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Among various multi-view clustering approaches, tensor-based multi-view subspace
clustering methods aim to explore the high-order correlations across varying views and
have achieved encouraging effects. Nevertheless, there are still some demerits in them:
(1) View-specific information hinders the mining of global consensus. (2) The local struc-
ture inside individual view lacks consideration. (3) Clustering results are not utilized to
reversely guide the low-rank tensor optimization. In order to tackle these drawbacks, we
propose a unified model termed as Low-rank Tensor Approximation with Local Structure
for Multi-view Intrinsic Subspace Clustering. Specifically, the proposed model learns mul-
tiple intrinsic subspace representations via the rank preserving decomposition, which is to
mitigate the impact of view-specific information on enhancing the global consistency.
Then, these intrinsic subspace representations are assembled into a 3-order target tensor
with tensor nuclear norm constraint. To preserve the consistent locality, we adopt the
manifold regularization to constrain each view when mapping into the intrinsic subspace.
Furthermore, since the learned label indicator matrix implicitly characterizes the cluster
structure, which is used to guide the optimization of the low-rank tensor representation.
Finally, abundant experiments on six real-word datasets demonstrate that the proposed
method is superior over other state-of-the-art clustering methods.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

Clustering is a traditional but important problem with a wide range of applications in pattern recognition, computer
vision, natural language processing, etc. With the advancement of multimedia and feature extraction technologies, multi-
view data emerge in large quantities. Compared to single-view data, multi-view data come from multiple feature levels,
which contain diverse and complementary information in different views. In order to efficiently count and analyze
multi-view data, multi-view clustering methods [1–4] have received increasing attention.

Subspace clustering [5,6] aims at grouping samples into multiple underlying subspaces. As an outstanding clustering
technology, it has gained much attention and been introduced into multi-view learning filed, thereby spawning plenty of
multi-view subspace clustering works. For example, Li et al. [7] flexibly constructed the underlying representation in a
ail.sysu.
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subspace, which was enforced to be close to multiple views. Zhang et al. [8] explored a latent subspace, wherein the under-
lying representation of multi-view data was reconstructed. Kang et al. [9] proposed an efficient anchor graph fusion for deal-
ing with large-scale datasets. Chen et al. [10] used the least squares regression to capture the grouping effect. The above
works learn discriminative subspace representations from the matrix level. As for multi-view representation learning,
exploring the correlations among views at the tensor level is a better option, this is mainly because it is conducive to pur-
suing the cross-view consistency by imposing low-rank constraint on the representation tensor.

In order to capture the high-order correlations among multiple views, tensor-based multi-view subspace clustering
methods have been further developed. Zhang et al. [11] aggregated multiple subspace representations into a 3-order tensor,
which was imposed with low-rank constraint by combining the nuclear norms of all matrices unfolded along each mode. Xie
et al. [12] leveraged tensor singular value decomposition (t-SVD) based tensor nuclear norm (TNN) to restore a low-rank self-
representation tensor. Gao et al. [13] proposed a weighted tensor nuclear norm based on t-SVD to preserve the low-rank
properties of representation tensor. Chen et al. [14] proposed a generalized nonconvex low-rank tensor approximation to
cope with multi-view subspace clustering problem. Although these tensor-based approaches have achieved promising
effects, they still suffer from issues that to be resolved. Firstly, different views represent different statistical properties
[15] and even contradict each other, the view-specific information is not conducive to reinforcing the global consistency,
which is usually ignored by these methods. Secondly, the global consistency sought by many tensor-based methods is cer-
tainly essential, however, the local structure [16] inside a single view has equally positive significance for the final clustering
results, while which has not been given enough attention. Finally, most tensor-based methods [11–14,17,18] first solve the
low-rank tensor representation, and then obtain the label indicator matrix via spectral clustering algorithm, which does not
utilize the correlation between the two items. Nevertheless, the fact is that the label indicator matrix implicitly characterizes
the cluster structure, which can be used as auxiliary supervised information to guide the learning of the low-rank tensor rep-
resentation. Also, the label indicator matrix tends to be optimal in the dynamic optimization.

