
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Robust Corrupted Data Recovery and Clustering
via Generalized Transformed Tensor

Low-Rank Representation
Jing-Hua Yang , Graduate Student Member, IEEE, Chuan Chen , Hong-Ning Dai , Senior Member, IEEE,

Meng Ding, Zhe-Bin Wu , and Zibin Zheng , Senior Member, IEEE

Abstract— Tensor analysis has received widespread attention
in high-dimensional data learning. Unfortunately, the tensor
data are often accompanied by arbitrary signal corruptions,
including missing entries and sparse noise. How to recover
the characteristics of the corrupted tensor data and make
it compatible with the downstream clustering task remains a
challenging problem. In this article, we study a generalized
transformed tensor low-rank representation (TTLRR) model for
simultaneously recovering and clustering the corrupted tensor
data. The core idea is to find the latent low-rank tensor structure
from the corrupted measurements using the transformed tensor
singular value decomposition (SVD). Theoretically, we prove that
TTLRR can recover the clean tensor data with a high probability
guarantee under mild conditions. Furthermore, by using the
transform adaptively learning from the data itself, the proposed
TTLRR model can approximately represent and exploit the
intrinsic subspace and seek out the cluster structure of the
tensor data precisely. An effective algorithm is designed to solve
the proposed model under the alternating direction method of
multipliers (ADMMs) algorithm framework. The effectiveness
and superiority of the proposed method against the compared
methods are showcased over different tasks, including video/face
data recovery and face/object/scene data clustering.

Index Terms— Recoverability guarantee, tensor data recovery,
tensor subspace clustering, transformed tensor low-rank repre-
sentation (TTLRR).
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I. INTRODUCTION

H IGH-DIMENSIONAL data recovery and data cluster-
ing [1], [2], [3], [4], [5], [6], [7] are two fundamental

tasks in data analysis. To solve the two problems, low-
rank representation methods that map the high-dimensional
tensor into a low-dimensional latent subspace have achieved
promising performance in various applications, such as data
mining [8], [9], [10], [11], hybrid system identification [12],
and computer vision [13], [14], [15], [16], [17]. Due to the
existence of interference during the equipment acquisition
and transmission, the observed data are usually incomplete
and corrupted by the noise in real scenarios [18], [19], [20],
[21], thereby highly degrading their recovery and clustering
performance. Therefore, it is important to investigate the
recovery and clustering problem of the tensor data from the
sparsely noisy observations with missing values.

In the past few years, matrix low-rank representation
(MLRR) methods have been widely applied in data recovery
and clustering fields. MLRR methods consider estimating
the original low-rank matrix component from its arbitrary
sparse corruptions or incomplete observations. For example,
Candès et al. [22] studied the robust principal component
analysis approach for separating the low-rank and sparse parts
from the contaminated matrix. Liu et al. [23] focused on
recovering the low-rank matrix that lies in a union of multiple
subspaces from the corrupted observation. In data clustering
fields, Elhamifar and Vidal [24] utilized a sparse optimization
program to cluster data points lying in the low-dimensional
subspaces. Liu et al. [25] used the low-rank representation
to identify the subspace structures and segment the samples
into their respective subspaces. Meanwhile, many variants of
MLRR have been further studied. Lu et al. [1] proposed
a robust subspace segmentation (RSS) with the help of the
least square regression. Tang et al. [26] studied the structure-
constrained low-rank representation to improve MLRR for
the disjoint subspace segmentation. Yan et al. [27] learned
a linear projection matrix to transform the original data into a
low-dimensional subspace for class separability by optimizing
the between-class distance and the within-class variability.
Though these studies focus on obtaining a low-rank matrix
or building a good affinity matrix, they are required to flatten
the data into a vector for recovery or clustering, in which the
vectorization operator destroys the intrinsic structure of the
original data. On the contrary, data in practical applications,
such as video, color images, and traffic data [28], [29], are
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usually distributed in high-dimensional space with inherent
structural characteristics.

To preserve the intrinsic structure of data, the tensor-based
low-rank representation (TLRR) approaches have gradually
emerged. For instance, Zhang et al. [30] studied the low-rank
regularized heterogeneous tensor decomposition model to
obtain the lowest-rank representation of underlying data for
subspace clustering. Johnson et al. [31] designed a two-way
optimization model for the submodule clustering technique
using the weighted tensor nuclear norm (TNN). Moreover,
Chang et al. [32] adopted multiple orthogonal projections to
find the low-dimensional representation of the original data,
thereby resulting in the excellent classification performance.
Zhou et al. [33] introduced the conventional TNN to constrain
the low-rank tensor representation of data. Zhang et al. [34]
approximated the low-rank component from the corrupted data
by the convex envelop of Tucker rank. Chen et al. [35] used the
nonconvex low-rank tensor approximation to characterize the
low-rankness of underlying data in data clustering. Recently,
deep learning has been studied for data clustering [36],
[37], [38], [39], [40], [41], [42], [43]. To be specific, many
works employ the common deep autoencoder [39], [40], [41]
to learn the low-dimensional embedding representation and
then apply the spectral clustering or k-means on the learned
affinity matrix to obtain the clustering result. By integrat-
ing the representation learning and clustering results into
a unified framework, convolutional neural network (CNN)-
based clustering method [36], [43], information theory-based
clustering methods [37], [44], contrastive learning-based clus-
tering method [38], have been studied. Due to the powerful
learning ability, the deep clustering methods can capture the
complex linear and nonlinear structure embedded in the input
data. However, the deep learning clustering methods cannot
well handle the recovery and clustering of high-dimensional
but small-scale data. In addition, they lack the theoretical
guarantee for data recovery and clustering.

The above-mentioned methods usually hold the assumption
that the observation data are complete, which leads to unsat-
isfactory results when dealing with incomplete data. To cope
with the issue, the two-step strategy is brought up naturally.
It works by using the low-rank tensor estimation methods
first to restore data and then clustering the estimated underly-
ing data. Among these approaches, abundant tensor recovery
methods are proposed due to the diversiform definitions of
tensor rank. For instance, Liu et al. [45] proposed a low-rank
tensor completion method by using the convex surrogate
of the Tucker rank [46], i.e., the sum of nuclear norms
(SNN). Zhang and Aeron [47] studied the tensor completion
problem by the TNN, which is the convex surrogate of the
tensor tubal rank. To address higher dimensional data, tensor
network decomposition methods have received attention. For
example, Chen et al. [14] studied the robust tensor com-
pletion problem based on tensor train rank by dimensional
augmentation. Owing to the advantage of tensor ring rank in
dealing with high-dimensional data, Huang et al. [48] applied
the tensor ring structure for incomplete high-dimensional
data completion. Liu et al. [49] proposed the robust tensor
completion method based on fully connected tensor network
decomposition. To recover the tensor data corrupted by sparse
errors, Lu et al. [50] applied TNN in the tensor robust
principal component (TRPCA) model to recover the estimated

low-rank data. For these two-step strategies, the characteristics
learned from the separated low-rank tensor recovery might not
be suitable for the downstream clustering tasks. To analyze
the corrupted data effectively, Francis et al. [51] focused
on the incomplete image data clustering by incorporating
submodule clustering with the matrix completion algorithm.
However, in real-world applications (e.g., the recommendation
and system identification problem), due to the lower resolution
of the camera and the damage to the sensor arrays, the
observed tensor data is often accompanied by arbitrary signal
corruptions, including missing entries and sparse noises [18],
[19], [52], [53]. Therefore, the problem of simultaneous recov-
ery and clustering for the incomplete and noisy data is more
general while being a crucial task.

