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a b s t r a c t

In this paper, we propose a novel model to restore an image corrupted by blur and Cauchy
noise. Themodel is composed of a data fidelity term and two regularization terms including
total variation and high-order total variation. Total variation provides well-preserved edge
features, but suffers from staircase effects in smooth regions, whereas high-order total
variation can alleviate staircase effects. Moreover, we introduce a strategy for adaptively
selecting regularization parameters. We develop an efficient alternating minimization
algorithm for solving the proposed model. Numerical examples suggest that the proposed
method has the advantages of better preserving edges and reducing staircase effects.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Image restoration is an important issue in many engineering fields [1–7]. Most existing image denoising techniques
handle the restoration of images corrupted by additive Gaussian noise [8–10], multiplicative noise [11–13], and impulse
noise [14,15]. But there are other types of noise in practical applications, such as Cauchy noise, Rician noise, and Gamma
noise. In this paper, we aim at restoring images corrupted by blur and Cauchy noise, which exists widely in biomedical
images and synthetic aperture radar images [16,17]. Mathematically, the degradation process can be described as

f = Ku + v, (1)

where f ∈ Rm×n is the degraded image, u ∈ Rm×n is the original image, K is a linear blur operator, v is the Cauchy noise with
a probability density function [18]

g(v) =
1
π

γ

γ 2 + (v − σ )2
, (2)

where γ > 0 is the scale parameter and σ ∈ R is the localization parameter. Without loss of generality, in the following
discussion we consider σ = 0.
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There exist many methods for Cauchy noise removal. Achim and Euruoglu [19] removed Cauchy noise via a bivariate
maximum a posteriori estimator in the complex wavelet domain. Chang et al. [20] studied a recursive restoration algorithm
based on Markov random field model to restore images under Cauchy noise. Nikolova [21] removed Cauchy noise in RGB
color images using an image segmentation method with the improved quality of segmentation and Cauchy noise reduction.
Due to the fact that total variation (TV) [22,23] can preserve sharp image edges, Sciacchitano et al. [18] proposed the following
TV-based Cauchy denoising and deblurring model:

arg min
u

α∥Du∥1 +
1
2

(
⟨log(γ 2

+ (Ku − f )2), 1⟩X + µ∥Ku − u0∥
2
F

)
, (3)

where ∥Du∥1 is the TV regularization term (see Section 2.1), the second term is the data fidelity term based on Cauchy
distribution, the third term is a quadratic penalty term to ensure the convexity of the model (3), ⟨·, ·⟩X denotes the standard
inner product, the logarithmic function log is pixel-by-pixel, α > 0 is a regularization parameter, K denotes a linear blurring
operator, 1 is an m-by-n matrix of ones, µ is a positive penalty parameter, and u0 is the pre-denoising result of the median
filter [24]. The model (3) pushes the solution close to the pre-denoising result, but the median filter does not always provide
a satisfactory result. So Mei et al. [25] studied the non-convex model by removing the third term in (3). They used the
alternating direction method of multipliers (ADMM) to solve the non-convex optimization problem with promising results.
However, since the data fidelity term is non-convex, the solution strongly depends on initializations and solving schemes.
TV regularization can preserve fine features and sharp edges, but it often produces staircase artifacts and false edges which
do not exist in the true images [26–29]. Inmany applications, some authors proposedmethods combining TV and high-order
TV to reduce staircase artifacts [30–37].

Due to the fact that the image distribution is inhomogeneous, in terms of cartoon and texture, global constant regu-
larization parameters do not satisfy local piecewise smoothness constraints in all local image regions [38,39]. Therefore,
some works considered adjusting the spatially dependent regularization parameters adaptively [40–47]. Liao et al. [44]
used generalized cross-validation [48] to choose the regularization parameters adaptively. Chen et al. [45,46] proposed
discrepancy rule-based methods for parameter selections, which rely on a good estimate of the noise level. Ma et al. [40]
proposed a method to simultaneously estimate the restored image and regularization parameters, where regularization
parameters become more reasonable by exploiting the more accuracy restored image instead of the observed image.

In this paper, we propose a new adaptive model combining TV and high-order TV regularization for restoring blurred
images with Cauchy noise (see Section 3). In the proposed model, regularization parameters are selected adaptively. In
texture areas, TV regularization preserves sharp edges; whereas in flat areas, the high-order TV regularization maintains
the smoothness. Numerically, we develop an efficient iterative algorithm for solving the proposed model. The proposed
algorithm can adaptively select the values of regularization parameters to balance the data fidelity and regularization terms.
Experimental results demonstrate that the proposed method is competitive with the state-of-the-art methods.

The remainder of this paper is organized as follows. In Section 2, we present some preliminaries used in our method. The
TV and high-order TV adaptivemodel is described in Section 3. In Section 4, we provide an efficient alternatingminimization
algorithm for solving the proposed model and discuss the convergence of the proposed algorithm. In Section 5, we present
extensive experimental results to illustrate the effectiveness of the proposed method. In Section 6, we conclude this paper.

2. Preliminary

In this section, we give some preliminaries and review the framework of ADMM.

