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Multi-view clustering (MVC) focuses on adaptively partitioning data from diverse sources into the
respective groups and has been widely studied under the assumption of complete data. However, real-
world applications often encounter a more realistic incomplete multi-view clustering (IMVC) problem,
where data samples are missing in certain views. There are two challenges in IMVC: 1) how to reduce
the impact of the missing instances; 2) how to effectively extract the consistent information to cluster
the multi-view data. To address the challenges, we propose an adaptive graph learning framework for
IMVC, which optimizes the missing information to fit the intrinsic structure of each view and clusters
the multi-view data by cross-view graph matching. The proposed method mainly consists of three steps.
Firstly, owing to the outstanding performance of the intrinsic structure of data, we adapt it to complete
the missing data of each view. Secondly, the connection graph of each view from a projection space is
adaptively constructed wherein the data points are connected if and only if they belong to the same clus-
ter. Thirdly, we further introduce a cross-view graph matching strategy to appropriately utilize comple-
mentary multi-views information and preserve view-specific semantic information. We develop an
iterative algorithm for solving the proposed model. Numerical experiments on several standard datasets
demonstrate the effectiveness of the proposed method.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

In the fields of machine learning, multi-view clustering (MVC)
has received increasing attention and achieved success in various
applications, such as web page classification [1,2], speech recogni-
tion [3], and disease diagnosis [4]. The main idea of MVC is to clus-
ter the data coming from multiple channels or with multiple
modalities [5–7]. Many methods have been researched for solving
MVC, for example, the multi-view k-means clustering [8–10], the
co-regularized multi-view spectral clustering [11–14], and the
matrix factorization-based clustering [15–17]. These studies on
multi-view learning mainly focus on the clustering of complete
multi-view data.

However, due to temporary failures of data collectors or human
errors, many practical applications often encounter the absence of
partial views among samples, thereby forming incomplete multi-
view data [18–22]. For example, a text description of an item to
be clustered may be missing. Due to the lack of data for some
views, some rows or columns of the data matrix are missing. As
a result, the traditional matrix completion methods cannot effec-
tively fill the missing entries. Moreover, most existing MVC algo-
rithms that are designed for complete data thus cannot directly
and efficiently handle the incomplete cases. Therefore, incomplete
multi-view clustering (IMVC) came into being with an aim of
reducing the impact of missing samples and effectively exploiting
multi-view information to achieve an applicable clustering.

In recent years, various efforts are devoted to solving the IMVC
problem. We roughly divide these methods into two categories.
The one category is called the ‘‘two-stage” methods [23–25]. In
these methods, incomplete multi-view data is first filled with miss-
ing values through some data preprocessing strategies. Then, some
standard MVC methods are applied to the preprocessed data to
obtain the final clustering results. The common data preprocessing
strategies include k-nearest-neighbor completion, mean value
completion, and zero-filling. However, with the increase of the
missing views, these simple filling methods may cause a large
deviation and also lose the semantic information implied by the
missing data [26,20]. To simultaneously infer the missing data
and obtain the consistent representation, the second category of
‘‘one-stage” methods is formed. A number of IMVC methods based
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on the ‘‘one-stage” framework have emerged, such as matrix
decomposition-based methods [4,27,28], spectral clustering-
based methods [29,30,26,31], and neural network-based methods
[32–34]. These methods aim to learn the consensus graph/repre-
sentation to find the common structure of multiple views. How-
ever, the value of the learning representation may be different in
each view. Meanwhile, some useful information may be lost when
a common representation is forced. In summary, the prevalent
IMVC methods still suffer from the following limitations: (1) the
missing view information has not been well restored to meet the
intrinsic structure of data; (2) the missing view information has
not been fully utilized to guide the consensus representation learn-
ing; (3) the common structure learning of multiple views with the
highest probability consequently incurs the loss of semantic
information.

To address the above issues, in this work, we propose a novel
IMVC method called Cross-view Graph Matching for Incomplete
Multi-view Clustering (CGMIMC). In Fig. 1, we illustrate the overall
framework of our CGMIMC. On the whole, CGMIMC puts the learn-
ing of missing data into an optimization process so that the miss-
ing instances meet the intrinsic structure of each view. Meanwhile,
the graph learning strategy is used to convert the representations
of recovered views into the compact graph connection representa-
tions that can capture the pairwise relationship. Therefore, both
non-missing views and missing views can jointly guide the consen-
sus representation learning. Then, we minimize the inconsistency
between the pair of connected graphs rather than that among all
graphs to reach the view consensus and preserve view-specific
semantic information. The main contributions are as follows:

� We optimize the missing views to meet the intrinsic structure
of each view, which can reduce the impact of missing data
and guide the consensus learning on clustering.

� We use cross-graph matching to achieve view consensus and
preserve view-specific semantic information, where the view
representation of possible changes is converted to a stable
graph connection representation.

� We design an efficient iterative algorithm to solve the proposed
model. Numerical experiments on multiple datasets show the
effectiveness of the proposed CGMIMC.

The rest of this paper has the following structure: Section 2
reviews the related representative clustering methods. Section 3
Fig. 1. The overall framework of the proposed method CGMIMC. Given a collection of da
the missing data to form the complete data X vð Þ þ E vð ÞW vð Þ , so that non-missing informatio
view. Then, the connection graph S vð Þ of each view is adaptively constructed to transform
we use the cross-view graph matching strategy to minimize the difference between any
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presents the proposed CGMIMC, including missing data comple-
tion and cross-view graph matching. Section 4 proposes an itera-
tive algorithm to solve CGMIMC. The analysis and discussions of
numerical experiments are presented in Section 5. Finally, Section 6
summarizes this work.

2. Related work

In this second, we review some representative studies related to
single-view clustering, complete multi-view clustering, and
incomplete multi-view clustering methods.

2.1. Single-view clustering

The single-view clustering method only considers collecting
data from a single source [35–37]. In order to cluster high-
dimensional data, sparse representation-based [38] and low-rank
representation-based [39] subspace clustering methods were stud-
ied. Moreover, Peng et al. used graph regularization [40] and struc-
tured autoencoders [41] for subspace clustering. With the
development of deep learning, the recurrent graph neural net-
works clustering method [34] and the deep fusion clustering net-
work [42] were also proposed. Although these methods are
effective for single-view data, the observed data usually come from
diverse domains, each of which denotes a specific perspective. The
above single-view clustering methods do not apply the comple-
mentary multi-view information of the observed data. Therefore,
the single-view clustering algorithm is less effective than the
MVC algorithm in handling the multi-view data.

2.2. Complete multi-view clustering

MVC has been intensively investigated [9,43,12,44,45]. The
complete MVCmethods require that all views of the observed sam-
ples are available. To find the common latent structure among all
views, Wang et al. [46] used a views-agreement constraint to keep
the consistency of all views. Meanwhile, Xia et al. [47] learned a
common low-rank graph representation from multiple similarity
graphs based on all views. Wang et al. [48,49] applied the diver-
gence constraint term to coordinate all views to be agreeable by
using the low-rank matrix factorization. Similarly, to minimize dis-
agreement between different views, Zhan et al. [50] proposed a
consensus graph clustering method. Wang et al. [51] fused the data
ta points with multiple views, X 1ð Þ;X 2ð Þ; . . . ;X mð Þ� �
, the proposed method optimizes

n and missing information can simultaneously guide the consensus learning of each
the view representation and preserve the pairwise relationship of each view. Finally,
two connection graphs to properly achieve view consensus.
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graph matrices of all views into a unified matrix. Tang et al. [7]
applied the cross-view graph diffusion way to obtain a unified
graph for data clustering. However, real-world applications often
fail to meet the assumptions that each example of data appears
in all views. In fact, every view may suffer from data missing.
Therefore, traditional complete MVC methods are limited in imple-
menting practical applications.