In this work, we propose a novel TTLRR method for recov-
ering and clustering the observed tensor data with missing
entries and sparse corruptions. In particular, we formulate the
following model:

min
Z,E

‖Z‖TTNN + λ‖E‖1

s.t. P�(X ) = P�(A �� Z + E) (1)

where λ > 0 is a parameter, Z ∈ R
n2×n2×n3 is the underlying

low-rank representation tensor, A ∈ Rn1×n2×n3 is the dictio-
nary, i.e., the linear tensor representation, X ∈ R

n1×n2×n3 is
the observed tensor with incomplete and noisy data, and E ∈
R

n1×n2×n3 represents the sparse noise. Here, ‖·‖TTNN denotes
transformed TNN (TTNN), and ‖·‖1 denotes the tensor l1 norm
(please see the notations in Section II). �� is the �-product
of the tensor, see Definition 1. P�(·) is a projection operator,
and � denotes the index of observed entries. For incomplete
corrupted data, the proposed TTLRR method performs the
tensor recovery and clustering simultaneously. Fig. 1 depicts
the framework of the proposed TTLRR.

Theoretically, under mild conditions, we establish the recov-
erability guarantee of the proposed model. The proposed
model can recover the clean data A �� Z under the guar-
antee of high probability. For data clustering, we show the
tensor block-diagonal structure–property of the representation
tensor when the data are completely restored. The tensor
block-diagonal structure implies the underlying tensor sub-
spaces, and thus TTLRR can achieve satisfactory clustering
performance. To the best of our knowledge, it is the first
approach to simultaneously recover and cluster both incom-
plete and noisy data with the theoretical guarantee.

According to the alternating direction method of multipliers
(ADMMs) algorithmic framework, we design an effective
algorithm for solving the proposed model. Extensive experi-
ments on different datasets show the effectiveness and robust-
ness of the proposed method for recovering and clustering the
corrupted data under different incomplete and noise settings.
In particular, the results obtained by using the adaptive unitary
transform learned from given data are better than the prede-
fined transform.

The main contributions of this work are summarized as
follows.

1) Generalized Tensor Model Framework: We consider a
unified tensor model framework for recovering and clus-
tering the incomplete data with sparse noise, which is a
more common and challenging task in many real-world
applications. In the proposed framework, we arrange and
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Fig. 1. Framework of the proposed method for high-dimensional data recovery and clustering. We first merge different data to construct the third-order tensor
and then rotate it. Next, the transformed tensor low-rank representation (TTLRR)-based tensor optimization problem is utilized to obtain the optimal subspace
representation. Finally, we can simultaneously obtain the recovered data by A �� Z and the clustering results by performing the spectral clustering tool on
Z . Specifically, to explore the inherent high-order correlations, dictionary A and representation tensor Z are converted into � space, i.e., the transformed
tensor Ā� and Z̄�, by using the transform � to each tube along the third dimension. In the transformed � space, Ā�, and Z̄� perform the slice-by-slice
standard matrix product to obtain tensor L̄�, and then L can be further obtained by performing the inverse transform �H on L̄�.

rotate the observed data as a third-order tensor. Com-
pared with the traditional matrix data representation, the
tensor data representation can well preserve the intrinsic
structure of the data.

2) Transformed Tensor Low-Rank Representation: We pro-
pose a TTLRR-based tensor recovery and subspace
clustering method. We employ the unitary transform
along the third dimension of the coefficient tensor Z and
introduce the TTNN to characterize its low-rankness.
Compared with the conventional discrete Fourier trans-
form, using the suitable transform, e.g., the unitary trans-
form learned by the given data, TTLRR can achieve a
lower rank tensor representation and thus deeply explore
the global correlations hidden in the data.

3) Recoverability and Clusterability Guarantees: We the-
oretically analyze the recoverability of the pro-
posed model and explore the tensor block-diagonal
structure–property of the optimal solution. Specifi-
cally, we establish the optimal solution of the TTLRR
model under mild conditions. Meanwhile, the tensor
block-diagonal structure of the obtained optimal solution
further ensures the promising clustering performance.
The experiments demonstrate the effectiveness of the
proposed method.

The organization of this work is as follows. Section II
presents some notations and preliminaries. Some related works
are listed in Section III. Section IV introduces the proposed
model and establishes the theoretical guarantee. Section V
designs an effective algorithm for solving the optimization
model. Sections VI and VII present the experimental results
of two learning tasks, data recovery and data clustering,
respectively. Section VIII summarizes the work.

II. NOTATIONS AND PRELIMINARIES

We introduce some notations and preliminaries used in this
article.

We use the calligraphy letter Z to denote the tensor, the
upper case letter Z to denote the matrix, the bold lower case

Algorithm 1 Unitary Transform-Based �-Product [54]

Input: A ∈ Cn1×n2×n3 , B ∈ Cn2×l×n3 , and � ∈ Cn3×n3 .
Output: C = A �� B ∈ C

n1×l×n3 .
1: Compute Ā� = �[A] and B̄� = �[B];
2: The each frontal slice of C̄ can be obtained by
3: C̄(k)

� = Ā(k)
� B̄(k)

� , k = 1, · · · , n3;
4: Obtain C = �−1[C̄�].

letter z to denote the vector, and the lower case letter z to
denote the scalar. For a third-order tensor Z ∈ Rn1×n2×n3 , its
(i, j, k)th entry is denoted as Zi, j,k , and we use the MATLAB
notation Z(i, :, :), Z(:, j, :), and Z(:, :, k) to denote the i th
horizontal, j th lateral, and kth frontal slice, respectively. For
convenience, we denote the frontal slice Z(:, :, k) by Z (k),
and the tube by Z(i, j, :). The inner product of two tensors in
Rn1×n2×n3 is defined as 〈Y,Z〉 = ∑n3

k=1〈Y (k),Z (k)〉.
Now, we show some norms used in this work. For a

third-order tensor, the l1 norm is ‖Z‖1 = ∑
i, j,k |Zi, j,k |, the

Frobenius norm is ‖Z‖F = (
∑

i, j,k |Zi, j,k |2)1/2, the infinity
norm is defined as ‖Z‖∞ = maxi, j,k |Zi, j,k |. For a matrix, the
nuclear norm is ‖Z‖∗ = ∑

σ(Z), where σ(Z) is the singular
value of Z.

A. Transformed Tensor Nuclear Norm

Let � ∈ Cn3×n3 be an unitary matrix satisfying ��H =
�H � = In3 , where �H is the conjugate transpose of � and
In3 ∈ Rn3×n3 is the identity matrix. We denote the unitary
transform of Z by Z̄�, i.e., Z̄� = �(Z, [], 3), along the third
dimension. In particular, Z̄� is the product of � and all tubes
of Z , that is,

Z̄�(i, j, :) = �(Z(i, j, :)). (2)

Z can be obtained by the inverse unitary transform of
Z̄� along the third dimension, i.e., Z = �H (Z̄�, [], 3). For
convenience, we denote �(Z, [], 3) and �H (Z̄�, [], 3) by
�[Z] and �H [Z̄�], respectively.
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Fig. 2. Matrix-based low-rank representation.

The block diagonal matrix of Z̄� has the following form:

blockdiag(Z̄�) =
⎛
⎜⎝
Z̄ (1)

�

. . .

Z̄ (n3)
�

⎞
⎟⎠ (3)

where Z̄ (k)
� denotes the kth frontal slice of Z̄�. Moreover, the

tensor can be reduced by the fold operator

fold(blockdiag(Z̄�)) = Z̄�. (4)

To better understand the definition of TTNN, we introduce
some related definitions.