In light of the above points, we propose a joint framework that can handle the three concerns at the same time. Con-
cretely, we perform the rank preserving decomposition on the initial self-representation matrices to factor out the intrinsic
subspace representations, which are assembled into a 3-order tensor to be optimized. Then, the t-SVD based TNN is used to
constrain the target tensor for enhancing the cross-view consensus and exploiting the high-order correlations of views. In
order to protect the local structure of data, the manifold regularization is imposed on each view, thereby allowing data points
that are closed in the original space to maintain this property in the intrinsic subspace. Moreover, for using clustering results
to reversely boost the learning of the low-rank tensor representation, the latter is optimized uniformly with the label indi-
cator matrix in the form of spectral embedding. In general, the contributions of this paper can be outlined as follows.

� Considering that different views have their own specific statistic properties that are not conducive to the enhancement of
global consistency, we adopt the rank preserving decomposition to learn intrinsic subspace representations from the ini-
tial subspace representations, thereby removing view-specific information and facilitating the pursuit of global
consistency.

� The refinement of local structure of data is beneficial to obtain encouraging clustering results. Therefore, we protect the
local structure of each view via the manifold regularization. Meanwhile, we use the clustering results to guide the learn-
ing of low-rank tensor representation, so as to obtain the optimal results of both in the optimization process.

� For effectively solving the model LTALS, we propose an iterative algorithm based on alternating direction method of mul-
tipliers algorithm (ADMM). Moreover, numerous experimental results on six real-world datasets verify the superiority of
the proposed method over compared algorithms.

The remainder of this paper is arranged as follows. Section 2 briefly reviews several mainstreammulti-view clustering meth-
ods. In Section 3, we elaborate the proposed LTALS and the optimization algorithm. Experimental results are analysed in Sec-
tion 4. Section 5 summarizes the paper.
2. Related Works

A variety of multi-view clustering methods are developed in recent years. Based on the focus of thesis and ease of our
narrative, they can be roughly divided into three categories: graph-based methods, subspace-based methods, and tensor-
based methods. A brief review is provided as follows.

Graph-based methods aim at refining a consistent similarity matrix of multiple graphs constructed from multi-source
features. For instance, Qiang et al. [19] proposed the fast multi-view discrete clustering based on anchor graphs, which
solved the spectral clustering problem in close to linear time. Yu et al. [20] proposed a fine-grained similarity fusion method
to integrate multiple affinity matrices. For addressing high-dimensional data and achieving effective multi-graph fusion, the
work [21] proposed a multi-view projected clustering approach, which learned the structured graph and adaptive weight
parameters. Given that the equality of affinity graph is critical for clustering task, the work [22] constructed a robust affinity
graph via hypergraph embedding and sparse regression.

Subspace-based methods are dedicated to exploiting a discriminative subspace representation, which also reflects the
relationship between data points. Self-representation technology is an important technology in subspace learning, based
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on which a large number of representative works have been generated. Works [23–26] aimed at leaning refined
self-representations through objective functions designed in sophisticated ways. In order to learn a robust affinity matrix,
Rong et al. [27] fused multiple subspaces into a common subspace on the Grassmann manifold. Lv et al. [28] proposed to
achieve information integration in a partition space to enhance the model robustness. Li et al. [29] attempted to tackle
high-dimensional and noisy data via energy preserving embedding in a latent subspace. Zhang et al. [30] proposed a one-
step framework to preserve the nonnegative property and reinforce the discrimination of affinity matrix.

For capturing high-order correlations between diverse feature representations, tensor-based methods have attracted the
attention of researchers. The works [11,12] are the earliest typical multi-view clustering works by introducing low-rank ten-
sor learning. Based on this theoretical framework, many interesting works were subsequently proposed. Faced with the chal-
lenge of various kinds of errors, Wang et al. [31] simultaneously adopted group l1-norm and l2;1-norm to constrain the error
tensor. Wu et al. [32] integrated graph learning and low-rank tensor learning into a unified process for obtaining the reliable
representation. For handling nonlinear structure of multiple features and distinguishing the contributions of diverse views,
Chen et al. [33] employed the kernel trick to perform feature space transformation and learned a adaptive weight for each
view. Zhang et al. [34] utilized a well-designed constraint matrix to guide the learning of subspace representation for fusing
prior information of data. Fu et al. [35] constructed a unified framework based on low-rank tensor optimization for multi-
view learning.
3. The Proposed Method

In this section, we introduce the Low-rank Tensor Approximation with Local Structure for Multi-view Intrinsic Subspace
Clustering and its iterative optimization process. The meanings of some relevant notations are explained in Table 1.