2.3. Incomplete multi-view clustering

In recent years, IMVC methods have received extensive atten-
tion for processing the incomplete data with multiple features.
For instance, Li et al. [4] presented a partial multi-view clustering
(PVC) algorithm to handle incomplete multi-view data by learning
the latent subspace. This approach focuses on the two incomplete
views. Hu et al. [20] extended PVC to IMVC by exploring instance
missing information and aligning the clustering centers among dif-
ferent views simultaneously. Moreover, by filling the missing
entries with the average value in each view, Shao et al. [23] pro-
posed a clustering approach for incomplete multi-view data. How-
ever, the simple filling method has poor performance with a large
number of missing data samples. Based on the common structure
among all views, Wen et al. [21] used graph regularized matrix fac-
torization to solve IMVC by simultaneously exploiting the local and
global information among views. Further, to solve the nonlinear
relations between the unified representation and data of different
views, Zhuge et al. [22] learned low-dimensional representations
of existing instances and a shared label matrix. To explore the hid-
den information of missing instances, Liu et al. [52] proposed an
efficient and effective IMVC method based on multi-kernel k-
means clustering, where the absent views and the clustering result
are iteratively updated until convergence. Wen et al. [53] jointly
learned the graph completion and common representation for
IMVC. In particular, they used the similarity information of other
views to infer the missing views. Meanwhile, the consensus repre-
sentation is learned by exploiting shared information across all
views. Li et al. [54] applied the partition space and graph learning
for IMVC. To be specific, they first learned the view-specific local
partition with incomplete data, and then integrated the partitions
of all views to produce the unified partition and obtain the consen-
sus graph.

The differences between the proposed method and related
works are as follows:

� The single-view clustering method is only suitable for process-
ing data with one feature and cannot directly process multi-
view data. Differently, the proposed method can fully exploit
the complementary information of multi-view data for data
clustering.

� The complete multi-view clustering methods require that all
views of the observed samples are available. However, in prac-
tical applications, observation samples may be missing from
Table 1
The notations and their meanings.

Notations Meanings No

X;x, and x matrix, vector, and scalar dv
xi;: the ith row of X nv
x:;j the jth column of X 1
Xi;j or xi;j the i; jð Þth element of X Xð

X> the transpose of X E vð

k � kF ; k � k2 Frobenius norm, l2-norm Uð

Tr �ð Þ the trace of the matrix Gð

n;m the number of samples, views S vð
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some views. By contrast, our method can handle the challenging
and realistic incomplete multi-view data.

� Most existing IMVC methods [4,20–23] either fill the missing
entries with the average value, or directly explore the common
structure of incomplete views. By contrast, the proposed
method optimizes the missing views to meet the intrinsic struc-
ture of each view, thereby reducing the impact of missing sam-
ples for clustering. Compared with the state-of-the-art IMVC
methods [52–54], instead of forcing all representations to be
consistent, we adopt the cross-graph matching strategy to mine
the view consensus while preserving view-specific semantic
information.

3. Proposed method

In the following, we present the proposed method CGMIMC
with three tasks, including the view-specific consensus learning,
the graph learning, and the cross-view graph matching.

Motivations. Most existing MVC methods have an underlying
assumption that each view contains all instances. However, the
available multi-view data usually is not complete. For example,
in document clustering (e.g., a document has multi-language ver-
sions), some documents may not have all translated versions. On
the other hand, most MVC and IMVC methods focus on finding
the common features with the highest probability. But for incom-
plete views, each view may be very different from other views. In
this way, some semantic information may be lost. Therefore,
incomplete multi-view data poses two challenges: Challenge 1)
how to reduce the impact of missing instances; Challenge 2) how
to effectively extract the complementary and consistent informa-
tion to obtain better clustering results. The solution to Challenge
1 can essentially address the aforementioned limitations (1) and
(2) of IMVC methods while the solution to Challenge 2 can tackle
limitation (3).

Problem formulation. We consider the problem of clustering a
set of n data points. For MVC, we have m data views denoted by

X 1ð Þ;X 2ð Þ; . . . ;X mð Þ
n o

, where X vð Þ 2 Rdv�n and dv denotes the feature

dimension of the vth view. For each X vð Þ, the values of missing
entries are filled with 0. In the following, we use the bold upper
case letter X, the bold lower case letter x, and the lower case letter
x to denote the matrix, the vector, and the scalar, respectively. We
use the xi;: and x:;j to denote the ith row and the jth column of X,
respectively. The i; jð Þth element of X is denoted as Xi;j or xi;j. For
convenience, we summarize the important notations used in the
proposed method in Table 1.

3.1. View-specific consensus learning

To address Challenge 1, some IMVC methods only apply the
complete views to learn the common structure. Another strategy
is to complete the missing samples by an average and a median
tations Meanings

the feature dimension of the vth view
the number of missing instances in the vth view
the column vector of all ones

vÞ 2 Rdv�n the observed data of the vth view
Þ 2 Rdv�nv the missing data of the vth view
vÞ 2 Rdv�n the consensus representation of the vth view
vÞ 2 Rdv�dv the feature similarity matrix of the vth view
Þ 2 Rn�n the connection graph of the vth view
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to satisfy the data structure. Such a simple completion strategy not
only loses the semantic information of each view, but also leads to
a large deviation in the cases with a high proportion of missing val-
ues. Thus, for incomplete multi-view data, how to use the missing
information to learn the consensus representation remains critical
and challenging. In this work, we complete the missing instances
by using local feature structures of each view and adequately
leveraging underlying information of missing entries. Specifically,
we introduce the error matrix E vð Þ 2 Rdv�nv to model the missing
data of nv missing instances. To characterize the relation of the
observed data X vð Þ and the missing data E vð Þ of the vth view, an
index matrix W vð Þ 2 Rnv�n [26] is introduced as follows:

W i;j ¼ 1; if the i th missing point is the j th point of X vð Þ;

0; otherwise:

(
ð1Þ

Therefore, we measure the missing data in every single view by
the following strategy:

min
E vð Þ ;U vð Þ

kX vð Þ þ E vð ÞW vð Þ � U vð Þk2F

þ k1
2

Xdv
i;j¼1

ke vð Þ
i;: � e vð Þ

j;: k22G vð Þ
i;j ;

ð2Þ

where k1 > 0 is a parameter, E vð ÞW vð Þ just corresponds to the miss-
ing data of each view, as shown in the left of Fig. 1. The term

X vð Þ þ E vð ÞW vð Þdenotes the complete view after filling and e vð Þ
i;: is

the ith row of the matrix E, i.e., the ith feature. U vð Þ is the consensus

representation of each view. G vð Þ
i;j denotes the feature similarity

between features e vð Þ
i;: and e vð Þ

j;: . The second term in (2) is to constrain
the similar features, since two features are similar to each other in
the missing instances with high similarity under the original

instances. Feature similarity matrix G vð Þ 2 Rdv�dv is constructed by
mutual knn graph if and only if the ith and the jth features are

mutually the k closest neighbors, i.e., G vð Þ
i;j ¼ 1.