Definition 1 (�-Product): [54]: Let A ∈ Cn1×n2×n3 and
B ∈ Cn2×n4×n3 , then the �-product of A and B is

C = A �� B = �H [fold(blockdiag(Ā�) × blockdiag(B̄�))]
where C ∈ Cn1×n4×n3 and × is the standard matrix product.
Algorithm 1 presents the computation process of the unitary
transform-based �-product.

Definition 2 (Conjugate Transpose): [54]: For tensor Z ∈
Cn1×n2×n3 , the conjugate transpose ZH can be obtained by
ZH = �H [fold(blockdiag(Z̄�)H )].

Definition 3 (Identify Tensor): A tensor I� ∈ C
n×n×n3 is

called identify tensor if I� = �H [O] and every frontal slice
of O ∈ C

n×n×n3 is the identity matrix with size n × n.
Definition 4 (Orthogonal Tensor): [54]: Under transform

�, if

UH �� U = U �� UH = I� (5)

then the tensor U ∈ Cn×n×n3 is orthogonal.
Definition 5 (f-Diagonal Tensor): A tensor is called

f-diagonal if each of its frontal slices is a diagonal matrix.
Definition 6 (T-TSVD): [54]: Let Z ∈ C

n1×n2×n3 , then Z
has the unitary transform-based tensor singular value decom-
position (T-TSVD) as

Z = U �� S �� VH (6)

where U ∈ Cn1×n1×n3 and V ∈ Cn2×n2×n3 are orthogonal
tensors, and S ∈ Cn1×n2×n3 is a diagonal tensor. The details of
T-TSVD are presented in Algorithm 2.

Definition 7 (TTNN): [54]: Given Z ∈ C
n1×n2×n3 , its

TTNN is ‖Z‖TTNN = ∑n3
k=1 ‖Z̄ (k)

� ‖∗, where ‖Z̄ (k)
� ‖∗ is the

nuclear norm of Z̄ (k)
� .

Definition 8 (Transformed Tubal Rank): [54]: For tensor
Z = U �� S �� VH , the number of nonzero singular tubes
of S is defined as the transformed tubal rank rankt (Z), that
is,

rankt (Z) = #{i : S(i, i, :) 	= 0} (7)

where # denotes the cardinality of a set.

Algorithm 2 T-TSVD Based on �-Product

Input: Z ∈ Cn1×n2×n3 .
Output: U , S, and V .
1: Compute Z̄� = �[Z];
2: for k = 1, 2, . . . , n3 do
3: [U, S, V ] = SVD(Z̄ (k)

� );
4: Ū (k)

� = U , S̄(k)
� = S, V̄ (k)

� = V ;
5: end for
6: Compute U = �H [Ū�], S = �H [S̄�], and V = �H [V̄�].

III. RELATED WORKS

The low-rank representation is utilized as a powerful tool to
capture the global structure of data, which has been extensively
studied. It can be roughly divided into two categories: MLRR
and TLRR.

A. Matrix-Based Low-Rank Representation

Given a 2-D dataset {X j }n2
j=1, where X j ∈ Rn1×n3 and n2 is

the number of data samples. The MLRR method usually maps
the 2-D data X j ∈ Rn1×n3 into a vector x j ∈ Rn1n3 , then
forms a data matrix X ∈ Rn1n3×n2 . Since the high-dimensional
data can be well represented in a low-dimensional space, the
columns of X are drawn from a union of K subspaces {Kk}K

k=1,
and Kk concludes mk sample points with �K

k=1mk = n2.
The general matrix-based low-rank representation model is

min
Z

R(Z) + λ‖X − AZ‖1

s.t. X = AZ + E (8)

where Z is the coefficient matrix, A is the given dictionary, and
E is the sparse noise (see Fig. 2 for illustration). The first term
R(Z) denotes the regularization of the coefficient matrix, and
the second term utilizes the l1-norm to improve the robustness
for modeling the outlier E. Existing works have proposed a
variety of methods for computing the representation coefficient
Z by imposing different R(Z) regularizations. For example,
the work in [24] implied a sparse constraint on the coefficient
matrix by ‖Z‖1. The work in [25] aimed to find a low-rank
coefficient by nuclear norm ‖Z‖∗. Brbic and Kopriva [55]
combined the advantages of both sparse and low-rank con-
straints for subspace clustering. For solving corrupted obser-
vations by sparse errors, Liu et al. [23] studied to recover a
low-rank matrix that lies on a union of multiple subspaces.
MLRR can cluster the data samples X by seeking the low-
rank/sparse matrix X with respect to the given dictionary A.

Although MLRR works in data recovery and clustering to
a certain extent, it can only handle 2-D data and cannot work
for high-dimensional tensor data. Besides, MLRR reshapes
the 2-D data into a vector-valued matrix, and hence, the
performance would be not satisfactory because of destroying
the data structure and losing the spatial information. Therefore,
one hopes to explore the high-order correlation of observed
data from the tensor aspect.

B. Tensor-Based Low-Rank Representation

The tensor-based representation method is to arrange all
data together into a tensor without destroying the intrinsic
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Fig. 3. TLRR.

structure of the original data. Specifically, we consider a
third-order tensor X ∈ Rn1×n2×n3 , where each sample X (:, j, :
) ∈ Rn1×n3 is placed into the lateral slice of X , and n2 is the
number of data samples.

Existing tensor-based methods employ the tensor decom-
position (e.g., Tucker decomposition [30] and tensor singular
value decomposition (SVD) [30], [33]) on the data X to
find the subspace representation by the predefined or learned
dictionary. Here, we briefly introduce the tensor SVD-based
tensor representation method. Given a tensor dictionary A ∈
Rn1×n2×n3 , there exists a representation tensor Z ∈ Rn2×n2×n3

that satisfies X = A ∗ Z + E (see Fig. 3), where E is the
sparse tensor noise, and ∗ denotes the conventional Fourier
transform-based tensor product [33]. Therefore, the general
TLRR model is

min
Z

R(Z) + λ‖X − A ∗ Z‖1

s.t. X = A ∗ Z + E (9)

where R(Z) denotes the regularized term of Z .
Zhou et al. [33] utilized TNN to explore the low-tubal-
rankness of the coefficient Z that can exactly recover
the underlying tensor data and cluster them as well.
Johnson et al. [31] introduced the weighted TNN to enhance
the tensor sparsity. When the dictionary A is the identity
tensor, model (9) reduces to the TRPCA problem [50].
Once a compact representation Z� is obtained, the similarity
matrix of samples can be established by the frontal slice
Z (k)

� ∈ Rn2×n2 . Then, an affinity matrix can be computed
by Ẑ = (1/2n3)�

n3
k=1(|Z (k)

� | + |(Z (k)
� )H |), and the spectral

clustering approach (NCut, Ratio) is performed to obtain the
clustering result.

Besides the sparse noise, the data usually contain miss-
ing entries. For incomplete data, based on different tensor
ranks, many low-rank tensor completion methods have been
proposed. Based on the Tucker model [46], Liu et al. [45]
used its convex surrogate SNN to formulate the low-rank
tensor completion model. Based on the tensor tubal rank [56],
Zhang et al. [47] proposed a tensor completion method by
minimizing its convex surrogate TNN. The works in [55] and
[58] considered recovering the clean tensor under the case
where both missing values and sparse noise exist.

