑘+1 −

W𝑘

𝛾𝑘
)‖2
𝐹
.

(16)

S𝑘+1 can be updated via soft-thresholding operator [60] as:

S𝑘+1 = shrink(X − L𝑘+1 −
W𝑘

𝛾𝑘
,
𝜆

𝛾𝑘
), (17)

where shrink(𝑝, 𝜎) = sgn(𝑝). ∗ max(|𝑝| − 𝜎, 0), sgn(⋅) represents the sign function.

3)Z-subproblem: Keeping all terms relative to Z in (13), the solution of Z can be formed as:

Z𝑘+1 = argmin
Z

𝛾𝑘

2
‖L𝑘+1 −Z +

B𝑘
𝛾𝑘

‖2
𝐹
+ TGV2

𝜶
(Z). (18)

To solve (18), we can transform it into solving each frontal slice Z(𝑖)
𝑘+1 of Z𝑘+1, 𝑖 = 1, 2, ⋯ , 𝑛3,

Z(𝑖)
𝑘+1 = argmin

Z(𝑖)

𝛾𝑘

2
‖Z(𝑖) − (L(𝑖)

𝑘+1 +
B(𝑖)
𝑘

𝛾𝑘
)‖2
𝐹
+TGV2

𝜶
(Z(𝑖)). (19)

According to equation (10) in Section 2, we rewrite (19) as:

Z(𝑖)
𝑘+1 = argmin

Z(𝑖) ,𝑝

𝛾𝑘

2
‖Z(𝑖) − (L(𝑖)

𝑘+1 +
B(𝑖)
𝑘

𝛾𝑘
)‖2
𝐹
+ 𝛼1‖𝐷Z(𝑖) − 𝑝‖1 + 𝛼0‖E(𝑝)‖1. (20)

Numerous achievements have been made to explore the effective solutions for TGV problem [51,55,61]. Here, we employ the prima-

dual method [53] to solve (20).

Besides, the Lagrangian multipliers and penalty parameter can be updated through:

W𝑘+1 =W𝑘 + 𝛾𝑘(L𝑘+1 + S𝑘+1 −X), (21)

B𝑘+1 = B𝑘 + 𝛾𝑘(L𝑘+1 −Z𝑘+1), (22)

𝛾𝑘+1 = min{𝜃𝛾𝑘, 𝛾𝑚𝑎𝑥}. (23)

Algorithm 1 presents the optimization procedure of TRPCA-TGV.

4. Numerical experiments

We give some experimental results to display the recovery performance of our TRPCA-TGV for color images and videos denoising. 
Our method is compared with one method based on t-SVD (TRPCA [33]) and two methods based on TV (LLRGTV [49] and LRTDTV 
6

[47]).
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Algorithm 1 TRPCA-TGV solver.

Input: X ∈ℝ𝑛1×𝑛2×𝑛3 , 𝜖, 𝜆, 𝛽, 𝜃, maximum iteration 𝐾 .

Output: The recovered image L𝑘+1.
Initialize: L0 = S0 =W0 =Z0 = B0 = {0}𝑛1×𝑛2×𝑛3 , 𝛾0 = 10−2, 𝛾𝑚𝑎𝑥 = 106, 𝑘 = 0.

1: While not converged and 𝑘 < 𝐾 do

2: update L𝑘+1 via (15).

3: update S𝑘+1 via (17).

4: update Z𝑘+1 via (18).

5: updateW𝑘+1, B𝑘+1, and 𝛾𝑘+1 by (21), (22), and (23).

6: check the convergence conditions.

7: end While

Fig. 2. The original color images.

In general, we employ the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) [62] to measure the quality 
of the recovered results. The average PSNR and SSIM values of all bands are calculated and reported. Higher quality recovery result 
usually corresponds to the larger PSNR and SSIM values.