According to the properties of normalized graph Laplacians

[55,56], we can easily deduce that 1=2
Pdv

i;j¼1ke vð Þ
i;: � e vð Þ

j;: k22G vð Þ
i:j has

the following equivalent form:

Tr E vð Þ>L vð Þ
G E vð Þ

� �
; ð3Þ

where Tr �ð Þ is the trace of the matrix, L vð Þ
G is a Laplacian matrix of

G vð Þ, which is calculated by L vð Þ
G ¼ D vð Þ � G vð Þ with

D vð Þ ¼ Diag
Pdv

j¼1G
vð Þ
i;j ji ¼ 1;2; . . . ;dv

n o
is the degree matrix of G vð Þ .

It is worth noting that the objective function (2) optimizes
jointly the missing view and view-specific consensus representa-
tion so that they can gain from the updates of each other.

3.2. Graph learning

Let U vð Þ 2 Rdv�n; v ¼ 1;2; . . . ;m
n o

denotes the projection space

(also known as the representation), which takes the original fea-
tures as an important basis for learning. So U vð Þ should be similar
to X vð Þ, otherwise it will destroy the topology. In addition, the rep-
resentation learning takes into account the similarity between
instances. If two instances have high similarity in the vth view,

then their representations u vð Þ
:;i and u vð Þ

:;j are also similar. Similarly,
graph learning will need to consider the relationship between

the instances. If two instances representation u vð Þ
:;i and u vð Þ

:;j are sim-

ilar in v views, then s vð Þ
i;j should be relatively large. Thus, represen-
82
tation learning and graph learning are essentially processes of
mutual influence. According to the above discussion, we set the
loss of each view as

L vð Þ
1 ¼ min

E vð Þ ;U vð Þ ;S vð Þ
kX vð Þ þ E vð ÞW vð Þ � U vð Þk2F

þk1Tr E vð Þ>L vð Þ
G E vð Þ

� �
þ k2

2

Xn
i;j¼1

ku vð Þ
:;i � u vð Þ

:;j k22s vð Þ
i;j ;

s:t: 8v; s vð Þ
i;j > 0; s vð Þ

i;: 1 ¼ 1;

ð4Þ

where 1 is a vector and its all entries are one. By (4), non-missing
information and missing information can simultaneously guide
the consensus representation. The first two steps mainly solve Chal-
lenge 1 on handling missing views. Using the above strategy, the
proposed method can reduce the impact of missing samples for
clustering.

3.3. Cross-view graph matching

To cluster the above completed multi-view data, we match the
graphs constructed from the projection space, i.e., minimize the
difference between any two connection graphs to achieve view
consensus. The cross-view loss is set as

L2 ¼ min
S vð Þ

1
2

Xm
v¼1

Xm
w¼1;w–v

kS vð Þ � S wð Þk2F : ð5Þ

Different from most of the traditional MVC methods, our
method matches pairwise connection graphs rather than all graphs
to achieve the purpose of consistency, with the following advan-
tages: the representation U may be significantly different in each
view. Once we force all representations U vð Þ v ¼ 1;2; . . . ;mð Þ to be
consistent, the optimization may be distorted and some useful
information may be lost, thereby resulting in poor clustering per-
formance. Instead, our method facilitates the relationship between
U vð Þ as invariant connection S vð Þ and makes them as close as possi-
ble to each other, thereby largely avoiding distorted representa-
tions. By designing the cross-view graph matching, the proposed
method solves Challenge 2 and can effectively mine the comple-
mentary and consistent information and preserve view-specific
semantic information to achieve excellent clustering results.

Finally, by combining the missing view filling model (4) and the
cross-view graph matching strategy (5), we propose the final opti-
mization function of CGMIMC as follows:

L ¼
Xm
v¼1

L vð Þ
1 þ L2: ð6Þ

We present the overall framework of CGMIMC in Fig. 1.

4. Optimization algorithm

In this section, we develop an iterative algorithm for solving the
proposed optimization problem (6). Theoretically, the problem (6)
can be decomposed into three sub-problems: 1) optimizing the
missing matrix E, 2) solving the representations U, and 3) updating
the connection graphs S. We conduct these three sub-problems
until convergence. After the final connection graphs are obtained,
we calculate the average graph and apply the spectral clustering
algorithm to obtain the final data partition. Finally, we present
the proposed iterative algorithm in Algorithm1.

4.1. Initialize S vð Þ

For initializing S vð Þ, the similar graph initialization method in
CLR [56] is adopted. To reduce the impact of missing value on com-
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position, we use the actual instances information

X vð Þ 2 Rdv� n�nvð Þand connection graph bS vð Þ 2 R n�nvð Þ� n�nvð Þ. The ini-
tialization objective function is

min
S vð Þ

Xn�nvð Þ

i;j¼1

k�x vð Þ
:;i � �x vð Þ

:;j k22 ŝ vð Þ
i;j þ c

Xn�nvð Þ

i;j¼1

ŝ2i;j;

s:t: 8i; ŝ vð Þ
i;j P 0; ŝ vð Þ

i;: 1 ¼ 1;

ð7Þ

where ŝ vð Þ
i;j denotes the i; jð Þth element of bS vð Þ and ŝ vð Þ

i;: is the ith row

vector of bS vð Þ. For any two different instances �x vð Þ
:;i and �x vð Þ

:;j , once their

distance c vð Þ
i;j ¼ k�x vð Þ

i � �x vð Þ
j k22tend to be smaller, the connection

strength ŝ vð Þ
i;j become larger. The second regular term on bS vð Þmakes

connection graph bS vð Þsparse. Let k be the number of nearest neigh-

bors. We initialize bS vð Þ as

ŝ vð Þ
i;j ¼

c vð Þ
i;kþ1

�c vð Þ
i;j

kc vð Þ
i;kþ1

�
Xk

h¼1

c vð Þ
i;h

; j 6 k;

0; j > k:

8>>><>>>: ð8Þ

In order to get the complete graph S vð Þ, we perform a conversion

operation on bS vð Þ

S vð Þ ¼ R vð ÞTbS vð ÞR vð Þ; ð9Þ

where R vð Þ 2 R n�nvð Þ�n denotes the relation matrix as follows:

R vð Þ
i;j ¼ 1; iftheithinstanceof bX vð ÞisthejthoneofX vð Þ;

0; otherwise:

(
ð10Þ

Algorithm1: The iterative algorithm for solving (6).

Input: observed data X vð Þ v ¼ 1;2; . . . ;mð Þ with m views,
parameters k1; k2, number of clusters c.

Output: for v ¼ 1;2; . . . ;m, missing matrix E vð Þ,

representation U vð Þ, connection graph S vð Þ, and final
clustering results.

Initialization: E vð Þ;U vð Þ, and S vð Þ for v ¼ 1;2; . . . ;m.
1: for iterator ¼ 1 to T do

2: Optimize E vð Þ
n om

v¼1
according to Eq. (11).