Although the aforementioned matrix and tensor-based clus-
tering methods have achieved great success in data analysis,
there still exists some room for further improvement. For
example, some works [54], [57] only focused on tensor data
recovery while other work [33] studied the tensor recovery
and clustering problem with only considering the sparse
corruption. In the real scenario, data acquired from different
sources come up with missing entries and sparse noise con-
currently. These limitations motivate us to design a unified
tensor low-rank representation framework of learning clean
tensor data from the corrupted data and meanwhile doing the
clustering task.

IV. PROPOSED TTLRR MODEL FOR INCOMPLETE

DATA WITH SPARSE NOISE

We first present the model TTLRR for recovering and
clustering the corrupted data under incomplete samples. Then,
we present the theoretical analysis of the recoverability and
clusterability guarantees.

A. Model Formulation

To explore the global correlation of samples and preserve
the intrinsic structure of high-dimensional data, we follow
the idea of TLRR, i.e., grouping a set of n2 samples {X j ∈
Rn1×n3}n2

j=1 into a tensor X ∈ Rn1×n2×n3 .
In this work, we study the transformed tensor low-rank

representation for the incomplete data corrupted by sparse
noise and propose the following TTLRR model:

min
Z,E

‖Z‖TTNN + λ‖E‖1

s.t. P�(X ) = P�(A �� Z + E). (10)

TTLRR consists of two terms. The first term ‖Z‖TTNN

is TTNN of the representation tensor Z to characterize the
potential low-rank structures of high-dimensional data. The
second term ‖E‖1 is used to constrain the sparse noise E ,
aiming to reduce the effects of sparse noise on clustering.

Note that the optimization problems in works [33], [51],
[55], and [58] can be seen as special cases of our TTLRR.
For example, our model (10) is the transformed robust tensor
completion [54] when the dictionary A remains an identity
tensor; TTLRR also degenerates into the TLRR-based tensor
clustering problem [33] when � is the whole indices set and �
is the discrete Fourier transform. In summary, the advantages
of TTLRR are as follows.

1) Compared with matrix-based subspace methods, TTLRR
preserves the intrinsic structure of the original data and
fully explores the high-order correlation of the tensor
data.

2) Compared with existing tensor-based subspace methods,
TTLRR considers a more generalized and realistic situ-
ation. Moreover, we use the TTNN obtained by the suit-
able unitary transform to characterize the low-rankness
of the representation tensor and obtain a lower rank
representation to improve the recovery and clustering
performance.

3) The proposed low-rank tensor representation method
can simultaneously achieve recovery and clustering with
theoretical guarantee. Specifically, TTLRR recovers the
underlying low-rank data via A �� Z . Meanwhile,
TTLRR can learn the similarity between samples via
Z and cluster them by establishing the affinity matrix.

Remark: Note that the unitary transform is important for
the performance of TTLRR. With a suitable transformation,
a lower tubal-rank tensor can be learned by TTNN. Partic-
ularly, the unitary transform learned by given data, i.e., the
data-dependent transform, is more flexible and superior than
predefined transformations.

In Section IV-B, we will establish the theoretical perfor-
mance guarantee in Section IV-B and demonstrate the effec-
tiveness and robustness of TTLRR under various sampling
rates and noise ratios in Sections VI and VII.
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B. Theoretical Analysis

Here, we demonstrate that TTLRR (10) can exactly obtain
the clean low-rank tensor L = A �� Z∗ with theoretical
guarantee under mild conditions. Then, after recovering the
clean tensor data, we theoretically prove that the minimizer Z∗
has the block-diagonal structure. This suggests the satisfactory
clustering performance.

In order to analyze how to exactly obtain the minimizer
(Z∗, E∗) of (10), we need to establish the transformed tensor
incoherence conditions on L = A �� Z to ensure L not be
sparse, as discussed in [54]. We denote e̊i ∈ R

n1×1×n3 as the
tensor column basis with its (i, 1, 1)th entry equaling 1 and
the rest equaling 0 and e̊ j ∈ R

n2×1×n3 as a tensor with its
( j, 1, 1)th entry equaling to 1 and the rest equaling to 0. The
tensor incoherence parameters μ1 and μ2 are defined as

μ1(L) = n2n3

r
max

j=1,2,...,n2

‖VH �� e̊ j‖2
F

μ2(L) = n1n3

r
max

i=1,2,...,n1

‖UH �� e̊i‖2
F

where r = rankt(L), and U �� S �� VH is the T-TSVD of
L. As TTLRR involves the dictionary A, so we require the
definition of a new incoherence condition for A. Let rA =
rankt(A). Then, the incoherence parameter related to A is
defined as follows:
μA

1 (L) = μ1(L) max
i=1,2,...,n1

‖UH
A �� e̊i‖2

F = rA
n1n3

μ1(L)μ2(A).

Now, we present the convex model (10) that can exactly
obtain the low-rank representation tensor Z∗ and the sparse
component E∗ under mild conditions. Let n(1) = max(n1, n2)
and n(2) = min(n1, n2). We also define a projection operator
PU(B) = U �� UH �� B.

Theorem 1 (Main Result): Assume that L ∈ Rn1×n2×n3 sat-
isfies the incoherence conditions, the observation set � is
uniformly distributed in all cardinality sets m = ρn1n2n3,
and each observed sample is independently damaged with
probability γ . Suppose that PUA(U) = U and the ranks of Ā(k)

(k = 1, . . . , n3) are equal. Let μA = max{μ2(L), μA
1 (L)}.

Then, when λ = 1/
√

ρn(1)n3, (Z∗, E∗) is the unique optimal
solution with probability at least 1−4(n(1)n3)

−8, provided that

rankt(L) ≤ cr n(2)

μA log(n(1)n3)
and γ ≤ cγ

where cr and cγ are positive constants.
The proof of Theorem 1 is presented in the Supplementary

Material. Theorem 1 states that under certain conditions,
TTLRR (10) can exactly obtain the underlying low-rank tensor
L = A �� Z∗ with high probability.

After obtaining the clean tensor data by Theorem 1, we the-
oretically illustrate the clustering performance. For simplicity,
we directly consider the tensor data to be complete and noise
free. Then, the proposed model is generated as

min
Z

‖Z‖TTNN

s.t. L = A �� Z. (11)

Now, we study the internal structure of the minimizer of
the optimization problem (11). Here, we give the concept of
tensor subspace.

Definition 9 (Tensor Subspace): [33]: The tensor subspace
is defined as the set K = {Y|Y = D �� C,∀C ∈ Rk×1×n3},
where D(k) is the kth lateral slice of D ∈ Rn1×k×n3 and denotes
the basis of K. The set {D(1), . . . ,D(k)} is linearly independent,
i.e., there is not a nonzero C satisfying D �� C = 0.
The following theorem guarantees that the minimizer Z∗
admits the tensor block-diagonal structure.

Theorem 2 (Tensor Block-Diagonal Property): For L =
[L1, . . . ,Lk], each sample (L j (:, i, :)) in L j ∈ Rn1×m j ×n3

comes from the j th tensor subspace K j whose k j basis
components A j ∈ Rn1×k j ×n3 . If the tensor space {K1, . . . ,Kk}
are independent, then the minimizer Z∗ of the problem (11)
has the block-diagonal structure.

The proof of Theorem 2 is also presented in the Supple-
mentary Material. Theorem 2 demonstrates the block-diagonal
structure of Z∗, which is crucial for clustering since this
property directly demonstrates the tensor subspace in which
a specific sample is located. Therefore, if the conditions in
Theorem 2 are satisfied, the minimizer Z∗ would be with
block-diagonal structure, therefore, theoretically ensuring an
accurate clustering.