2.1. Notations

For the sake of simplicity, we focus on gray images and assume that images are periodically extended. We denote an
image u as an m × n matrix, where ui,j represents the intensity value of u at pixel (i, j) for i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
In the rest of this paper, we let ∥ · ∥2, ∥ · ∥F , and ◦ denote the 2-norm, the Frobenius norm, and the Hadamard product,
respectively. Let X be the Euclidean space Rm×n, ⟨·, ·⟩X and ∥ · ∥X be the inner product and the Euclidean norm, respectively.
Denote by Y the space X × X equipped with the inner product ⟨·, ·⟩Y . Similarly, we denote the space Y × Y as Z . ⟨·, ·⟩Z and
∥ · ∥Z , respectively, denote the inner product and the norm. For p = (p1, p2) ∈ Y and q = (q1, q2) ∈ Y , we have

∥p∥Y =

√
⟨p, p⟩Y , ⟨p, q⟩Y = ⟨p1, q1⟩X + ⟨p2, q2⟩X .

Moreover, for y = (y1, y2) ∈ Y , |y| denotes them × nmatrix whose element |y|i,j is equal to ∥yi,j∥2 with yi,j = (y1i,j, y
2
i,j).

For u ∈ X , we introduce the following discrete forward and backward difference operators:

(D+

x u)i,j =

{
ui,j+1 − ui,j, 1 ≤ j ≤ n − 1,

ui,1 − ui,n, j = n,

(D+

y u)i,j =

{
ui+1,j − ui,j, 1 ≤ i ≤ m − 1,

u1,j − un,j, i = m,
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(D−

x u)i,j =

{
ui,1 − ui,n, j = 1,
ui,j − ui,j−1, 2 ≤ j ≤ n,

(D−

y u)i,j =

{
u1,j − un,j, i = 1,
ui,j − ui−1,j, 2 ≤ i ≤ m,

(D−+

xx u)i,j = (D−

x (D
+

x u))i,j,
(D+−

yy u)i,j = (D+

y (D
−

y u))i,j.

Other second-order difference operators D+−
xx u,D++

xy u,D++
yx u,D−+

yy u, and D−−
yx u can be similarly defined. Periodic boundary

conditions are used in the forward and backward difference schemes, and then the fast Fourier transform can be adopted in
the proposed algorithm.

The discrete TV and high-order TV of u are defined as

∥Du∥1 =

∑
1≤i≤m,1≤j≤n

|Du|i,j, Du = (D+

x u,D
+

y u).

∥D2u∥1 =

∑
1≤i≤m,1≤j≤n

|D2u|i,j, D2u =

(
D−+
xx u D++

xy u
D++
yx u D−+

yy u

)
.

|Du|i,j =

√
(D+

x u)2i,j + (D+
y u)2i,j,

|D2u|i,j =

√
(D−+

xx u)2i,j + (D++
xy u)2i,j + (D++

yx u)2i,j + (D−+
yy u)2i,j.

Using the inner products of X , Y , and Z , we can find that the discrete divergence operatorsD∗
: Y → X and (D2)∗ : Z → X

are given as follows:

⟨D∗y, u⟩X = ⟨y, −Du⟩Y , ⟨(D2)
∗
z, u⟩X = ⟨z,D2u⟩Z ,

where u ∈ X , y ∈ Y , and z ∈ Z . Then they are formulated as follows:

D∗y = D−

x y
1
+ D−

y y
2,

(D2)
∗
z = D+−

xx z11 + D−−

yx z12 + D−−

xy z21 + D+−

yy z22.

Finally, the composite operators D∗D and (D2)∗D2 are used in the following section.

2.2. ADMM algorithm

The ADMM [49–51] solves optimization problems with the following form:

arg min
x,y

f (x) + g(y), (4)

s.t. Ax + By = b, x, y ∈ X,

where f : Rn
→ R and g: Rn

→ R are convex functions, X ⊆ Rn is a closed convex set, A ∈ Rl×n and B ∈ Rl×n are given
matrices, and b ∈ Rl is a given vector. The augmented Lagrangian function of (4) is

L(x, y, z) = f (x) + g(y) +
β

2
∥Ax + By − b − z∥2

2, (5)

where z is the Lagrangian multiplier and β is a penalty parameter. The iterations of ADMM are given in Algorithm 1.

Algorithm 1: ADMM for solving the optimization problem (4).
Input: β > 0.
Initialize: y0 and z0.

1: for k = 0 to K do
2: xk+1

= arg min
x

L(x, yk, zk),

3: yk+1
= arg min

y
L(xk+1, y, zk),

4: zk+1
= zk − (Axk+1

+ Byk+1
− b).

5: end for
Output: x, y.
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3. Adaptive TV and high-order TV model

Considering the advantages of TV and high-order TV, we combine TV with high-order TV regularization as follows:

arg min
u

∥g1 ◦ Du∥1 + ∥g2 ◦ D2u∥1 +
1
2

(
⟨log(γ 2

+ (Ku − f )2), 1⟩X + µ∥Ku − u0∥
2
X

)
, (6)

where ◦ denotes the element-wise multiplication, g1 ∈ Rm×n and g2 ∈ Rm×n are spatially dependent regularization
parameters,Du andD2udenote the first-order andhigh-order differencematrices, respectively. Thismodel is able to preserve
edges while reducing staircase effects in smooth regions.