We set the maximum number of iteration 𝐾 = 500. For our stopping criterion, let

𝑐ℎ𝑔L = ‖L𝑘+1 − L𝑘‖∞,
𝑐ℎ𝑔S = ‖S𝑘+1 − S𝑘‖∞,
𝑐ℎ𝑔Z = ‖Z𝑘+1 −Z𝑘‖∞,
𝑐ℎ𝑔X = ‖X − L𝑘+1 − S𝑘+1‖∞,
𝑐ℎ𝑔Y = ‖L𝑘+1 −Z𝑘+1‖∞,

where ‖A‖∞ =max𝑖,𝑗,𝑘 |𝑎𝑖,𝑗,𝑘| for a third-order tensor. In iterative procedure, the algorithm will be stopped once the following final 
criterion is met:

max{𝑐ℎ𝑔L, 𝑐ℎ𝑔S, 𝑐ℎ𝑔Z, 𝑐ℎ𝑔X, 𝑐ℎ𝑔Y} ≤ 𝜀, (24)

where 𝜀 is the convergence tolerance. In all experiments, 𝜀 is set to 10−5.

All codes are implemented using MATLAB R2021a on a laptop with Intel core i5-12500 CPU (2.5GHz) and 16.00GB RAM, and 
NVIDIA GeForce RTX2050 4GB.

4.1. Color images recovery

In this subsection, we evaluate the performance of our method with the compared methods on ten color images. All test images 
have the same size 256 × 256 × 3, as shown in Fig. 2.

The noisy images are obtained by randomly setting 10%, 20%, 30%, and 40% of pixels to random values in [0, 255]. Ta-

ble 1 is the quantitative comparison of different approaches for ten color images. We have marked the highest PSNR and 
SSIM values and least execution times using black bold font. It is evident that our method has the maximum PSNR and SSIM 
7

values for all images. Even if the noise level has reached 40%, our method still performs better than the compared meth-
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Table 1

Quantitative evaluation of results obtained by TRPCA, LLRGTV, LRTDTV and TRPCA-TGV for color images with different noise levels.

Image Noise Levels 10% 20% 30% 40%

Method PSNR SSIM time PSNR SSIM time PSNR SSIM time PSNR SSIM time

peppers TRPCA 27.03 0.8944 3.41 25.12 0.7904 3.41 22.29 0.5682 3.27 18.40 0.3170 3.19

LLRGTV 23.73 0.7392 2.93 21.27 0.5383 3.14 19.23 0.4240 3.17 17.15 0.4454 3.23

LRTDTV 28.66 0.8430 5.40 24.14 0.6887 5.49 20.81 0.5486 5.61 17.62 0.3678 8.06

TRPCA-TGV 29.60 0.9045 1.50 25.44 0.7981 2.69 22.59 0.6391 2.72 19.50 0.5070 2.98

pallon TRPCA 31.14 0.9310 3.45 29.62 0.8783 3.37 26.96 0.7098 3.40 22.40 0.3916 3.25

LLRGTV 26.82 0.7161 3.09 23.44 0.5468 3.10 21.68 0.4496 3.11 19.66 0.4164 3.06

LRTDTV 31.65 0.8430 5.74 26.61 0.6749 5.62 22.31 0.5669 5.47 19.93 0.3928 5.42

TRPCA-TGV 34.17 0.9423 1.54 30.25 0.8793 1.54 27.12 0.7716 2.39 24.13 0.6508 2.69

lena TRPCA 29.92 0.9291 3.46 28.04 0.8616 3.46 22.23 0.6786 3.20 22.29 0.4117 3.09

LLRGTV 26.47 0.7673 2.98 23.54 0.7146 3.06 21.67 0.5806 2.96 20.11 0.5383 2.98

LRTDTV 31.37 0.8763 5.62 26.97 0.7323 5.49 23.60 0.5670 5.64 20.98 0.5079 5.27

TRPCA-TGV 33.03 0.9347 1.54 28.32 0.8676 1.46 25.49 0.7433 1.51 22.87 0.6581 1.51

starfish TRPCA 30.33 0.9421 3.47 27.14 0.8530 3.29 22.98 0.6337 3.18 18.80 0.3804 3.11

LLRGTV 26.33 0.8545 2.98 23.11 0.7684 2.95 20.53 0.6510 3.03 18.60 0.5299 2.96

LRTDTV 28.82 0.8727 5.42 24.86 0.7711 5.52 21.70 0.6463 5.51 19.37 0.5191 5.52

TRPCA-TGV 33.09 0.9507 1.64 27.43 0.8578 2.06 23.45 0.6988 2.32 20.29 0.5423 2.47

leaf TRPCA 31.69 0.9635 3.59 28.78 0.9086 3.42 25.60 0.7544 3.29 21.44 0.4768 3.11