V. OPTIMIZATION TECHNIQUE

We propose an effective algorithm for solving our model
(10) and analyze its convergence.

A. Optimization Algorithm

As ADMM is deft at handling complex optimization prob-
lems by decomposing them into individual solvable subprob-
lems, we adopt the ADMM to calculate the optimization
model (10).

By introducing two auxiliary variables Q ∈ Rn2×n2×n3 and
G ∈ Rn1×n2×n3 , we covert (10) to the following problem:

min
Z,E

‖Z‖TTNN + λ‖E‖1

s.t. Z = Q,M = A �� Q + G
E = G, P�(X ) = P�(M). (12)

The corresponding augmented Lagrangian function of (12)
is

L(Z, E,M,Q,G)

= ‖Z‖TTNN + λ‖E‖1 + 
�(X − M) + 〈T ,Z − Q〉
+ β1

2
‖Z − Q‖2

F + 〈H, E − G〉 + β2

2
‖E − G‖2

F

+ 〈N ,M − A �� Q − G〉 + β3

2
‖M − A �� Q − G‖2

F

(13)

where T , H, and N denote Lagrangian multipliers, and β1, β2,
and β3 are penalty parameters. The 
�(·) denotes the indicator
function


�(X − M) =
{

0, if X� = M�,

∞, otherwise.

Since all the variables can be separated into (Z , E , M) and
(Q, G) two groups, the well-structured optimization problem
matches with the framework of ADMM.
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Next, we present the details of each subproblem. Since
variables Z , E , and M are decoupled from each other, they
can be solved separately.

1) Z-Subproblem: The Z-subproblem is

arg min
Z

‖Z‖TTNN + β1

2
‖Z − Q(t) + T (t)

β1
‖2

F . (14)

According to the proximal mapping of TTNN [54], the
minimizer is given by

Z (t+1) = U (t) �� S(t)
β1

�� (V (t))H (15)

where Q(t) − (T (t)/β1) = U (t) �� S(t) �� (V (t))H , S(t)
β1

=
�H {max{S̄� − (1/β1), 0}}.

2) E-Subproblem: The E-subproblem is

arg min
E

λ‖E‖1 + β2

2
‖E − G(t) + H(t)

β2
‖2

F . (16)

It can be calculated by the soft shrinkage operator

E (t+1) = max

(
|Ẽ (t)| − λ

β2
, 0

)
◦ (Ẽ (t)/|Ẽ (t)|) (17)

where Ẽ (t) = G(t) − H(t)/β2, ◦ is the componentwise
multiplication, and the division is also performed com-
ponentwise.

3) M-Subproblem: The M-subproblem is

arg min
M

β3

2
‖M − A �� Q(t) − G(t) + N (t)

β3
‖2

F

+ 
�(X − M). (18)

Thus, we have

M(t+1) = P�c

(
A �� Q(t) + G(t) − N (t)

β3

)
+ P�(X )

(19)

where �c is the orthogonal complement of �.
4) (Q, G)-Subproblem: The (Q, G)-subproblem is

arg min
Q,G

β3

2

∥∥∥∥M(t+1) − A �� Q − G + N (t)

β3

∥∥∥∥
2

F

+ β1

2

∥∥∥∥Z (t+1) − Q + T (t)

β1

∥∥∥∥
2

F

+ β2

2

∥∥∥∥E (t+1) − G + H(t)

β2

∥∥∥∥
2

F

.

The solutions satisfy the following equations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
β1

β3
I + β2

β2 + β3
AH �� A

)
Q(t+1)

= J1

β3
− 1

β2 + β3
AH �� J2

G(t+1) = J2

β2 + β3
− β3

β2 + β3
A �� Q(t+1)

(20)

where J1 = β1Z (t+1) + T (t) + β3AH �� (M(t+1) +
(N (t)/β3)) and J2 = β2E (t+1) +H(t) +β3M(t+1) +N (t).

After obtaining the representation tensor Z , we set the
affinity matrix by

Ẑ = 1

2n3

n3∑
i=1

(|Z (i)| + |(Z (i))H |) (21)

Algorithm 3 ADMM for Solving the Proposed Model (10)
Input: the observed tensor X , dictionary A, parameters λ, β1,
β2, β3, ρ = 1.2, and βmax = 1010.
Output: the recovery and clustering results.
1: Initializations M(0), Z (0), E (0), Q(0), G(0), maximum iter-

ations kmax = 500.
2: While ‖Z (t+1)−Z (t)‖F

‖Z (t)‖F
> 10−4 and k ≤ kmax Do

3: Updating Z via (15);
4: Updating E via (17);
5: Updating M via (19);
6: Updating Q and G via (20);
7: Updating multipliers with

T (t+1) = T (t) + β1(Z (t+1) − Q(t+1)),

H(t+1) = H(t) + β2(E (t+1) − G(t+1)),

N (t+1) = N (t) + β3(M(t+1) − A �� Q(t+1) − G(t+1));
8: β

(t+1)
l = min(ρβ

(t)
l , βmax ), l = 1, 2, 3;

9: End Do
10: Obtaining Ẑ by (21) and recovery L̂ = A �� Z (t+1);
11: Applying the spectral clustering method (Ncut) with the

affinity matrix Ẑ;
12: Return: the recovery and clustering results.

where Z (i) ∈ Rn2×n2 represents the frontal slices of Z . Then,
we apply the spectral clustering approach NCut [58] to obtain
the clustering result. Finally, we summarize the proposed
algorithm in Algorithm 3. The total space cost of our algorithm
is O(n2n3(n1 + n2)).

Due to the convexity of the proposed model, the conver-
gence of ADMM is guaranteed [59], [60], [61]. Accordingly,
the proposed algorithm can converge to an optimal solution.

Complexity Analysis: The proposed algorithm contains four
subproblems: Z-subproblem, E-subproblem, M-subproblem,
and (Q,G)-subproblem. At each iteration, the major cost of
updating Z (t+1) involves the n3 SVD on n2 × n2 matrices at
the cost of O(n3

2n3) and the unitary transform and its inverse
operator on n2 × n2 × n3 tensors at the cost of O(n2

2n2
3).

When updating E (t+1), the computational cost is O(n1n2n3).
The major computation of updating M(t+1) is the �-product
A �� Q(t) at the cost of O(n2n3(n1n2 + n1n3 + n2n3)). When
updating (Q(t+1), G(t+1)), the major cost is to compute the �-
product at the cost of O(n2n3(n1n2 +n1n3 +n2n3)). Therefore,
the cost of Algorithm 3 at each iteration is O(n2n3(n2

2+n1n2+
n1n3 + n2n3)).

VI. TENSOR DATA RECOVERY

We test the performance of the proposed method on tensor
data recovery, including videos and faces data. For compari-
son, we choose seven state-of-the-art methods: HaLRTC [45],
TNN [47], TRPCA [50], TLRR [33], robust tensor comple-
tion via tensor-train (RTC-TT) [14], Fourier transform-based
transformed TNN (FTTNN) [57], and unitary transform-based
transformed TNN (UTTNN) [54]. We scale the pixel value of
test data to the interval [0, 1]. All experiments are performed
in MATLAB R2018b with 32 GB of RAM and an Intel Core
i7-8700M CPU with 3.70 GHz on a desktop.
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We use two different unitary transforms in the proposed
method. The first one is the discrete cosine transform (termed
TTLRR-DCT). The second one is the unitary transform
learned by each given data (termed as TTLRR-Data). Partic-
ularly, we first obtain an estimator L by FTTNN and unfold
L along the third mode into a matrix L(3). Then, we compute
the SVD of L(3) as L(3) = U SV H . Finally, we use the desired
unitary matrix U H [54] in T-TSVD for data recovery and
clustering.