In [40], the authors proposed a general model to adjust regularization parameters. The advantage is that regularization
parameters and the restored image can benefit from each other until joint optimization, for more details see [40]. Similarly,
we form a spatially adaptive regularization parameters selection model. It has the form

arg min
u,g1,g2

E(u, g1, g2) = F1(u) + F2(g1, g2) + R(u, g1, g2), (7)

where F1(u) and F2(g1, g2) are fidelity terms for the restored image and regularization parameters. g1 and g2 denote spatially
dependent regularization parameters. R(u, g1, g2) is a regularizer. Regularization parameters are changing more reasonably
by exploiting the restored image u.

Combining (6) and (7), finally we propose the following model for restoring the blurred image with Cauchy noise, which
adjusts regularization parameters adaptively:

arg min
u,g1,g2

E(u, g1, g2) =
1
2

(
⟨log(γ 2

+ (Ku − f )2), 1⟩X + µ∥Ku − u0∥
2
X

)
+ α

(
∥g1 −

M
α

· 1∥2
X + ∥g2 −

M
α

· 1∥2
X

)
+

∑
1≤i≤m,1≤j≤n

(g1)2i,j(Hr (|Du|))i,j +
∑

1≤i≤m,1≤j≤n

(g2)2i,j(Hr (|D2u|))i,j, (8)

where α and M are positive parameters, Hr denotes a discrete mean filter with window size r (with a periodic extension at
the boundary).

Now we analyze the numerical behavior of the solution. The following result shows the existence of the solution of the
minimization problem (8).

Theorem 3.1. If α > 0, M > 0, f ∈ X, and Null(K )∩ Null(D)∩ Null(D2) = {0} with Null(·) denotes the null space, the model (8)
has a global minimizer.

Proof. According to [40], we define the function

f (x, y) =

⎧⎨⎩ 1/r2 if min(|x|,m − |x|) ≤
r−1
2 ,min(|y|, n − |y|) ≤

r−1
2 ,

0 otherwise.

From the definition of f , it is immediate to see that f (x, y) = f (−x, −y). Thus, we can get that∑
1≤i≤m,1≤j≤n

g2
i,j(Hr (|Du|))i,j =

∑
1≤i≤m,1≤j≤n

g2
i,j(

∑
1≤s≤m,1≤t≤n

f (i − s, j − t)|Du|s,t )

=

∑
1≤s≤m,1≤t≤n

|Du|s,t (
∑

1≤i≤m,1≤j≤n

f (s − i, t − j)g2
i,j)

=

∑
1≤s≤m,1≤t≤n

(Hr (g ◦ g))s,t |Du|s,t

=

∑
1≤i≤m,1≤j≤n

(Hr (g ◦ g))i,j|Du|i,j. (9)

And g is similar to g1, g2.
Then, the model (8) is equivalent to

arg min
u,g1,g2

E(u, g1, g2) =
1
2

(
⟨log(γ 2

+ (Ku − f )2), 1⟩X + µ∥Ku − u0∥
2
X

)
+ α

(
∥g1 −

M
α

· 1∥2
X + ∥g2 −

M
α

· 1∥2
X

)
+

∑
1≤i≤m,1≤j≤n

(Hr (g1 ◦ g1))i,j|Du|i,j +
∑

1≤i≤m,1≤j≤n

(Hr (g2 ◦ g2))i,j|D2u|i,j. (10)

Under the assumptions α > 0, M > 0, due to γ > 0 and K is a linear operator, the model is bounded from below.
And the function E : X × X × X → R is proper and continuous. According to the Weierstrass’ theorem [52], it remains
only to show the coercivity of E(u, g1, g2), i.e., for every sequence {uk, gk

1, g
k
2} such that ∥uk

∥X + ∥gk
1∥X + ∥gk

2∥X → ∞, we
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have limk→∞ E(uk, gk
1, g

k
2) = ∞. We prove it by contradiction. Suppose that there exists a subsequence of {uk, gk

1, g
k
2} (also

denoted as {uk, gk
1, g

k
2}) that {E(u

k, gk
1, g

k
2)} is bounded, we have that {∥Kuk

∥X }, {∥Duk
∥Y }, {∥D2uk

∥Z }, {∥gk
1∥X }, and {∥gk

2∥X } are
bounded. According to the assumption Null(K ) ∩ Null(D) ∩ Null(D2) = {0}, the sequence {uk

} is a bounded sequence, which
is a contradiction. Therefore, the existence of a global minimizer is deduced.

Assuming that (u∗, g∗

1 , g∗

2 ) is a minimizer of (8), according to Theorem 3.1, then the following result is straightfor-
ward [53]:

u∗
= arg min

u
E(u, g∗

1 , g∗

2 ), (g∗

1 , g∗

2 ) = arg min
g1,g2

E(u∗, g1, g2). (11)

We remark that the adaptive model (8) is non-convex, therefore, it is difficult to find the global minimum in practice.
However, one can still find its coordinate-wise minimums that satisfy (11).