LLRGTV 29.26 0.8853 3.01 26.20 0.7688 3.01 23.48 0.6804 2.97 21.04 0.5531 2.97

LRTDTV 33.02 0.9669 5.56 28.59 0.8538 5.60 25.08 0.7298 5.87 22.06 0.5982 5.69

TRPCA-TGV 35.01 0.9714 1.44 28.97 0.9107 2.17 25.84 0.7816 2.38 22.87 0.6419 2.62

palace TRPCA 28.25 0.9427 3.48 25.95 0.8765 3.48 22.96 0.7079 3.20 19.10 0.4712 3.20

LLRGTV 27.80 0.8617 2.95 22.95 0.7331 3.16 19.66 0.6138 3.00 17.99 0.5130 2.99

LRTDTV 28.62 0.8969 4.74 25.32 0.7958 6.12 22.47 0.7071 5.73 22.12 0.6119 5.39

TRPCA-TGV 31.70 0.9490 3.35 26.20 0.8789 2.83 23.15 0.7364 4.09 22.14 0.6177 3.84

resort TRPCA 30.51 0.9381 3.49 28.57 0.8814 3.42 25.87 0.7107 3.24 21.98 0.4360 3.12

LLRGTV 30.17 0.8599 2.91 26.41 0.7442 2.96 23.71 0.6478 2.92 21.74 0.5626 3.01

LRTDTV 30.23 0.8583 5.49 27.24 0.7463 5.49 24.81 0.6348 5.45 22.66 0.5250 5.49

TRPCA-TGV 33.95 0.9553 1.46 29.05 0.8821 1.45 26.14 0.7691 2.22 23.80 0.6489 2.58

mountains TRPCA 38.74 0.9748 3.62 36.70 0.9546 3.35 34.31 0.9009 3.31 28.30 0.6089 3.23

LLRGTV 33.38 0.9235 2.94 29.27 0.8293 2.90 24.75 0.7083 2.98 21.55 0.7522 2.98

LRTDTV 36.36 0.9045 5.62 31.62 0.8019 5.54 27.10 0.6700 5.60 23.67 0.5509 5.58

TRPCA-TGV 42.89 0.9827 1.40 37.69 0.9558 1.43 34.83 0.9225 1.45 31.50 0.8753 2.29

pyramid TRPCA 34.07 0.9422 3.41 32.26 0.8954 3.35 29.81 0.7721 3.28 25.51 0.4978 3.17

LLRGTV 31.74 0.7911 2.94 26.88 0.6690 2.93 23.00 0.5293 3.01 20.30 0.4289 3.02

LRTDTV 31.66 0.8058 5.40 27.50 0.6554 5.45 24.02 0.5147 5.10 21.51 0.4130 5.63

TRPCA-TGV 37.25 0.9637 1.40 32.76 0.9003 1.41 30.25 0.8055 1.57 27.78 0.7140 1.66

church TRPCA 32.85 0.9652 3.47 31.44 0.9460 3.43 29.35 0.8850 3.31 24.57 0.5341 3.22

LLRGTV 32.34 0.9157 3.01 27.49 0.8012 2.96 23.49 0.6746 2.92 20.31 0.5613 2.96

LRTDTV 35.89 0.9211 5.33 30.88 0.8068 5.48 27.08 0.6917 5.49 23.80 0.5761 5.36

TRPCA-TGV 36.89 0.9749 1.47 32.24 0.9496 1.41 29.45 0.8933 1.43 25.68 0.8145 1.46

ods. Meanwhile, the iteration times of TRPCA-TGV are less than the compared methods except the execution times for image 
palace.

In Fig. 3, some restored images with different noise levels are exhibited. We have selected the same subdomain of each im-

age and enlarged it so as to better showcase the comparison effect in vision. It is clear that our method has successfully removed 
noise and can capture more realistic details in recovering images. Under the condition of noise level 10%, TRPCA can elimi-

nate the noise, but its detail features are unsharp. The chief reason is that TRPCA has focused just on the global low-rank prior 
information, but ignored the importance of local information for detail features. The LLRGTV has used the method of local low-

rank matrix, this has essentially broken the interior structure of tensor. So the recovery results of LLRGTV are unsatisfactory. 
The recovery of LRTDTV has the staircase effect due to the usage of SSTV which is the form of first-oder derivative. Over-

all, the proposed method has achieved a more satisfactory result, and it can preserve both the underlying global information 
and better local detail features. In addition, the proposed method also has the ability to powerfully denoise when noise level is 
8

40%.
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Fig. 3. The recovered images by different methods with noise levels 10%, 20%, 30%, and 40%.
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Table 2

Quantitative evaluation of results obtained by TRPCA, LLRGTV, LRTDTV, and TRPCA-TGV for videos with different noise levels.