The choice of dictionary A is important for TTLRR. Since
the observation data are incomplete with sparse errors, we use
the estimated data by UTTNN [54] as the dictionary A in the
data recovery task.

Evaluation Metrics: We use the peak signal-to-noise ratio
(PSNR) and the structural similarity index (SSIM) [62] to
measure the recovery performance of all methods. Specifically,
PSNR is used to estimate the error between corresponding
pixels, and SSIM is used to measure the similarity between
two images. Higher PSNR and SSIM values reflect better data
quality.

Competitors and Parameters Settings: The proposed method
involves the following parameters: λ, β1, β2, and β3. We set
λ = (a/(ρn(1)n3)

1/2) and empirically choose a from
{5, 10, 20, 30, 40, 50}. For penalties β1, β2, and β3, we empir-
ically choose them from {10−4, 10−3, 10−2, 10−1}.

For all competing methods, the parameters are optimally
assigned or tuned as suggested in the corresponding papers
for obtaining the highest PSNR value.

1) HaLRTC [45]: This method focused on tensor com-
pletion by SNN. The weighted parameters αi (i =
1, 2, 3) are set to αi = 1/3 (i = 1, 2, 3). The penalty
parameter β can be selected from {5 × 10−5, 10−4,
5 × 10−4, 10−3, 5 × 10−3}.

2) TNN [47]: This method minimized the TNN to recover
the third-order tensor from missing pixels. There is
only a penalty parameter β. We empirically choose
the penalty parameter β ∈ {10−6, 5 × 10−6, 10−5,
5 × 10−5, 10−4} for the highest PSNR value.

3) TRPCA [50]: This method focused on exactly recover-
ing the low-rank component from noisy data. According
to [50, Th. 3.1], the regularization parameter takes
1/(max(n1, n2)n3)

1/2 in all experiments.
4) TLRR [33]: The method proposed a tensor low-rank

representation method to recover the clean data from
the noisy observation. We set regularization parame-
ter to a/(max(n1, n2)n3)

1/2, and a is selected from
{0.001, 0.005, 0.01, 0.1, 1} to obtain the good perfor-
mance. Moreover, this method applies the estimated
image by UTTNN [54] as the dictionary.

5) RTC-TT [14]: This method solved the robust tensor
completion problem by tensor train rank. In this method,
an autoweighted mechanism is used to guide the impor-
tance of different modes of the tensor. The regularization
parameter is set to 1/(max(n1, n2)n3)

1/2.
6) FTTNN [57]: In the Fourier transform, this method

recovered a low-rank tensor from an undersampled and
possibly arbitrarily corrupted measurement. The regular-
ization parameter is set as a/(max(n1, n2)n3)

1/2, and a
is selected from {1.1, 1.3, 1.5, 1.7, 2}.

7) UTTNN [54]: Using the unitary transform learned
from the given data, this method studied robust tensor

TABLE I

EXACT RECOVERY PERFORMANCE (‖L̂− L‖F/‖L‖F ) OF THE

SYNTHETIC DATA WITH DIFFERENT SIZES

Fig. 4. Exact recovery of TTLRR-Data for varying rank and noise corruption
(the white region indicates the success case and the black region indicates the
failure case). (a) SR = 0.95. (b) SR = 0.90.

completion by the transformed tensor SVD. The regular-
ization parameter is set as a/(max(n1, n2)n3)

1/2

and a is selected from {10, 15, 18, 20, 23,
25, 28, 30, 33, 35, 40, 45, 50}. The penalty parameter β
is chosen from {0.001, 0.005, 0.01, 0.05, 0.1}.

A. Synthetic Data Recovery

Here, we evaluate the recovery guarantee in Theorem 1 on
our TTLRR-Data using randomly synthetic data.

1) Exact Recovery on Random Data With Different Sizes:
We generate the random tensor L = [L1,L2, . . . ,L5] ∈
Rn1×n2×n3 with Lq = Cq ∗ Dq (q = 1, 2, . . . , 5), where the
entries of Cq ∈ Rn1×p×n3 and Dq ∈ Rp×s×n3 are randomly
sampled from i.i.d. N (0, 1). Here, we set the tensor size
as n1 = n3 = 100 and p = s = 10 and n1 = n3 =
200 and p = s = 20. So the numbers n2 of two tensors are
n2 = 50 and n2 = 100, respectively. In addition, the entries
are independently corrupted with probability γ to generate the
noisy tensor. Then, the observed tensor is obtained by choosing
a percentage ρ entries of the noisy tensor. Table I reports the
recovery results of different sampling rates (ρ) and noise rates
(γ ). One can see that the relative errors of (‖L̂−L‖F/‖L‖F ) of
our method are very small. Meanwhile, the proposed method
achieves smaller relative errors than those obtained UTTNN
in most cases. This confirms the exact recovery performance
of the proposed method, as shown in Theorem 1, and the
advantage of our method.

2) Exact Recovery on Varying Rank and Sparsity: Now,
we examine the recovery performance of our method with
varying tubal rank r := rankt(L) and varying noise rate γ .
Similar to the above-mentioned generation process, we pro-
duce the random tensor Lq = Cq ∗ Dq (Cq ∈ Rn1×rq×n3

and Dq ∈ R
rq×sq×n3 , q = 1, 2, . . . , 5) and set the tensor

L = [L1,L2, . . . ,L5] ∈ Rn1×n2×n3 . Hence, L contains n2 =∑5
q=1 sq samples with tubal rank r = ∑5

q=1 rq . We set n1 =
200, n3 = 20, sq = s = 20, γ = [0.02 : 0.02 : 0.3], and
the rank r = [1 : 20]. For each pair (r, γ ), we perform ten
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Fig. 5. Performance (PSNR and SSIM) of different methods on video datasets
for each frame with SR = 0.6 and NR = 0.1. From top to bottom: Carphone,
Suzie, and News.

trials and declare a trial to be successful if the recovered L̂
satisfies (‖L̂ − L‖F/‖L‖F ) ≤ 5 × 10−3. Fig. 4 shows the
experimental results of TTLRR-Data for different sampling
rates, i.e., ρ = 0.95 and ρ = 0.90. One can see that in both
cases, there exists a big region where TTLRR-Data can exactly
recover the underlying data. This experiment also verifies the
main result in Theorem 1.

B. Video Recovery

1) Settings: We test the performance of the proposed
method on videos, including Carphone 144 × 176 × 180,
Suzie 144 × 176 × 150, and News 144 × 176 × 3001 to
validate the effectiveness of the proposed method in the robust
tensor completion problem. We randomly generate incomplete
data with different sampling rates (SR = 0.4, 0.6, and 0.8) and
different noise rates (NR = 0.1 and 0.2).

2) Results: Table II shows the numerical results of the
recovered videos by different methods with different SRs and
NRs. The best and suboptimal results are denoted in bold
fronts and underlined values, respectively. One can see that
the proposed TTNN-Data achieves the highest PSNR and
SSIM values in most cases. This suggests the superiority
of the unitary transform learned from the given tensor data.
Moreover, the PSNR values obtained by TTLRR-DCT and
TTLRR-Data are higher than those obtained by FTTNN and
UTTNN. This suggests that the original high-dimensional data
depends on multiple subspaces instead of one space. Fig. 5
plots the PSNR and SSIM curves of the recovered results by
a different method in terms of each frame of three videos.

1http://trace.eas.asu.edu/yuv/

Obviously, the proposed method TTLRR-Data achieves the
highest PSNR and SSIM values in most frames.