3: Optimize U vð Þ� �m
v¼1 according to Eq. (13).

4: Optimize S vð Þ
n om

v¼1
according to Eq. (15).

5: end for

6: S ¼ 1
m

Pm
v¼1S

vð Þ, applying spectral clustering on S to obtain
optimal clustering results.
4.2. Update E vð Þ

The objective function L vð Þ
E is as follows:

k1Tr E vð Þ>L vð Þ
G E vð Þ

� �
þmin

E vð Þ
kE vð Þ � U vð ÞW vð Þ>k2F :

Using the optimal condition @L vð Þ
E =@E vð Þ ¼ 0, we obtain the fol-

lowing closed-form solution:

E vð Þ ¼ I þ k1L
vð Þ
G

� ��1
U vð ÞW vð Þ>: ð11Þ
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4.3. Update U vð Þ

We fix the other irrelevant variables and update U vð Þ as

min
U vð Þ

kX vð Þ þ E vð ÞW vð Þ � U vð Þk2F þ k2
2

Xnv
i;j¼1

kU:;i � U:;jk22si;j

¼ min
U vð Þ

kX vð Þ þ E vð ÞW vð Þ � U vð Þk2F þ k2Tr U vð ÞL vð Þ
S U vð Þ>

� �
:

ð12Þ

Similar to the update of E vð Þ, we calculate U vð Þ by

U vð Þ ¼ X vð Þ þ E vð ÞW vð Þ
� �

I þ k2L
vð Þ
S

� ��1
; ð13Þ

where L vð Þ
S ¼ DS vð Þ � S vð Þ.

4.4. Update S vð Þ

Fixing variables E vð Þ and U vð Þ, the optimization problem of S vð Þ is

min
S vð Þ

k2
2

Xn

i;j¼1

kU vð Þ
:;i � U vð Þ

:;j k22s vð Þ
i;j þ 1

2

Xm
w¼1

kS vð Þ � S wð Þk2F ;

s:t: s vð Þ
i;j > 0; s vð Þ

i;: 1 ¼ 1:

ð14Þ

It can be decoupled into multiple sub-problems to solve. Let

yi;j ¼ kU vð Þ
:;i � U vð Þ

:;j k22, and yi;: denotes the vector that the jth element
is yi;j. Then, the above formula is equivalent to

min
s vð Þ
i;:

s vð Þ
i;: �

X
w¼1;w–v

s wð Þ
i;:

m�1 � k2y
vð Þ
i;:

2 m�1ð Þ

0BB@
1CCA

��������
��������
2

2

;

s:t: s vð Þ
i;: 1 ¼ 1; s vð Þ

i;j > 0;

ð15Þ

which can be effectively solved by the iterative algorithm in [57].

4.5. Time complexity analysis

The main time cost of Algorithm1 depends on the calculation
of subproblems E (11), U (13), and S (15). Next, we analyze the
time complexity of three sub-problems. In Algorithm1, the

complexity of Steps 2 and 3 are O mdvnn̂þmd2
v n̂

� �
and

O mdvnn̂þmn3 þmdvn2
� �

, respectively, where
n̂ ¼ max n1;n2; . . . ;nmð Þ. According to [57], the complexity of Step
4 is O mn2 logn

� �
. Therefore, the total computational complexity

is O Tm dvnn̂þ n3 þ dvn2 þ d2
v n̂þ n2 logn

� �� �
, where T denotes the

number of iterations in Algorithm1. Since the dimension dv of
the feature is generally much smaller than the number n of data

instances, the total time complexity is O Tmn3
� �

.

5. Numerical experiments

We test the proposed CGMIMC for IMVC on four standard
multi-view datasets. We also evaluate the impact of the parame-
ters and analyze the convergence of the proposed algorithm.

5.1. Experimental settings

Datasets. Following the conventional study in multi-view
learning, in Table 2, we show the common multi-view datasets
to test the proposed method. The dataset Caltech101-7 contains
1,474 samples from 7 categories and the dataset Caltech101-20
contains 2,386 samples from 20 categories, where each sample is



Table 2
Characteristics of the used multi-view datasets.

Datasets instances views clusters

Caltech101-7 1,474 6 7
Caltech101-20 2,386 6 20
Flower17 1,360 7 17
NUS 2,000 5 31
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represented by 6 views. The dataset Flower171 contains 17 classes
of flower image data sets, each consisting of 80 images. Meanwhile,
seven different features are extracted as views. The dataset NUS2 is
an object recognition database. It includes 31 classes with 2,000
images, and each image has 5 views.

Compared algorithms. To compare with our proposed
CGMIMC, we consider one single view baseline, one multi-view
graph learning baseline, and four IMVC baselines as follows.

� BSV [58]: Best single view (BSV) uses the average instance of
each view to add the missing entries, and independently con-
ducts k-means for each view and displays the highest clustering
index.

� GMC [51]: The graph-based multi-view clustering (GMC) fuses
connection graphs of all views together to build a unified con-
nection graph. Again, missing data is populated with the aver-
age value of each view.

� MIC [23]: Multiple incomplete views clustering (MIC) via
weighted NMF is a feasible method for incomplete data cluster-
ing, which completes missing examples with the view-specific
average feature and then learns a common consensus matrix
with the co-regularization approach.

� DAIMC [20]: Based on weighted semi-nonnegative matrix fac-
torization, doubly aligned incomplete multi-view clustering
method (DAIMC) applies the given instance alignment informa-
tion to obtain the shared latent feature matrix of all views.

� IMSC [30]: Adaptively learning multiple incomplete graphs
using subspace learning, incomplete multi-view spectral clus-
tering (IMSC) approach applies the spectral clustering on the
generate a complete graph from whole incomplete graphs.

� PIC [59]: Spectral perturbation based incomplete multi-view
clustering (PIC) approach transfers the missing data problem
to similarity-value missing problem. It uses a similarity matrix
completion scheme to fill the missing similarity entries and
then performs clustering on the consensus matrix.

� EE-IMVC [52]: Based on multi-kernel k-means clustering, the
efficient and effective incomplete multi-view clustering (EE-
IMVC) approach iteratively updates the absent views and the
clustering result until convergence.

� AGC-IMC [53]: The adaptive graph completion-based incom-
plete multi-view clustering (AGC-IMC) method uses the similar-
ity information of other views to infer the missing view. In
particular, the consensus representation is learned by exploiting
shared information across all views.

Evaluation metrics. We adopt two evaluation indicators: the
Normalized Mutual Information (NMI) and the clustering Accuracy
(ACC) [26] for testing the clustering performance of our method.
ACC is the accuracy metric computed for the best matching permu-
tation between clustered labels and true labels. Based on the infor-
mation theoretic, NMI can balance the quality of the clustering
against the number of clusters. All indicators are distributed within
the range 0;1½ �. The higher the NMI and ACC values, the better the
1 http://www.robots.ox.ac.uk/vgg/data/flowers/.
2 https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-

WIDE.html.
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clustering performance. We run each experiment 10 times and
take the average value and the variance as the final clustering
result.