Video Noise Levels 10% 20% 30%

Method PSNR SSIM time PSNR SSIM time PSNR SSIM time

TRPCA 26.27 0.9057 28.08 25.04 0.8453 27.42 23.22 0.7123 26.76

bus LLRGTV 20.44 0.5341 33.48 18.62 0.4149 31.76 19.16 0.4464 32.71

256 × 256 × 30 LRTDTV 21.18 0.6273 29.94 21.03 0.5924 28.60 20.83 0.5807 24.78

TRPCA-TGV 29.41 0.9209 12.29 25.61 0.8489 12.14 23.45 0.7513 12.30

TRPCA 33.05 0.9345 26.35 31.97 0.9191 25.40 30.67 0.8899 24.76

suzie LLRGTV 28.42 0.8137 83.92 28.33 0.8109 81.16 28.16 0.8052 82.41

144 × 176 × 75 LRTDTV 30.21 0.8730 22.30 30.00 0.8679 22.19 29.73 0.8609 23.03

TRPCA-TGV 36.40 0.9559 11.07 33.28 0.9239 11.50 31.04 0.8901 11.43

TRPCA 33.72 0.9698 29.35 33.63 0.9630 27.68 31.48 0.9533 25.90

salesman LLRGTV 31.44 0.9490 88.10 31.29 0.9471 93.86 30.91 0.9433 82.49

144 × 176 × 75 LRTDTV 33.41 0.9634 20.94 32.77 0.9584 26.85 31.67 0.9478 23.07

TRPCA-TGV 38.25 0.9859 18.68 34.83 0.9726 12.12 32.22 0.9567 11.96

TRPCA 38.22 0.9843 10.59 36.76 0.9808 10.41 34.44 0.9733 10.61

hall LLRGTV 39.63 0.9832 30.07 37.98 0.9817 30.06 35.20 0.9747 28.43

144 × 176 × 30 LRTDTV 38.86 0.9806 9.78 36.96 0.9744 9.77 33.33 0.9651 17.23

TRPCA-TGV 41.55 0.9889 12.01 38.69 0.9824 10.75 35.29 0.9744 10.19

TRPCA 34.02 0.9603 11.15 32.22 0.9395 10.73 30.20 0.8982 10.34

coastguard LLRGTV 28.84 0.8452 30.05 28.43 0.8336 30.22 27.71 0.8093 30.24

144 × 176 × 30 LRTDTV 32.44 0.9192 11.90 31.13 0.8995 12.23 29.46 0.8655 12.45

TRPCA-TGV 36.88 0.9747 4.96 33.17 0.9443 5.00 30.50 0.9046 4.99

TRPCA 35.23 0.9802 13.05 34.23 0.9764 12.89 32.92 0.9695 11.52

news LLRGTV 35.52 0.9819 30.64 34.88 0.9795 30.23 33.51 0.9739 30.32

144 × 176 × 30 LRTDTV 38.57 0.9889 12.71 34.64 0.9739 12.61 31.22 0.9407 12.78

TRPCA-TGV 40.24 0.9896 13.14 36.81 0.9809 12.15 33.63 0.9715 5.02

4.2. Videos recovery

In this subsection, six gray videos1 are tested by TRPCA, LLRGTV, LRTDTV, and our proposed method TRPCA-TGV. Table 2

displays the average PSNR and SSIM values and execution times of the recovered videos by different methods with noise levels 10%, 
20%, and 30%. Clearly, our method achieves best recovery results and least iteration times for most test videos. All PSNR values of 
the videos recovered by our method are highest.