Fig. 6 presents the recovered videos of compared methods
with SR = 0.6 and NR = 0.1. One can see that HaLRTC
and TNN only recover the coarse structure of the videos
while remaining lots of noise. TRPCA and TLRR methods
only consider sparsely corrupted observations, so there are
still missing pixels in the restored results. In comparison,
both TTLRR-DCT and TTLRR-Data outperform the compared
methods in recovering the details and structures.

C. Face Data Recovery

1) Settings: In this part, we test the performance of the
proposed method on the face image extended Yale B (YaleB)
database [63]. The YaleB contains 38 subjects and each subject
contains 64 images under various lighting conditions. In this
experiment, the dataset contains 840 frontal face images of
20 subjects and each image is resized to 80 × 60. We ran-
domly sample the YaleB dataset and add sparse noise to
generate the observed data. The SRs are set as 0.4, 0.6, and
0.8, and sparse NRs are set as 0.1 and 0.2, respectively.

2) Results: Table III shows the PSNR and SSIM values
obtained by different methods. It can be seen that the PSNR
and SSIM values obtained by TTLRR-DCT and TTLRR-Data
are higher than those obtained by other compared methods in
most cases.

Fig. 7 presents the recovered face images by different meth-
ods with SR = 0.6 and NR = 0.2. Obviously, TTLRR-DCT
and TTLRR-Data produce more satisfactory recovered images
than other compared methods. We also observe that the recov-
ered images of TTLRR-Data are clear than those obtained
by TTLRR-DCT. TTLRR-Data can preserve more details and
distinguishable features than the other compared methods,
which can be beneficial to enhance the performance of the
downstream clustering tasks.

VII. TENSOR DATA CLUSTERING

In this section, we conduct various experiments on face
data, object images, and scene data to test the effectiveness
of the proposed methods (TTLRR-DCT and TTLRR-Data)
for data clustering. Moreover, we compare the proposed
methods with several relevant and state-of-the-art approaches,
namely, low rank subspace clustering (LRSC) [64], latent
multi-view subspace clustering (LMSC) [65], RSS [66], robust
kernel low-rank representation (RKLRR) [67], implicit block
diagonal low-rank representation (IBDLR) [68], stochastic
sparse subspace clustering via orthogonal matching pursuit
(S3COMP) [69], TLRR [33], block diagonal representation
(BDR) [70], and generalized nonconvex low-rank tensor
approximation (GNLTA) [35]. Among them, IBDLR and BDR
incorporate the block diagonal prior to guaranteeing the block
diagonal of the affinity matrix. All test data are scaled into the
interval [0, 1]. In the following, we use the estimated data by
FTTNN [57] as dictionary A.

Evaluation Metrics: For the quantitative measures of clus-
tering results, we utilize the unsupervised clustering accuracy
(ACC) [24], the normalized mutual information (NMI) [71],
and the purity (PUR) [72]. ACC is the accuracy metric
computed for the best matching permutation between clus-
tered labels and ground-truth labels. NMI is an information
theoretic-based measure and can balance the quality of the
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TABLE II

PERFORMANCE (PSNR AND SSIM) OF TENSOR DATA RECOVERY ON THREE VIDEO DATASETS WITH DIFFERENT SRS AND NRS. THE BEST VALUES
ARE HIGHLIGHTED BY BOLD FRONTS AND THE SUBOPTIMAL VALUES ARE HIGHLIGHTED BY UNDERLINED

Fig. 6. Recovered videos by different methods with SR = 0.6 and NR = 0.1. From top to bottom: Carphone (50th frame), Suzie (100th frame), and News
(tenth frame).

clustering against the number of clusters. PUR is measured by
the percentage of the total number of objects that are correctly
classified. Higher ACC, NMI, and PUR values indicate more
accurate clustering results.

Competitors and Parameter Settings: In tensor data clus-
tering, the parameter setting of the proposed method is as
follows. We set λ = (a/(ρn(1)n3)

1/2) and a is selected
from {1, 2, 4, 5, 10, 20, 30, 40}. For penalties β1, β2, and β3,
we empirically choose them from {10−4, 10−3, 10−2, 10−1}.

For the compared methods, we use the codes provided
by the authors and tune the parameters according to the

authors’ suggestions in their papers to obtain the best
result.

1) LRSC [64]: The method proposed a general low-rank
matrix subspace clustering framework for solving the
clustering problem in the case of data corrupted by noise
and/or gross errors. There are parameters α and τ in
LRSC (the P3 model). According to the authors’ sugges-
tion, we choose them from α ∈ {0.03, 0.045, 0.07, 0.1}
and τ ∈ {0.01, 0.03, 0.045, 0.07, 0.1}, respectively.

2) LMSC [65]: The method proposed a latent subspace
clustering method, which contains the regularization
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Fig. 7. Recovered faces by different methods with SR = 0.6 and NR = 0.2.

TABLE III

PERFORMANCE (PSNR AND SSIM) OF TENSOR DATA RECOVERY ON

YALEB DATASET WITH DIFFERENT SRS AND NRS. THE BEST VALUES

ARE HIGHLIGHTED BY BOLD FRONTS AND THE SUBOPTIMAL
VALUES ARE HIGHLIGHTED BY UNDERLINED

parameter λ and the penalty parameter μ. We tune the
parameter λ from {10−3, 10−2, 10−1, 100, 101, 102, 103}
suggested by authors and empirically set μ = 10−4 for
the highest ACC value.

3) RSS [66]: The subspace clustering method can simulta-
neously learn the representations of data and the affinity
matrix. There are three regularization parameters λ1, λ2,
and λ3 in RSS. According to the suggestion in RSS,
we set λ1 = λ2 = λ3 = λ̂ ∈ {0.1, 0.2, . . . , 1.0}.

4) RKLRR [67]: The method showed a RKLRR to deal
with the nonlinear corrupted data. The method only
has one tradeoff parameter λ that can be selected from
{0.1, 0.2, 0.3, 0.5} to obtain the best performance.

5) IBDLR [68]: The method incorporated the block diag-
onal prior into the low-rank representation method
for data clustering. There are two regularization para-
meters λ and γ . We empirically choose them from
{1, 3, 5, 7, 9, 11} for the highest ACC value.

6) S3COMP [69]: This is a scalable and flexible sparse
subspace clustering approach. It mainly contains three
parameters λ, δ, and T . According to the authors’
suggestion, we select λ from {0.01, 0.02, . . . , 0.09}, δ
is selected from {0.1, 0.2, . . . , 0.9}, and T is fixed to
15.

7) TLRR [33]: The method used the tensor low-rank
representation method based on TNN to cluster the
corrupted data. We choose the Robust TLRR as the
comparison method and set the regularization para-
meter to a/

√
max(n1, n2)n3, where a is selected

from {0.05, 0.1, 1, 5, 10, 20} to obtain the best perfor-

Fig. 8. (a) Examples of the corrupted face data from the YaleB datasets.
(b) Block-diagonal structure of the observed data with SR = 0.5 and
NR = 0.1. It shows the bad clustering performance from the corrupted data.

mance. Similar to our method, the estimated data by
FTTNN [57] is used as the dictionary in their algorithm.

8) BDR [70]: This method is a matrix-based subspace
clustering method and introduces the block diago-
nal structure prior. As suggested by the authors,
the parameters λ and γ are, respectively, selected
from {10, 20, 30, 40, 50, 60, 70} and {0.001, 0.01, 0.1,
0.5, 1, 2, 3, 5, 10, 50} in the numerical experiments.