According to (9) and (11), given u∗, the solutions of g1 and g2 are expressed as follows:

(g∗

1 )i,j = f (Du∗

i,j), (g∗

2 )i,j = f (D2u∗

i,j), and f (x) =
M

α + (Hr (|x|))
. (12)

Substituting g∗

1 and g∗

2 into (8), the solution of u can be obtained from the following optimization problem:

arg min
u

1
2

(
⟨log(γ 2

+ (Ku − f )2), 1⟩X + µ∥Ku − u0∥
2
X

)
+ α

(
∥g∗

1 −
M
α

· 1∥2
X + ∥g∗

2 −
M
α

· 1∥2
X

)
+

∑
1≤i≤m,1≤j≤n

(g∗

1 )
2
i,j(Hr (|Du|))i,j +

∑
1≤i≤m,1≤j≤n

(g∗

2 )
2
i,j(Hr (|D2u|))i,j. (13)

4. Numerical scheme and convergence analysis

Based on the analysis of the previous section, we adopt an alternating minimization scheme to decompose the model (8)
into two strictly convex problems. It has the following two steps:

Step1: the u problem

arg min
u

E(u, g∗

1 , g∗

2 ) = arg min
u

1
2

(
⟨log(γ 2

+ (Ku − f )2), 1⟩X + µ∥Ku − u0∥
2
X

)
+

∑
1≤i≤m,1≤j≤n

(Hr (g∗

1 ◦ g∗

1 ))i,j|Du|i,j +
∑

1≤i≤m,1≤j≤n

(Hr (g∗

2 ◦ g∗

2 ))i,j|D
2u|i,j. (14)

Step2: the (g1, g2) problem

arg min
g1,g2

E(u∗, g1, g2) = arg min
g1,g2

α
(
∥g1 −

M
α

· 1∥2
X + ∥g2 −

M
α

· 1∥2
X

)
+

∑
1≤i≤m,1≤j≤n

(g1)2i,j(Hr (|Du∗
|))i,j +

∑
1≤i≤m,1≤j≤n

(g2)2i,j(Hr (|D2u∗
|))i,j. (15)

The algorithm for solving the proposed model (8) is summarized in Algorithm 2.

Algorithm 2: The alternating minimization method for solving (8).
Input: data f , parameters α, M , β , r .
Initialize: g0

1 = 0, g0
2 = 0, ϵ = 1e − 5 andmaxiter.out = 100.

1:While (∥uk+1
− uk

∥F/∥uk
∥F > ϵ and k ≤ maxiter.out) Do

2: Given gk
1 and gk

2 , update uk+1 by solving (14).
3: Given uk+1, update gk+1

1 and gk+1
2 by solving (12).

4: End while(converged)
Output: The restored image u.

Since E(u, g∗

1 , g∗

2 ) is convex with respect to u, the u problem can be efficiently solved by ADMM. The main idea is to
rewrite the unconstrainedminimization problem (14) into a constrained one by introducing three auxiliary variables p = Du,
q = D2u, and w = Ku. The minimization of (14) is equivalent to the following constrained problem:

E(u, g∗

1 , g∗

2 ) = arg min
u,p,q,w

1
2

(
⟨log(γ 2

+ (w − f )2), 1⟩X + µ∥w − u0∥
2
X

)
+

∑
1≤i≤m,1≤j≤n

(Hr (g∗

1 ◦ g∗

1 ))i,j|p|i,j +
∑

1≤i≤m,1≤j≤n

(Hr (g∗

2 ◦ g∗

2 ))i,j|q|i,j,

s.t. p = Du, q = D2u, w = Ku. (16)
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The corresponding augmented Lagrangian function of (16) is given by

L(u, p, q, w, λ1, λ2, λ3) =
1
2

(
⟨log(γ 2

+ (w − f )2), 1⟩X + µ∥w − u0∥
2
X

)
+

∑
1≤i≤m,1≤j≤n

(Hr (g∗

1 ◦ g∗

1 ))i,j|p|i,j

+

∑
1≤i≤m,1≤j≤n

(Hr (g∗

2 ◦ g∗

2 ))i,j|q|i,j +
β

2

(
∥p − Du +

λ1

β
∥
2
Y + ∥q − D2u +

λ2

β
∥
2
Z

+ ∥w − Ku +
λ3

β
∥
2
X

)
, (17)

where λ1, λ2, and λ3 are the Lagrangian multipliers, β is a penalty parameter. ADMM minimizes the Lagrangian function
with respect to the two variable groups u and (p, q, w). Since p, q, and w are decoupled with each other, they can be solved
separately. Thus, (16) is decomposed into four simpler minimization subproblems.

(a) The u subproblem is

uk+1
= arg min

u

β

2

(
∥pk − Du +

λk
1

β
∥
2
Y + ∥qk − D2u +

λk
2

β
∥
2
Z + ∥wk

− Ku +
λk
3

β
∥
2
X

)
. (18)

By the optimal condition, we have

(D∗D + (D2)∗D2
+ K ∗K )uk+1

=
1
β
(D∗(βpk + λk

1) + (D2)∗(βqk + λk
2) + K ∗(βwk

+ λk
3)). (19)

The periodic boundary condition is assumed, so K , D, and D2 are block circulant with circulating block structure. The optimal
u can be solved efficiently in the Fourier domain

uk+1
= F−1

( 1
β
(F (D∗(βpk + λk

1) + (D2)∗(βqk + λk
2) + K ∗(βwk

+ λk
3)))

F (D∗D) + F ((D2)∗D2) + F (K ∗K )