3.1. Problem Formulation

In order to pursue the global consistency and mine the high-order correlations between views, the objective functions of
the original tensor-based multi-view clustering models [11,12] are formulated as
min
Z;E

kZk� þ kkEk2;1
s:t: X vð Þ ¼ X vð ÞZ vð Þ þ E vð Þ;v ¼ 1;2; . . . ;m;

Z ¼ U Z 1ð Þ;Z 2ð Þ; . . . ;Z mð Þ
� �

;

E ¼ E 1ð Þ;E 2ð Þ; . . . ;E mð Þ
h i

;

ð1Þ
where k > 0 is a penalty hyperparameter, the operator U �ð Þ denotes the aggregation of multiple matrices into a 3-order ten-
sor. The model [11] selected the sum of nuclear norms (SNN) to capture the low-rank property while the model [12] chose
the t-SVD based TNN. The work [36] has demonstrated that the t-SVD based TNN is the tightest convex relaxation for l1-norm
of the tensor multirank. In view of this, we also adopt this tensor nuclear norm to encode the low-rank components of target
tensor in LTALS. To be specific, the t-SVD based TNN of a tensor T 2 Rn1�n2�n3 is defined as
kTk� ¼ jjbdiag Tf

� �jj� ¼ jjbdiag Df

� �jj�
¼

Xmin n1 ;n2f g

i¼1

Xn3
j¼1

jD jð Þ
f i; ið Þj; ð2Þ
where D
jð Þ

f is obtained by T
jð Þ
f ¼ U

jð Þ
f �D jð Þ

f �V jð ÞT
f . For more details, please refer to the appendix.
Table 1
Explanation of varying notations.

Notations Descriptions

a;A;A a vector, a matrix, a tensor

d vð Þ
;n the feature dimension of the v-th view, the number of samples

jjMjj2;1 jjMjj2;1 ¼ P
jjjM :; jð Þjj2

jjMjj1 jjMjj1 ¼ maxi
P

jjMij j
Tr �ð Þ the trace operator
jjAjjF jjAjjF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ijk jAijkj2

q
A ið Þ the i-th frontal slice of A

Af fast Fourier transformation (FFT) on A along the third dimension,
i.e., Af ¼ fft A; ½ �;3ð Þ. Moreover, A is rederived via the inverse

FFT, i.e., Af ¼ ifft A; ½ �;3ð Þ
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It is obvious that Eq. (1) directly imposes the tensor nuclear norm on the target tensor consisting of the original self-
representation matrices. However, different feature representations have different statistic properties [15], which may con-
tradict each other and increase the difficulty of pursing the global consistency. Therefore, the view-specific information of
each view should be partitioned out without damaging the intrinsic cluster structure before constructing the target tensor.
For this goal, we adopt the rank preserving decomposition to factorize the initial self-representation matrix Z vð Þ into the fol-
lowing form:
Z vð Þ ¼ P vð ÞS vð Þ

s:t: P vð ÞTP vð Þ ¼ I;
ð3Þ
where P vð Þ 2 Rn�n denotes a projection matrix and S vð Þ 2 Rn�n is the learned intrinsic subspace representation. Since P vð Þ is an

orthogonal matrix, the ranks of Z vð Þ and S vð Þ are equal, thereby retaining the clustering properties, while P vð Þ contains view-

specific information. Then, we use S vð Þ
n om

v¼1
instead of Z vð Þ

n om

v¼1
to construct the target tensor S.