Parameters setting. In the following experiments, to con-
struct the incomplete multi-view test datasets, we randomly
remove the same probability samples of each view. Missing
probability R represents the probability of missing samples tak-
ing up all the samples and is set to 0:1;0:2;0:3, and 0:5, respec-
tively. When constructing the feature similarity matrix of the
view G, We use the cosine similarity to calculate the similarity
between the features and set k as 8 for the closest neighbors.
When initializing the connection diagram S, we set k as 10 for
each of its closest neighbors. For all comparison methods, the
parameters are well-tuned to obtain the best performance,
which is consistent with the values recommended in their corre-
sponding papers.

5.2. Experimental results

Tables 3 and 4 represent the average NMI and ACC values of
each comparison method and the proposed CGMIMC on tasted
datasets when the miss probability R is 0:1;0:2, and 0:3, respec-
tively. According to these results, we have the following
observations:

(1) From Tables 3 and 4, we observe that the single view clus-
tering method BSV shows poor performance in most cases
because it only used single view data without complementary
information. As a comparison, by effectively using the comple-
mentary information of multi-view data, other methods obtain
the better clustering results.
(2) Compared with the graph-based MVC method GMC and
NMF-based incomplete multi-views clustering method MIC,
the methods DAIMC, IMSC, PIC, and the proposed CGMIMC
achieve a great improvement in terms of NMI and ACC values.
The main reason is that missing entries are completed with
the average value of each view so that some important features
are destroyed. Thus, GMC and MIC are not effective in test data-
sets by simply filling the missing value with the mean value.
The proposed method CGMIMC infers the missing information
to satisfy the intrinsic structure of the view and effectively
reduces the impact of missing samples.
(3) Compared with the incomplete multi-view clustering meth-
ods DAIMC, IMSC, PIC, EE-IMVC, and AGC-IMC, the proposed
CGMIMC achieves a better performance in terms of NMI and
ACC values in most cases. The reason may lie in the fact that
these compared methods force a common representation of
multiple non-identical views, thereby leading to some view-
specific semantic information being lost. This demonstrates
that our CGMIMC can adequately utilize the complementary
multi-view information and preserve view-specific semantic
information to improve the clustering results.
(4) To test the robustness of CGMIMC, in Fig. 2, we show the
clustering performance of all compared methods on
Caltech101-7 dataset with the large missing rate R ¼ 0:5.
Clearly, the proposed CGMIMC achieves the best results in both
clustering metrics. Specifically, when the missing rate R ¼ 0:5,
compared with the second-best PIC method, our CGIMC
improves NMI and ACC by 7.84% and 3.53%, respectively. In
addition, although the GMC method is not designed for the
IMVC problem, the average strategy is better than many clus-
tering methods for incomplete data, which also shows that
the other comparison methods cannot solve the problem of
the missing views well. In summary, our CGMIMC still has sig-
nificant advantages over other methods with the increase of
missing data.

http://www.robots.ox.ac.uk/vgg/data/flowers/
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html


Table 3
The average NMIs (mean � variance) of different methods on four test datasets. The number in bold indicates the best result.

Datasets R BSV GMC MIC DAIMC IMSC PIC EE-IMVC AGC-IMC CGMIMC

Caltech101-7 0.1 0.3839 � 0.0427 0.5492 � 0.0000 0.4877 � 0.0340 0.4346 � 0.0279 0.4569 � 0.0150 0.5242 � 0.0142 0.3932 � 0.0000 0.5040 � 0.0196 0.6239 � 0.0000
0.2 0.3302 � 0.0352 0.2159 � 0.0000 0.4831 � 0.0372 0.4330 � 0.0198 0.4334 � 0.0008 0.5228 � 0.0022 0.4013 � 0.0000 0.5299 � 0.0000 0.6156 � 0.0000
0.3 0.2933 � 0.0314 0.5325 � 0.0000 0.4781 � 0.0371 0.4413 � 0.0223 0.4235 � 0.0044 0.5429 � 0.0130 0.3460 � 0.0000 0.5246 � 0.0000 0.6113 � 0.0000

Caltech101-20 0.1 0.4990 � 0.0194 0.3945 � 0.0000 0.5842 � 0.0140 0.5492 � 0.0144 0.5448 � 0.0121 0.5665 � 0.0065 0.5331 � 0.0000 0.5677 � 0.0001 0.6316 � 0.0000
0.2 0.4604 � 0.0128 0.5412 � 0.0000 0.5843 � 0.0141 0.5530 � 0.0158 0.5279 � 0.0055 0.5620 � 0.0080 0.5193 � 0.0000 0.4295 � 0.0004 0.6194 � 0.0000
0.3 0.4166 � 0.0032 0.4073 � 0.0000 0.5836 � 0.0178 0.5593 � 0.0131 0.5213 � 0.0088 0.5614 � 0.0069 0.4958 � 0.0000 0.5346 � 0.0000 0.6125 � 0.0000

Flower17 0.1 0.3745 � 0.0072 0.2644 � 0.0000 0.3299 � 0.0087 0.4884 � 0.0094 0.5268 � 0.0084 0.5175 � 0.012 0.5369 � 0.0000 0.4049 � 0.0000 0.5346 � 0.0000
0.2 0.3328 � 0.0071 0.2751 � 0.0000 0.3250 � 0.0038 0.4866 � 0.0146 0.4932 � 0.0021 0.5172 � 0.0059 0.5150 � 0.0000 0.3994 � 0.0000 0.5259 � 0.0000
0.3 0.2959 � 0.0057 0.1182 � 0.0000 0.3245 � 0.0054 0.4773 � 0.0100 0.4749 � 0.0039 0.4948 � 0.0042 0.4931 � 0.0000 0.3540 � 0.0000 0.5068 � 0.0000

NUS 0.1 0.1536 � 0.0045 0.0657 � 0.0000 0.0300 � 0.0090 0.1885 � 0.0050 0.1711 � 0.0034 0.1861 � 0.0035 0.1571 � 0.0000 0.1230 � 0.0005 0.1922 � 0.0000
0.2 0.1418 � 0.0019 0.0628 � 0.0000 0.0300 � 0.0043 0.1862 � 0.0059 0.1775 � 0.0030 0.1731 � 0.0029 0.1661 � 0.0000 0.0805 � 0.0000 0.1889 � 0.0000
0.3 0.1274 � 0.1194 0.0664 � 0.0000 0.0300 � 0.0070 0.1823 � 0.0055 0.1738 � 0.0046 0.1773 � 0.0028 0.1554 � 0.0000 0.0705 � 0.0000 0.1778 � 0.0000

Table 4
The average ACCs (mean � variance) of different methods on four test datasets. The number in bold indicates the best result.