)
, (20)

where F denotes the discrete Fourier transform, F−1 is the inverse transform, and K ∗ is the conjugate operator of K .
(b) The p subproblem is

pk+1
= arg min

p

∑
1≤i≤m,1≤j≤n

(Hr (g1 ◦ g1))i,j|p|i,j +
β

2
∥p − Du +

λ1

β
∥
2
Y . (21)

It can be solved by the shrinkage operator [54]

pk+1
i,j = max{|Duk

−
λk
1

β
|

i,j
−

Hr (gk
1 ◦ gk

1)i,j
β

, 0} ◦ sign((Duk
− (λk

1/β))i,j), (22)

where sign refers to 1 if the entry is greater than or equal to zero, and −1 if the entry is negative.
(c) The q subproblem is

qk+1
= arg min

q

∑
1≤i≤m,1≤j≤n

(Hr (g2 ◦ g2))i,j|q|i,j +
β

2
∥q − D2u +

λ2

β
∥
2
Z . (23)

Similarly, q can be solved by the two-dimensional shrinkage operator

qk+1
i,j = max{|D2uk

−
λk
2

β
|

i,j
−

Hr (gk
2 ◦ gk

2)i,j
β

, 0} ◦ sign((D2uk
− (λk

2/β))i,j). (24)

(d) The w subproblem is

wk+1
= arg min

w

1
2

(
⟨log(γ 2

+ (w − f )2), 1⟩X + µ∥w − u0∥
2
X

)
+

β

2
∥w − Ku +

λ3

β
∥
2
X . (25)

Let

G(w) =
1
2

(
⟨log(γ 2

+ (w − f )2), 1⟩X + µ∥w − u0∥
2
X

)
+

β

2
∥w − Ku +

λ3

β
∥
2
X , (26)

then we obtain the solution by Newton’s method

wk+1,l+1
= wk+1,l

−
G′(wk,l+1)
G′′(wk,l+1)

, (27)

where G′ and G′′ are the gradient and Hessian matrices of G, respectively. wk+1,l+1 represents the result of the (l + 1)-th
Newton iteration in the (k + 1)-th outer iteration.



J.-H. Yang, X.-L. Zhao, J.-J. Mei et al. / Computers and Mathematics with Applications 77 (2019) 1255–1272 1261

(e) Finally, the multipliers λ1, λ2, and λ3 are updated as follows:

λk+1
1 = λk

1 + β(pk+1
− Duk+1),

λk+1
2 = λk

2 + β(qk+1
− D2uk+1),

λk+1
3 = λk

3 + β(wk+1
− Kuk+1). (28)

Therefore, the ADMM algorithm for solving the u problem is summarized in Algorithm 3.

Algorithm 3: The alternating direction method with multipliers for solving (14).

Input: data f , gk
1 , g

k
2 , parameters β , r .

Initialize: u = f , p, q, w, λ1, λ2, λ3, ϵ = 1e − 5,maxiter.in = 10.
1:While (∥uk+1

− uk
∥F/∥uk

∥F > ϵ and k ≤ maxiter.in) Do
2: Update uk+1 by (20).
3: Update (22), (24) for pk+1 and qk+1, respectively.
4: Update wk+1 by (27).
5: Update λk+1

1 , λk+1
2 and λk+1

3 , by (28), respectively.
6: End Do

Output: Restoring image u.

Next, we show that the sequence created by Algorithm 2 has a subsequence that converges to the coordinate-wise
minimum point (û, ĝ1, ĝ2) of the objective function E.

Coordinate-wise minimum point. Let z ∈ Rs, we refer to each zk, k = 1, . . . ,N , as a coordinate block of z = (z1, . . . , zN ),
where zk ∈ Rnk and n1 + · · · + nN = s. We say that z is a coordinate-wise minimum point of f if z ∈ domf and

f (z + (0, . . . , dk, . . . , 0)) ≥ f (z), dk ∈ Rnk ,

where (0, . . . , dk, . . . , 0) is a vector in Rn1+···+nN whose k-th coordinate block is dk and whose other coordinates are zero.

Theorem 4.1. Let (uk, gk
1, g

k
2) be the sequence derived from Algorithm 2. Then (uk, gk

1, g
k
2) converges to a coordinate-wise

minimum (û, ĝ1, ĝ2) ∈ X × X × X (up to a subsequence), i.e., for any (u, g1, g2) ∈ X × X × X, one has

E(û, ĝ1, ĝ2) ≤ E(u, ĝ1, ĝ2) and E(û, ĝ1, ĝ2) ≤ E(û, g1, g2). (29)

Proof. First, we observe the following inequality from Algorithm 2:

E(uk+1, gk+1
1 , gk+1

2 ) ≤ E(uk+1, gk
1, g

k
2) ≤ E(uk, gk

1, g
k
2),

which implies that the sequence E(uk, gk
1, g

k
2) is bounded and decreases in each iteration. Since (8) is coercive, the bound-

edness of E(uk, gk
1, g

k
2) suggests that (u

k, gk
1, g

k
2) is bounded. Then we can find a subsequence {(unk , gnk

1 , gnk
2 )} ⊂ {(uk, gk

1, g
k
2)}

and (û, ĝ1, ĝ2) ∈ X × X × X , such that they satisfy

(unk , gnk
1 , gnk

2 ) → (û, ĝ1, ĝ2).