9) GNLTA [35]: This method used the nonconvex function
to approximate the low-rank representation tensor for
data clustering. In the following experiments, we choose
the nonconvex function Laplace to test the performance
of GNLTA. Parameters α and θ are selected from
interval [0.005, 0.06] and [1.1, 2], respectively.

A. Face Data Clustering

1) Settings: We test the performance of the proposed
method on the YaleB dataset [63]. The YaleB has 2432 facial
images of 38 subjects under various lighting conditions, where
each subject contains 64 images. In our experiments, the
dataset contains 840 frontal face images with the size of
80 × 60 of 20 subjects. We randomly sample the YaleB
dataset and add sparse noise to generate the observed data.
The SRs are set as 0.1–0.9 and sparse NRs are set as
0.1–0.3, respectively. The goal of clustering is to group the
corrupted face data into different groups according to the
subject. By arranging each data as the lateral slices of a third-
order tensor, we perform the proposed subspace clustering

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on November 04,2022 at 08:11:54 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE IV

PERFORMANCE (ACC, NMI, AND PUR) OF TENSOR DATA CLUSTERING ON THREE DATASETS WITH DIFFERENT SRS AND NRS. THE BEST VALUES
ARE HIGHLIGHTED BY BOLD FRONTS AND THE SUBOPTIMAL VALUES ARE HIGHLIGHTED BY UNDERLINED

Fig. 9. Performance (ACC, NMI, and PUR) of different methods on YaleB
dataset with different SRs. (a) NR = 0.1. (b) NR = 0.2.

method on the tensor. Fig. 8(a) shows some example data.
Fig. 8(b) presents the block-diagonal structure of corrupted
data and implies a bad cluster performance of directly clus-
tering corrupted data.

Fig. 10. Comparison of block-diagonal structures learned by different
methods on YaleB dataset with NR = 0.2 and SR = 0.7. (a) LMSC. (b) RSS.
(c) RKLRR. (d) IBDLR. (e) S3COMP. (f) TLRR. (g) BDR. (h) GNLTA.
(i) TTLRR-DCT. (j) TTLRR-Data.

2) Results: Fig. 9 plots the ACC, NMI, and PUR curves
against SR with NR = 0.1, 0.2, respectively. One can see
that TTLRR-DCT and TTLRR-Data achieve the better perfor-
mance than the compared methods in most cases. Table IV
shows the clustering results (ACC, NMI, and PUR) by dif-
ferent subspace clustering methods with NR = 0.2 and
SR = 0.3, 0.5, 0.7, respectively. One can see that the proposed
method outperforms other compared methods. This suggests
the effectiveness of the proposed method for clustering the
corrupted data. Meanwhile, the improvement of the proposed
method is more significant with the increased SR. By intro-
ducing sparse noise, the robustness of the proposed method is
also verified.

Furthermore, Fig. 10 displays the block-diagonal structures
of the affinity matrix obtained by different methods. For con-
venience, we only show the coefficients among six classes for
observation. For methods TLRR, TTLRR-DCT, and TTLRR-
Data, we plot Ẑ defined in (21) to show the block-diagonal
structures. It can be seen that even without introducing the
block-diagonal prior to IBDLR, the block-diagonal structure
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Fig. 11. Comparison of block-diagonal structures learned by different
methods on UCSD dataset with NR = 0.3, SR = 0.7. (IBDLR has the
obvious group effect outside the diagonal). (a) LMSC. (b) RSS. (c) RKLRR.
(d) IBDLR. (e) S3COMP. (f) TLRR. (g) BDR. (h) GNLTA. (i) TTLRR-DCT.
(j) TTLRR-Data.

learned by TTLRR-Data is clearer than other competitors.
This demonstrates that the proposed model can approximately
recover the tensor subspace of corrupted data, and thus, cluster
data accurately.

B. Object Data Clustering

1) Settings: Next, we use the Columbia Object Image
Library (COIL20) dataset2 to test the performance of TTNN.
The COIL20 contains 1440 images of 20 subjects including
various objects, where each subject contains 74 images. And
we resize each image to 32 × 32. The randomly sampling
rates are set as 0.3, 0.5, and 0.7, and the sparse noise rate is set
as 0.1, respectively. Corrupted data are put into a third-order
tensor to evaluate the performance of the proposed method.

2) Results: In the middle rows of Table IV, we show the
clustering performance of all methods on the COIL20 dataset.
Similar to previous results, the proposed method achieves the
best in preserving the intrinsic structures of data and clustering
tasks. Meanwhile, it also exhibits the best robustness of our
method in missing samples and noise situations.

C. Scene Data Clustering

1) Settings: The University of California at San Diego and
Academic Science (USCD) dataset3 contains 1200 different
environment images from 18 video sequences. Similar to the
COIL20 dataset, each image is normalized to 32 × 32. The
randomly sampling rates are set as 0.3, 0.5, and 0.7. In order
to show the robustness of the proposed method, we set the
sparse noise as NR = 0.3. Next, we use the USCD dataset to
evaluate the proposed method.

2) Results: In the bottom rows of Table IV, we present
the clustering performance of all methods on the USCD
dataset. Clearly, TTLRR-Data achieves the highest evaluation
metrics. Moreover, the proposed method reaches a consistent
significance over the other competitors when the sparse noise
is high (NR = 0.3). This suggests the robustness of the
proposed method.

Fig. 11 displays the block-diagonal structures of the affinity
matrix obtained by different methods on the UCSD database.
Although IBDLR employs the block-diagonal prior constraint

2http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
3http://www.svcl.ucsd.edu/projects/backgroundsubtraction/ucsdbgsubdataset.

htm

TABLE V

RUNNING TIME (IN SECONDS) OF TENSOR DATA RECOVERY ON
CARPHONE AND NEWS DATASETS WITH DIFFERENT SRS AND NRS

TABLE VI

RUNNING TIME (IN SECONDS) OF TENSOR DATA CLUSTERING ON COIL20
AND UCSD DATASETS WITH DIFFERENT SRS AND NRS

to model the block-diagonal structure, it also has the obvi-
ous group effect outside the diagonal. This leads to lower
clustering evaluation values, as shown in Table IV. Again,
the proposed TTLRR-Data admits a better performance over
other methods, which indicates the promising superiority of
the unitary transform learned from the given data.

We also report the running time of different methods
in Tables V and VI. One can see that our methods both
TTNN-DCT and TTNN-Data achieve the competitive perfor-
mance in terms of time cost. Meanwhile, our methods take
less time to achieve the best results in most cases.

VIII. CONCLUSION

In this work, we propose a novel transform tensor low-rank
representation (TTLRR) method for tensor data recovery and
subspace clustering with a theoretical guarantee. TTLRR can
preserve the tensor structure information and better exploit
the intrinsic low-rank representation of underlying data. More
importantly, we prove the proposed method TTLRR can
exactly recover the underlying clean data with a high prob-
ability; moreover, we provide the theoretical guarantee of
the proposed model to ensure the clustering block-diagonal
structure of the optimal solution. An effective ADMM algo-
rithm is developed to solve the proposed model. Extensive
numerical results on tensor data recovery and data clustering
have demonstrated the effectiveness and robustness of the pro-
posed method with DCT and data-dependent transforms. In the
future, the nonlinear transform will be ulteriorly considered
for the data recovery and clustering with recoverability study.
Other learning tasks including supervised and semisupervised
learning are also within the scope of the next research.
Moreover, we will attempt to recover and cluster the corrupted
multi-way visual data with large areas missing across all
bands—that is a challenging task for our method.
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