Datasets R BSV GMC MIC DAIMC IMSC PIC EE-IMVC AGC-IMC CGMIMC

Caltech101-7 0.1 0.4904 � 0.0951 0.6791 � 0.0000 0.4259 � 0.0374 0.4242 � 0.0471 0.5505 � 0.0006 0.6513 � 0.0057 0.3548 � 0.0000 0.6583 � 0.0004 0.6839 � 0.0000
0.2 0.4282 � 0.0780 0.4294 � 0.0000 0.4079 � 0.0405 0.4303 � 0.0361 0.5516 � 0.0000 0.6443 � 0.0116 0.3514 � 0.0000 0.6628 � 0.0000 0.6858 � 0.0000
0.3 0.4019 � 0.0486 0.6757 � 0.0000 0.4024 � 0.0381 0.4256 � 0.0451 0.5464 � 0.0036 0.6526 � 0.0031 0.3602 � 0.0000 0.6546 � 0.0000 0.6850 � 0.0000

Caltech101-20 0.1 0.4046 � 0.0326 0.4384 � 0.0000 0.4156 � 0.0222 0.4451 � 0.0237 0.4590 � 0.0288 0.5380 � 0.0173 0.4434 � 0.0000 0.5165 � 0.0000 0.5578 � 0.0000
0.2 0.3460 � 0.0290 0.5591 � 0.0000 0.4065 � 0.0267 0.4539 � 0.0378 0.4520 � 0.0193 0.5333 � 0.0091 0.4464 � 0.0000 0.4844 � 0.0000 0.5595 � 0.0000
0.3 0.3247 � 0.0017 0.4317 � 0.0000 0.4047 � 0.0253 0.4672 � 0.0271 0.4559 � 0.0130 0.5436 � 0.0194 0.3982 � 0.0000 0.4812 � 0.0000 0.5523 � 0.0000

Flower17 0.1 0.3515 � 0.0070 0.2537 � 0.0000 0.2772 � 0.0086 0.4738 � 0.0118 0.5060 � 0.0131 0.5219 � 0.0256 0.5515 � 0.0000 0.3860 � 0.0000 0.5458 � 0.0000
0.2 0.3169 � 0.0080 0.2566 � 0.0000 0.2685 � 0.0104 0.4909 � 0.0146 0.4901 � 0.0020 0.5229 � 0.0250 0.5015 � 0.0000 0.3801 � 0.0000 0.5389 � 0.0000
0.3 0.2885 � 0.0075 0.1544 � 0.0000 0.2707 � 0.0055 0.4622 � 0.0118 0.4712 � 0.0037 0.5066 � 0.0160 0.5059 � 0.0000 0.3382 � 0.0000 0.5279 � 0.0000

NUS 0.1 0.1521 � 0.0029 0.1440 � 0.0000 0.1245 � 0.0066 0.1619 � 0.0050 0.1489 � 0.0036 0.1549 � 0.0045 0.1475 � 0.0000 0.1535 � 0.0000 0.1680 � 0.0000
0.2 0.1550 � 0.0040 0.1430 � 0.0000 0.1245 � 0.0080 0.1610 � 0.0039 0.1600 � 0.0025 0.1566 � 0.0050 0.1575 � 0.0000 0.1480 � 0.0000 0.1650 � 0.0000
0.3 0.1565 � 0.1419 0.1525 � 0.0000 0.1245 � 0.0073 0.1601 � 0.0052 0.1536 � 0.0059 0.1582 � 0.0038 0.1490 � 0.0000 0.1475 � 0.0000 0.1575 � 0.0000
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Fig. 2. The clustering comparison of different methods on the dataset Caltech101-7 with R ¼ 0:5.
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5.3. Convergence analysis

In theory, the original model (6) is not a joint convex problem
about E;U, and S. And the global optimal solution cannot be guar-
anteed. For the first and second sub-problems, the solutions of E
and U are closed-form solutions. The third sub-problem S is solved
by an efficient iterative algorithm. Therefore, in theory, the pro-
posed alternating iteration algorithm for solving CGMIMC will con-
verge to a locally optimal solution. Next, we study the numerical
convergence of our Algorithm1.

To show the convergence of the proposed algorithm numeri-
cally, taking Caltech101-7, Caltech101-20, and flower17 datasets
Fig. 3. The curves of variable loss changes versus iterations o

Fig. 4. The influences of the parameters

86
as examples, we show the variable loss changes curves in Fig. 3
(a) (R ¼ 0:1) and Fig. 3(b) (R ¼ 0:5). We observed that the loss
curves decrease rapidly (less than 10 iterations), then remain
steady with the increase of the iterations. This demonstrates that
the proposed algorithm is convergent numerically.

5.4. Parameters analysis

We test the influence of different parameter settings on the pro-
posed method. The trade-off parameters k1 and k2 are selected
from the range of 0:001;0:01;0:1;1;10;100f g. We test the influ-
ences of the parameters k1 and k2 on Caltech101-7 dataset with
n datasets Caltech101-7, Caltech101-20, and Flower17.

k1 and k2 for the proposed method.
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the missing rate R as 0.1. As shown in Fig. 4, we observe that the
proposed method CGMIMC is robust to the choice of k1. Although
the parameter k2 has a small impact on the clustering
metrics NMI and ACC, our method CGMIMC is also robust to the
different k2.

6. Conclusion

We propose an incomplete multi-view clustering method called
CGMIMC based on cross-view graph matching. Compared with
existing IMVC methods, CGMIMC has the following advantages:
1) CGMIMC optimizes the missing value to meet the intrinsic
structure of each view, thereby reducing the impact of missing
data on clustering. 2) CGMIMC innovatively transforms the view
representation into the graph connection representation while
maintaining invariability. 3) CGMIMC realizes the consensus of
multiple views through the cross-view graph matching strategy
with the preservation of view-specific semantic information. The
effectiveness and superiority of CGMIMC have been evaluated by
numerical comparison experiments on representative datasets. In
the future, more efficient and robust algorithms will be considered
for large-scale datasets. Other learning tasks including semi-
supervised and supervised learning are also within the scope of
the next research.
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[6] M. Brbić, I. Kopriva, Multi-view low-rank sparse subspace clustering, Pattern
Recognit. 73 (2018) 247–258.

[7] C. Tang, X.W. Liu, X.Z. Zhu, E. Zhu, L.Z. Luo, Z.G. and Wang, W. Gao, Cgd: Multi-
view clustering via cross-view graph diffusion, In Proceedings of the AAAI
Conference on Artificial Intelligence (2020) 5924–5931.

[8] C. Chen, Y. Wang, W.B. Hu, Z.B. Zheng, Robust multi-view k-means clustering
with outlier removal, Knowl. Based Syst. 210 (2020).
87
[9] X. Cai, F. Nie, H. Huang, Multi-view k-means clustering on big data, In
Proceedings of the International Joint Conference on Artificial Intelligence
(2013) 2598–2604.

[10] H. Wang, Y. Yang, B. Liu, H. Fujita, A study of graph-based system for multi-
view clustering, Knowl. Based Syst. 163 (2019) 1009–1019.

[11] J.P. Tan, Z.J. Yang, Y.Q. Cheng, J.L. Ye, B. Wang, Q.Y. Dai, Sragl-awcl: A two-step
multi-view clustering via sparse representation and adaptive weighted
cooperative learning, Pattern Recognit. 117 (2021).

[12] A. Kumar, P. Rai, H. Daume, Co-regularized multi-view spectral clustering, In
Proceedings of the Neural Information Processing Systems 24 (NIPS 2011)
(2011) 1413–1421.

[13] C. Chen, Y.Z. Li, H. Qian, Z.B. Zheng, Y.Q. Hu, Multi-view semi-supervised
learning for classification on dynamic networks, Knowl. Based Syst. 195
(2020).

[14] X. Tao, R. Wang, R. Chang, C. Li, R. Liu, J. Zhou, Spectral clustering algorithm
using density-sensitive distance measure with global and local consistencies,
Knowl. Based Syst. 170 (2019) 26–42.