On the other hand, we show that (û, ĝ1, ĝ2) is a coordinate-wise minimum. In fact, for any (u, g1, g2) ∈ X × X × X , we
have

E(unk+1 , gnk+1
1 , gnk+1

2 ) ≤E(unk+1, gnk+1
1 , gnk+1

2 )

≤E(unk+1, gnk
1 , gnk

2 )
≤E(u, gnk

1 , gnk
2 )

and

E(unk , gnk
1 , gnk

2 ) ≤ E(unk , g1, g2)

Since the objective function is continuous, letting k → ∞, we deduce that

E(û, ĝ1, ĝ2) ≤ E(u, ĝ1, ĝ2)

and

E(û, ĝ1, ĝ2) ≤ E(û, g1, g2).

The proof is completed.
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Fig. 1. The original images.

5. Experiments and discussions

This section is divided into five parts. Section 5.1 gives experimental settings. Section 5.2 discusses the choice of
parameters in the proposedmethod. Sections 5.3 and 5.4 show denoising and deblurring cases. Section 5.5 presents detailed
discussion to demonstrate the validity and superiority of the proposed model. Section 5.6 numerically demonstrates the
convergence of the proposed algorithm.

5.1. Experiment setting

Fig. 1 shows ten gray-scale test images. For simplicity, the pixel values of images are normalized to [0, 1]. In all
experiments, we generate the noisy image f by using the following degradation:

f = Ku + v = Ku + ε
η1

η2
, (30)

where ε > 0 represents the noise level and η1 and η2 are independent random variables following Gaussian distribution
with mean 0 and variance 1.

We use the peak signal to noise ratio (PSNR) [55,56] and the structural similarity index (SSIM) [57] to quantitatively
measure the image quality. They are defined as follows:

PSNR = 10 log10
N(Maxu)2

∥u − u∗∥
2
F
,

SSIM =
(2µuµu∗ )(2σuu∗ + c2)

(µ2
u + µ2

u∗ + c1)(σ 2
u + σ 2

u∗ + c2)
,

where u∗ is the ground truth, u is the recovered image, N is the size of images,Maxu is the maximum pixel of image, µu and
µu∗ are the mean values of images u and u∗, σu and σu∗ are the standard variance of image u and u∗, respectively, σuu∗ is
the covariance of u and u∗, and c1, c2 > 0 are constants. Generally speaking, high PSNR and SSIM values imply better image
quality.

We compare the proposed method (8) (termed as HTVAM) with the total variation convex model (termed as TVCM) [18]
and themedian filter (termed asMED). For a fair comparison, we adjust the parameters of HTVAM and TVCM in experiments
to obtain the best PSNR results under the condition 8µγ 2

= 1.
In the proposed method, the stopping condition is

∥uk+1
− uk

∥F

∥uk∥F
≤ 1 × 10−5. (31)

All the experiments are performed under Windows 10 and MATLAB 2012a running on an ASUS laptop with an AMD
E2-6110 CPU with AMD Radeon R2 Graphics with 1.50 GHz and 4 GB of RAM.
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Table 1
The PSNR (dB), SSIM, and time (in s) with respect to the different number of inner iterations.

Iteration 5 10 20 50 100 200

Cameraman
PSNR 27.51 29.12 28.69 28.23 28.10 28.08
SSIM 0.8498 0.8702 0.8527 0.8360 0.8309 0.8304
Time 11.35 18.86 34.85 84.04 164.51 220.64

Pallon
PSNR 32.00 34.72 34.64 34.43 34.39 34.39
SSIM 0.9006 0.9173 0.9163 0.9148 0.9146 0.9146
Time 9.53 15.80 27.57 63.79 95.02 106.33

Table 2
The PSNR (dB), SSIM, and time (in s) with respect to the different number of Newton iterations.

Iteration 1 10 20 30 40 50 100

Babyface
PSNR 34.64 34.83 34.83 34.83 34.83 34.83 34.83
SSIM 0.9481 0.9514 0.9514 0.9514 0.9514 0.9514 0.9514
Time 23.20 26.62 26.92 27.69 28.62 27.81 32.14

Cameraman
PSNR 27.83 29.12 29.13 29.13 29.13 29.13 29.13
SSIM 0.8157 0.8702 0.8705 0.8704 0.8705 0.8704 0.8705
Time 13.44 18.85 23.43 28.86 34.03 37.05 64.30

5.2. Parameter discussion

In this subsection, we focus on the choices of the parameters α,M , r , β , the number of inner iterationsmaxiter.in, and the
number of Newton iterationsmaxiter.newton. For simplicity, we just discuss denoising cases with ε = 0.02.

(1) Parameters: maxiter.in and maxiter.newton. In order to study the sensitivity of the number of inner iterations for
solving the u problem, we use the image Cameraman (α = 0.15,M = 0.12, r = 45, β = 15) and Pallon (α = 0.11,M = 0.1,
r = 15, β = 16) as examples and set the number of Newton iterations maxiter.newton = 10. The test results are displayed
in Table 1. From Table 1, we get that the number of inner iterations maxiter.in = 10 is best for all tests in terms of PSNR,
SSIM, and CPU time.