In order to see more recovery details for videos, we select some cases to show the visual contrast. If the number of frames of 
a video is 𝑚, we typically show the ⌈𝑚2 ⌉-th frames of the recovery results for videos with noise levels 10% and 20% in Fig. 4. It is 
evident that, our model is superior to others in the aspect of denoising and detail preservation. For example, in the recovery results 
of bus, the letters on the bus restored by our method are clearer than other comparative methods. Fig. 5 displays the PSNR and SSIM 
values of each frame for videos bus and suzie with noise level 10%. Obviously, our method has achieved the best quality indexes for 
almost all frames. Fig. 6 is the pixel values of tubes randomly selected from the reconstructed videos via different methods with noise 
level 10%. We can draw that the pixel values of videos recovered by our method are nearest to original pixel values. Therefore, our 
method is more efficient.

4.3. Discussions

Parameters analysis. In the TRPCA-TGV model, there exist the following parameters: 𝛽 capturing the low-rankness of the underly-

ing tensor, the sparse regularization parameter 𝜆, penalty parameter 𝛾 , 𝜃 used for updating 𝛾 , the positive weights 𝛼0 and 𝛼1 in TGV. 
During our experiments, to improve the speed of convergence effectively, we set 𝜃 = 1.1. The initial penalty parameter 𝛾0 is set to 
10−2. Inspired by [53], we set the parameters 𝛼0 = 2 and 𝛼1 = 1 in TGV. According to [33], we also set 𝜆 = 1∕

√
𝑚𝑎𝑥(𝑛1, 𝑛2) × 𝑛3

in TRPCA-TGV. Fig. 7 shows the PSNR and SSIM values of the results restored via TRPCA-TGV for color image lena in regard 
to 𝛽. It can be concluded that the recovery results are closely affected by 𝛽. On color images recovery, the parameter 𝛽 is rel-

atively sensitive to different noise levels. For noise levels 10%, 20%, 30% and 40%, 𝛽s are respectively selected from the sets 
{0.30, 0.35, 0.45}, {0.40, 0.45, 0.50}, {0.50, 0.55, 0.60}, and {0.60, 0.65, 0.70}. Since the video data in our experiments are of differ-

ent size, the proper parameter 𝛽s are shown in Table 3. The 𝛽s corresponding to noise levels 10%, 20%, and 30% show an increasing 
trend.

Convergency behaviors. Taking the color image peppers as an example, we show the numerical convergence of TRPCA-TGV. As 
can be seen in Fig. 8, the relative errors of L and S, which can be expressed as ‖L𝑘+1−L𝑘‖𝐹‖L𝑘‖𝐹 and ‖S𝑘+1−S𝑘‖𝐹‖S𝑘‖𝐹 , rapidly decrease 
10
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Fig. 4. The recovered videos by different methods with noise levels 10% and 20%. From top to bottom: bus, suzie, salesman, hall, and news.
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Fig. 5. The PSNR and SSIM values of each frame of videos recovered by different methods with noise level 10%. (a) bus and (b) suzie.

Table 3

The proper parameter 𝛽s for videos with noise levels 10%, 20%, and 30%.

Noise Levels bus suzie salesman hall coastguard news

10% 0.33 0.31 0.28 0.31 0.35 0.27

20% 0.46 0.40 0.37 0.38 0.42 0.36

30% 0.53 0.48 0.48 0.45 0.49 0.47

during the iterations for different noise levels. This clearly verifies the numerical convergence behavior of the proposed algo-

rithm.

5. Conclusions

In this work, we exploited a hybrid model for tensor recovery, in which we introduce total generalized variation into tensor robust 
principal component analysis for catching the global prior information and local detail features. The ADMM algorithm was employed 
to solve the proposed problem. A large quantity of numerical experiments have indicated that our method TRPCA-TGV performs 
superior than the comparative methods TRPCA, LLRGTV and LRTDTV.

Data availability
12

Data will be made available on request.
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Fig. 6. The pixel values of randomly selected tubes of the recovered videos by different methods with noise level 10%. (a) bus, (b) coastguard, (c) hall, (d) news, (e) 
salesman, and (f) suzie.
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Fig. 7. The PSNR and SSIM values with respect to parameter 𝛽 on color image lena with noise level 10%.

Fig. 8. The relative error curves of our method on color image peppers with different noise levels: (a) 10%, (b) 20%, (c) 30%, and (d) 40%.
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