[15] J. Yin, S.L. Sun, Incomplete multi-view clustering with cosine similarity,
Pattern Recognit. 123 (2022).

[16] H. Zhao, Z. Ding, Y. Fu, Multi-view clustering via deep matrix factorization, In
Proceedings of the AAAI Conference on Artificial Intelligence (2017) 2921–
2927.

[17] S. Huang, Z. Kang, Z. Xu, Self-weighted multi-view clustering with soft capped
norm, Knowl. Based Syst. 158 (2018) 1–8.

[18] J.L. Liu, S.H. Teng, L.K. Fei, W. Zhang, X.Z. Fang, Z.X. Zhang, N.Q. Wu, A novel
consensus learning approach to incomplete multi-view clustering, Pattern
Recognit. 115 (2021).

[19] X.W. Liu, M.M. Li, C. Tang, J.Y. Xia, J. Xiong, L. Liu, M. Kloft, E. Zhu, Efficient and
effective regularized incomplete multi-view clustering, IEEE Trans. Pattern
Anal. Mach. Intell. 43 (8) (2021) 2634–2646.

[20] M. Hu, S. Chen, Doubly aligned incomplete multi-view clustering, In
Proceedings of the International Joint Conference on Artificial Intelligence
(2018) 2262–2268.

[21] J. Wen, Z. Zhang, Y. Xu, Z.F. Zhong, Incomplete multi-view clustering via graph
regularized matrix factorization, In Proceedings of the European Conference on
Computer Vision Workshop (2018) 593–608.

[22] W.Z. Zhuge, C.P. Hou, X.W. Liu, H. Tao, D.Y. Yi, Simultaneous representation
learning and clustering for incomplete multi-view data, In Proceedings of the
International Joint Conference on Artificial Intelligence (2019) 4482–4488.

[23] W. Shao, L. He, S.Y. Philip, Multiple incomplete views clustering via weighted
nonnegative matrix factorization with l_2,1) regularization, Joint European
Conference on Machine Learning and Knowledge Discovery in Databases
(2015) 318–334.

[24] S. Bhadra, S. Kaski, J. Rousu, Multi-view kernel completion, Mach. Learn. 106
(5) (2017) 713–739.

[25] Q. Yin, S. Wu, L. Wang, Incomplete multi-view clustering via subspace
learning, In Proceedings of the ACM International on Conference on
Information and Knowledge Management (2015) 383–392.

[26] J. Wen, Z. Zhang, Y. Xu, B. Zhang, L. Fei, H. Liu, Unified embedding alignment
with missing views inferring for incomplete multi-view clustering, In
Proceedings of the AAAI Conference on Artificial Intelligence (2019) 5393–
5400.

[27] H. Zhao, H. Liu, Y. Fu, Incomplete multi-modal visual data grouping, In
Proceedings of the International Joint Conference on Artificial Intelligence
(2016) 2392–2398.

[28] M.L. Hu, S.C. Chen, One-pass incomplete multi-view clustering, In Proceedings
of the AAAI Conference on Artificial Intelligence (2019) 1–9.

[29] N. Rai, S. Negi, S. Chaudhury, O. Deshmukh, Partial multi-view clustering using
graph regularized NMF, In Proceedings of the International Conference on
Pattern Recognition (2016) 2192–2197.

[30] J. Wen, Y. Xu, H. Liu, Incomplete multiview spectral clustering with adaptive
graph learning, IEEE Trans. Cybern. 50 (4) (2018) 1418–1429.

[31] Y.H. Jia, H. Liu, J.H. Hou, Q.F. Zhang, Clustering ensemble meets low-rank
tensor approximation, In Proceedings of the AAAI Conference on Artificial
Intelligence (2021) 7970–7978.

[32] Y.B.Y. Jiang, Q.Q. Xu, Z.Y. Yang, X.C. Cao, Q.M. Huang, Dm2c: Deep mixed-
modal clustering, In Proceedings of the Neural Information Processing Systems
(2019) 5888–5892.

[33] Y.J. Lin, Y.B. Gou, Z.T. Liu, B.Y. Li, J.C. Lv, X. Peng, Completer: Incomplete multi-
view clustering via contrastive prediction, In Proceedings of the Conference on
Computer Vision and Pattern Recognition (2021) 11174–11183.

[34] Y.H. Yao, C.J. Wong, Interpretable clustering on dynamic graphs with recurrent
graph neural networks, In Proceedings of the AAAI Conference on Artificial
Intelligence (2021) 4608–4616.

[35] T. Hocking, J.P. Vert, F.R. Bach, A. Joulin, Clusterpath-an algorithm for
clustering using convex fusion penalties, In Proceedings of the International
Conference on International Conference on Machine Learning (2011) 745–752.

[36] S.A. Shah, V. Koltun, Robust continuous clustering, In Proceedings of the
National Academy of Sciences 114 (37) (2017) 9814–9819.

[37] D.D. Sun, D.S. Li, Z.L. Ding, X.Y. Zhang, J. Tang, Dual-decoder graph autoencoder
for unsupervised graph representation learning, Knowl. Based Syst. 234
(2021).

[38] E. Elhamifar, R. Vidal, Sparse subspace clustering: Algorithm, theory, and
applications, IEEE Trans. Pattern Anal. Mach. Intell. 35 (11) (2013) 2765–2781.

[39] G. Liu, H. Xu, J. Tang, Q. Liu, S. Yan, A deterministic analysis for LRR, IEEE Trans.
Pattern Anal. Mach. Intell. 38 (3) (2016) 417–430.

http://refhub.elsevier.com/S0925-2312(22)01264-4/h0010
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0010
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0025
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0025
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0025
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0030
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0030
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0040
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0040
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0050
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0050
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0055
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0055
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0055
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0065
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0065
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0065
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0070
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0070
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0070
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0075
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0075
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0085
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0085
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0090
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0090
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0090
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0095
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0095
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0095
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0115
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0115
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0115
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0115
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0115
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0120
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0120
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0150
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0150
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0185
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0185
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0185
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0190
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0190
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0195
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0195


J.-H. Yang, L.-L. Fu, C. Chen et al. Neurocomputing 515 (2023) 79–88
[40] X. Peng, Z. Yu, Z. Yi, H. Tang, Constructing the l_2)graph for robust subspace
learning and subspace clustering, IEEE Trans. Cybern. 47 (4) (2017) 1053–
1066.

[41] X. Peng, J. Feng, S. Xiao, W.Y. Yau, J.T. Zhou, S. Yang, Structured autoencoders
for subspace clustering, IEEE Trans. Image Process. 27 (10) (2018) 5076–5086.

[42] W.X. Tu, S.H. Zhou, X.W. Liu, X.F. Guo, Z.P. Cai, E. Zhu, J.R. Cheng, Deep fusion
clustering network, In Proceedings of the AAAI Conference on Artificial
Intelligence (2021) 9978–9987.

[43] K. Chaudhuri, S.M. Kakade, K. Livescu, K. Sridharan, Multi-view clustering via
canonical correlation analysis, In Proceedings of the Annual International
Conference on Machine Learning (2009) 129–136.