Next, we discuss the selection of the number of Newton iterations maxiter.newton in Algorithm 3. Our experiments are
tested on Babyface (α = 0.14, M = 0.12, r = 39, β = 16) and Cameraman (α = 0.15, M = 0.12, r = 45, β = 15)
with maxiter.in = 10. Table 2 illustrates that the PSNR and SSIM values are stable with respect to maxiter.newton ≥ 10.
However, the overall computational time increases as the iteration number increases. So we choose maxiter.newton = 10
for all experiments. It is worth noting that the above observations are also generally true for other test images.

(2) Parameters: α, M , r , and β . We study the impact of parameters α, M , r , and β in Fig. 2. We test on three images:
Babyface, Donna, and Pallon corrupted by Cauchy noise with the noise level ε = 0.02. Fig. 2(a) and (d) indicate that the PSNR
and SSIM values can obtain the highest with α in 0.12 nearby. Since our experiments involve various data and different noise
levels, we empirically set the optimal range of α to [0.10, 0.20] with increment of 0.01. Similarly, we empirically setM from
[0.01, 0.20] with increment of 0.01.

For the window size of the median filter r , the PSNR and SSIM perform obvious improvement when r is increased from 0
to 10. Moreover, we also observe that PSNR and SSIM curves are stable when r further goes increasing, see Fig. 2(c) and (f).
Due to the diversity of experiments, we choose r ∈ [3, 55] with increment of 2 in all experiments. Similarly, we empirically
set β from [8, 25] with increment of 1.

5.3. Image denoising

Figs. 3 and 4 show the denoising results at different noise levels (ε = 0.02 and ε = 0.04) for the testing images,
respectively. The restored images of MED show residual noise and oversmoothed image edges. Although the noise is well
removed by TVCM, some artifacts are introduced in the flat ramp regions. As a comparison, the proposed HTVAM obtains
the best performance in terms of noise removal and detail preservation. The quantitative results in Tables 3 and 4 show that
HTVAM gets the highest PSNR and SSIM values, which are consistent with the visual comparison.

Fig. 5 shows the zoomed-in regions of the recovered images. Compared with MED and TVCM, the proposed method not
only preserves details and textures clearly in the ramp regions, but also gets good recovery in the homogeneous regions.

5.4. Image deblurring

Fig. 6 shows the restored images for deblurring and denoising. We test the 9 × 9 Gaussian blur with standard deviation
1. The blurring images are generated by using the MATLAB function ‘‘imfilter’’ with periodic boundary condition. Then the
blurry images are corrupted by Cauchy noise with ε = 0.02. We can observe that the restored results of MED lose many
image details. TVCM generates typical staircase effects, see Fig. 6(o). In comparison, our results exhibit more details with
fewer artifacts. Table 5 shows the PSNR and SSIM values of the deblurring and denoising experiments, which are quite
competitive with other compared methods.
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Fig. 2. Top row: the PSNR value with respect to α,M , and r . Middle row: the SSIM value with respect to α,M , and r . Bottom row: the PSNR and SSIM values
with respect to β .

Table 3
The PSNR and SSIM values of noisy images and recovered images of different methods at ε = 0.02.
Images Noisy MED TVCM HTVAM

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Cameraman 19.14 0.3550 26.19 0.7950 28.37 0.8290 29.12 0.8702
Babyface 19.12 0.2586 31.98 0.8805 33.45 0.9277 34.83 0.9514
Lena 19.12 0.3661 29.61 0.8607 30.86 0.8813 31.72 0.9055
House 19.11 0.4469 25.28 0.7484 27.86 0.8262 28.13 0.8578
Donna 19.25 0.3070 31.55 0.8692 32.76 0.9049 33.62 0.9275
Zelda 19.12 0.5352 33.54 0.9444 34.61 0.9546 35.40 0.9626
Pallon 19.16 0.2312 31.79 0.8541 33.84 0.8950 34.72 0.9173
Lion 19.19 0.5797 20.59 0.5020 24.51 0.7646 24.73 0.7745
Babara 19.15 0.4759 22.88 0.7304 26.59 0.8172 27.63 0.8606
Peppers 19.16 0.3635 29.52 0.8533 30.95 0.8862 31.41 0.8993

5.5. Detailed discussion

In this subsection, we discuss the rationality and superiority of selecting regularization parameters (g1 and g2) adaptively.
Taking degraded Cameraman and Lion images (ε = 0.02) as examples, Fig. 7 presents the original images, the restored
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Fig. 3. Denoising results of three methods at ε = 0.02 (each value in parentheses represents the corresponding PSNR (dB) value of the restored image).
From left to right: the noisy images, MED, TVCM, and HTVAM.
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Fig. 4. Denoising results of three methods at ε = 0.04 (each value in parentheses represents the corresponding PSNR (dB) value of the restored image).
From left to right: the noisy images, MED, TVCM, and HTVAM.
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Fig. 5. The zoomed-in regions of the restored images in Fig. 3. From left to right: the original images, MED, TVCM, and HTVAM.
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Fig. 6. Restoration results of different methods for blurred images with Cauchy noise at ε = 0.02 (each value in parentheses represents the corresponding
PSNR (dB) value of the restored image). From left to right: the blurred images with Cauchy noise, MED, TVCM, and HTVAM.
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Table 4
The PSNR and SSIM values of noisy images and recovered images of different methods at ε = 0.04.
Images Noisy MED TVCM HTVAM