[44] C. Zhang, H. Fu, S. Liu, G. Liu, X. Gao, Low-rank tensor constrained multiview
subspace clustering, In Proceedings of the International Conference on
Computer Vision (2015) 1582–1590.

[45] Z. Kang, G. Shi, S. Huang, W. Chen, X. Pu, J.T. Zhou, Z. Xu, Multi-graph fusion for
multi-view spectral clustering, Knowl. Based Syst. 189 (2020).

[46] Y. Wang, W. Zhang, L. Wu, X. Lin, M. Fang, S. Pan, Iterative views agreement:
An iterative low-rank based structured optimization method to multi-view
spectral clustering, In Proceedings of the International Joint Conference on
Artificial Intelligence (2016) 2153–2159.

[47] R. Xia, Y. Pan, L. Du, J. Yin, Robust multi-view spectral clustering via low-rank
and sparse decomposition, In Proceedings of the AAAI Conference on Artificial
Intelligence (2014) 2149–2155.

[48] Y. Wang, L. Wu, X. Lin, J. Gao, Multiview spectral clustering via structured low-
rank matrix factorization, IEEE Trans. Neur. Net. Lear. 29 (10) (2018) 4833–
4843.

[49] Y. Wang, L. Wu, Beyond low-rank representations: Orthogonal clustering basis
reconstruction with optimized graph structure for multiview spectral
clustering, Neural Networks 103 (2018) 1–8.

[50] K. Zhan, F. Nie, J. Wang, Y. Yang, Multiview consensus graph clustering, IEEE
Trans. Image Process. 28 (3) (2019) 1261–1270.

[51] H. Wang, Y. Yang, B. Liu, GMC: Graph-based multi-view clustering, IEEE Trans.
Knowl. Data Eng. 32 (6) (2020) 1116–1129.

[52] X.W. Liu, X.Z. Zhu, M.M. Li, C. Tang, E. Zhu, J.P. Yin, W. Gao, Efficient and
effective incomplete multi-view clustering, In Proceedings of the AAAI
Conference on Artificial Intelligence (2019) 4392–4399.

[53] J. Wen, K. Yan, Z. Zhang, Y. Xu, J.Q. Wang, L.K. Fei, B. Zhang, Adaptive graph
completion based incomplete multi-view clustering, IEEE Trans. MultiMedia
23 (2021) 2493–2504.

[54] L.S. Li, Z.Q. Wan, H.B. He, Incomplete multi-view clustering with joint partition
and graph learning, IEEE Trans. Knowl. Data En. (2021), https://doi.org/
10.1109/TKDE.2021.3082470.

[55] U.V. Luxburg, A tutorial on spectral clustering, Stat. Comput. 17 (4) (2007)
395–416.

[56] F. Nie, X. Wang, M. Jordan, H. Huang, The constrained Laplacian rank algorithm
for graph-based clustering, In Proceedings of the AAAI Conference on Artificial
Intelligence (2016) 1969–1976.

[57] W. Wang, M. Carreira-Perpinán, Projection onto the probability simplex: An
efficient algorithm with a simple proof, and an application, arxiv preprint
arXiv:1309.1541.

[58] A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: Analysis and an
algorithm, In Proceedings of the International Conference on Neural
Information Processing Systems (2001) 849–856.

[59] H. Wang, L. Zong, B. Liu, Y. Yang, W. Zhou, Spectral perturbation meets
incomplete multi-view data, In Proceedings of the International Joint
Conference on Artificial Intelligence (2019) 3677–3683.

Jing-Hua Yang received the B.S. degree from the
University of Electronic Science and Technology of
China, Chengdu, China, in 2016. He is currently pursuing
the Ph.D. degree with the Faculty of Information Tech-
nology, Macau University of Science and Technology.
Her current research interests include data mining,
image processing, and artificial intelligence.
88
Lele Fu received his B.S. degree and M.E. degree from
the College of Mathematics and Computer Science,
Fuzhou University, Fuzhou, China in 2019 and 2022,
respectively. He is currently pursuing the Ph.D. degree
with the School of Systems Science and Engineering,
Sun Yat-sen University, Guangzhou, China. His current
research interests include machine learning and multi-
view learning.
Chuan Chen received the Ph.D. degree from the Hong
Kong Baptist University in 2016 and worked as a post-
doc researcher in the Department of Electrical Engi-
neering, KU Leuven. He is currently an Associate
Professor with the School of Computer Science and
Engineering, Sun Yat-Sen University. He published over
50 international journal and conference papers. His
research interests primarily centered around numerical
linear algebra, optimization and their applications in
machine learning.
Hong-Ning Dai is currently with Department of Com-
puting and Decision Sciences at Lingnan University,
Hong Kong as an associate professor. He obtained the
Ph.D. degree in Computer Science and Engineering from
Department of Computer Science and Engineering at the
Chinese University of Hong Kong. His current research
interests include the Internet of Things, big data, and
blockchain technology. He has served as associate edi-
tors/editors for IEEE Transactions on Industrial Infor-
matics, IEEE Systems Journal, IEEE Access, Ad Hoc
Networks, and Connection Science. He is also a senior
member of Association for Computing Machinery
(ACM).
Zibin Zheng received the Ph.D. degree from the Chinese
University of Hong Kong, in 2011. He is currently a
Professor at School of Data and Computer Science with
Sun Yat-sen University, China. He serves as Chairman of
the Software Engineering Department. He published
over 120 international journal and conference papers,
including 3 ESI highly-cited papers. According to Google
Scholar, his papers have more than 7000 citations, with
an H-index of 42. His research interests include block-
chain, services computing, software engineering, and
financial big data. He was a recipient of several awards,
including the Top 50 Influential Papers in Blockchain of

2018, the ACM SIGSOFT Distinguished Paper Award at ICSE2010, the Best Student
Paper Award at ICWS 2010. He served as BlockSysa’r19 and CollaborateComa’r16
General Co-Chair, SC2a’r19, ICIOTa’r18 and IoVa’r14 PC Co-Chair.

http://refhub.elsevier.com/S0925-2312(22)01264-4/h0200
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0200
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0200
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0205
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0205
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0225
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0225
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0240
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0240
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0240
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0245
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0245
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0245
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0250
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0250
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0255
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0255
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0265
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0265
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0265
https://doi.org/10.1109/TKDE.2021.3082470
https://doi.org/10.1109/TKDE.2021.3082470
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0275
http://refhub.elsevier.com/S0925-2312(22)01264-4/h0275

	Cross-view graph matching for incomplete multi-view clustering
	1 Introduction
	2 Related work
	2.1 Single-view clustering
	2.2 Complete multi-view clustering
	2.3 Incomplete multi-view clustering

	3 Proposed method
	3.1 View-specific consensus learning
	3.2 Graph learning
	3.3 Cross-view graph matching

	4 Optimization algorithm
	4.1 Initialize [$] {{\bi{S}}}^{\left(\gulliverv \right)}[$]
	4.2 Update [$] {E}^{\left(\gulliverv \right)}[$]
	4.3 Update [$]U {}^{\left(\gulliverv \right)}[$]
	4.4 Update [$] {S}^{\left(\gulliverv \right)}[$]
	4.5 Time complexity analysis

	5 Numerical experiments
	5.1 Experimental settings
	5.2 Experimental results
	5.3 Convergence analysis
	5.4 Parameters analysis

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