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Cameraman 16.23 0.2442 24.83 0.6706 26.66 0.7812 27.32 0.8192
Babyface 16.24 0.1516 28.83 0.7261 31.13 0.8853 32.22 0.9252
Lena 16.23 0.2444 27.34 0.7483 28.63 0.8308 29.33 0.8636
House 16.25 0.3144 24.18 0.6590 25.82 0.7492 26.08 0.7957
Donna 16.30 0.1887 28.68 0.7362 30.44 0.8638 31.14 0.8860
Zelda 16.22 0.3884 30.04 0.8587 32.65 0.9249 33.24 0.9362
Pallon 16.26 0.1318 28.74 0.7055 31.74 0.8698 32.55 0.8932
Lion 16.28 0.4241 20.16 0.4600 22.56 0.6486 22.63 0.6560
Babara 16.27 0.3422 22.11 0.6483 24.46 0.7341 24.92 0.7937
Peppers 16.26 0.2392 27.26 0.7472 28.71 0.8369 29.05 0.8635

Table 5
The PSNR and SSIM values of the images degraded by Gaussian blur and Cauchy noise and recovered images of different methods at ε = 0.02.
Images Blurred MED TVCM HTVAM

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Cameraman 18.28 0.2639 24.41 0.7480 26.21 0.8021 26.51 0.8215
Babyface 18.91 0.2310 29.98 0.8551 31.97 0.9102 32.66 0.9314
Lena 18.71 0.3008 27.31 0.8061 28.81 0.8414 29.04 0.8597
House 18.18 0.3117 23.99 0.6973 25.13 0.7414 25.27 0.7560
Donna 19.02 0.2670 29.60 0.8385 31.14 0.8893 31.65 0.9032
Zelda 19.02 0.5179 32.56 0.9355 33.35 0.9428 34.00 0.9527
Pallon 19.00 0.1991 30.58 0.8309 32.34 0.8826 32.69 0.8975
lion 17.29 0.2669 20.90 0.4611 21.15 0.4998 21.26 0.5217

Fig. 7. Numerical behaviors of g1 and g2 at ε = 0.02. From left to right: the noisy image, the restored image, the final g1 and g2 . This figure shows the
rationality of regularization parameters.

images, and final spatially varying regularization parameters g1 and g2. It can be observed that the values of regularization
parameters are small in details and texture regions, and are large in homogeneous regions, as shown in (c), (d), (g), and (h).
Therefore, it demonstrates the rationality of adaptive selection of regularization parameters.

Next, we study the superiority of the proposedHTVAM. Fig. 8 presents the restored images of TV adaptivemodel (adaptive
adjusting parameter α in (3), termed as TVAM), TV and high-order TV model (6) (termed as HTVM), and HTVAM. The
Cameraman, Babyface, and Lion images are degraded by Cauchy noise with ε = 0.02. We can observe that the restored
images of HTVAM are sufficiently denoised in homogeneous regionswhile keepingmore details. In contrast, TVAMproduces
staircase artifacts in smooth regions, such as the background of (b) and the face of (f). Comparing HTVM and HTVAM, it can
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Fig. 8. Denoising results at ε = 0.02 (each value in parentheses represents the corresponding PSNR (dB) value of the restored image). From left to right:
the noisy images, TVAM, HTVM, and HTVAM. This figure shows the superiority of the proposed model.

Table 6
The PSNR and SSIM values of noisy images and recovered images of TVAM, HTVM, and HTVAM (ε = 0.02)
Images Noisy TVAM HTVM HTVAM

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Cameraman 19.14 0.3550 28.96 0.8677 28.60 0.8349 29.12 0.8702
Babyface 19.12 0.2586 33.77 0.9241 33.59 0.9095 34.83 0.9514
Lion 19.19 0.5797 23.53 0.7287 23.82 0.7420 24.73 0.7745

be seen that HTVAMproduces smoother homogeneous regionswithmore preserved textures than HTVM,which can be seen
in the background of (d) and the nose of (l). The corresponding PSNR and SSIM values are listed in Table 6.

5.6. Convergence analysis

In Theorem 4.1, we have proved that the sequence of the proposed algorithm has a subsequence that converges to the
coordinate-wiseminimumpoint. To numerically illustrate the convergence of the proposed algorithm, we test three images,
Lena degraded by Cauchy noise with ε = 0.02; Pallon degraded by Cauchy noise with ε = 0.04; Lion blurred by Gaussian
blur kernel with size 9 and standard deviation 1 and corrupted by Cauchy noise with ε = 0.02. Fig. 9 shows the relative error
curves of the successive restored image u (∥uk+1

− uk
∥F/∥uk

∥F ). We can observe that the relative error keeps decreasing as
the iteration number increases, which numerically illustrates the convergence of our algorithm.

6. Conclusion

In this paper, a newmodel is proposed by a combination of TV and high-order TV for Cauchy noise removal. The proposed
model can adaptively estimate the weights of TV and high-order TV from the restored image. Thus, it can preserve sharp
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Fig. 9. Curves of relative error values versus iterations.

edges while maintaining the smoothness in flat areas. An efficient alternating minimization scheme is presented for solving
the proposed model. In addition, we discuss the existence of the numerical solution and the convergence of the proposed
algorithm. Extensive numerical experiments demonstrate the superiority of the proposed method in terms of visual quality
and quantitative indexes.
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