According to [37], if two data points are close to each other in the original space, they still maintain this property in the

new low-dimensional space. Following this assumption, we think that if two original samples x vð Þ
i and x vð Þ

j are close, then the

corresponding s vð Þ
i and s vð Þ

j in the intrinsic subspace should be similar. Thus, we have the following manifold regularization:
X
i

X
j

jjs vð Þ
i � s vð Þ

j jj22W vð Þ
ij ¼ 1

2
Tr S vð ÞL vð ÞS vð ÞT
� �

; ð4Þ
where W vð Þ
ij represents the similarity between x vð Þ

i and x vð Þ
j and is computed via the Gaussian kernel function with k-nearest

neighbors. L vð Þ is the Laplacian matrix of the v-th view, which is calculated by L vð Þ ¼ D vð Þ �W vð Þ. Specifically, D vð Þ is a diagonal

matrix and defined as D vð Þ
ii ¼ P

jW
vð Þ
ij .

After obtaining the low-rank tensor Z, most tensor-based methods solve the final affinity matrix via
1
m

Pm
v¼1 Z vð Þ

��� ���þ jZ vð ÞT j
� �

=2, which is used as the input of spectral clustering algorithm to get the label indicator matrix. It

can be known that the learning of the low-rank tensor representation and label indicator matrix is two independent pro-
cesses, so that the cluster structure information contained in the latter is not employed in the optimization process. There-
fore, we want to make up for this shortcoming and make the both tend to optimality in a unified optimization process. To
tackle this issue, we propose the following formula:
min
F

Xm
v¼1

Xn
i¼1

Xn
j¼1

jjf i � f jjj22S vð Þ
ij ¼ min

F

Xm
v¼1

Tr FTL vð Þ
S vð ÞF

� �
s:t: FTF ¼ I;

ð5Þ
where f i and f j represent the i-th and j-th row of F, respectively. The affinity S vð Þ
ij between the i-th and j-th sample is obtained

by �S
vð Þ
ij ¼ Sij þ Sji

� �
=2. Laplacian matrix L vð Þ

S vð Þ is defined as L vð Þ
S vð Þ ¼ D vð Þ � S vð Þ, and D vð Þ

ii ¼ P
jS

vð Þ. F 2 Rn�c is the learned label indi-

cator matrix. The motivation behind Eq. (5) is that when F is obtained by performing eigenvector decomposition onPm
v¼1L

vð Þ
S vð Þ , we want to use F to promote the optimization of S vð Þ

n om

v¼1
(i.e., the tensor S) in reverse. According to graph

embedding theory [37], if the distance between the label indicator vector f i and f j is too large, then the values of the corre-

sponding S vð Þ
ij

n om

v¼1
should be smaller, otherwise tend to be larger. Finally, in light of the above discussions, we formulate the

final objective function as the following form:
min
S;Z vð Þ ;E;F

kSk� þ kkEk2;1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Low�rank tensor learning

þ b
Xm
v¼1

Tr S vð ÞL vð ÞS vð ÞT
� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Local manifold

þ a
Xm
v¼1

Tr FTL vð Þ
S vð ÞF

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Spectral embedding

s:t: X vð Þ ¼ X vð ÞZ vð Þ þ E vð Þ;Z vð Þ ¼ P vð ÞS vð Þ;

P vð ÞTP vð Þ ¼ I;FTF ¼ I;

S ¼ U S 1ð Þ; S 2ð Þ; . . . ; S mð Þ
� �

;

E ¼ E 1ð Þ;E 2ð Þ; . . . ;E mð Þ
h i

;

ð6Þ
where k > 0; b > 0, and a > 0 are three penalty hyperparameters. When the iterative optimization process is complete, the
global unique F can be gained, on which the kmeans algorithm is used to get the clustering results. Fig. 1 presents the overall
idea of the proposed LTALS.
880



Fig. 1. The overall framework of the proposed LTALS. The rank preserving decomposition is performed on the original self-representation matrices

Z vð Þ
n om

v¼1
to obtain the intrinsic subspace representations S vð Þ

n om

v¼1
, which consist of the target tensorS. The local structure of each view is preserved while

optimizing the low-rank tensor fS. Furthermore, the label indicator matrix F as the auxiliary supervised information is used to guide the optimization of

low-rank tensor fS, which are in a process of mutual promoting optimization.
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3.2. Optimization Process

Eq. (6) can be solved by ADMM, whose augmented Lagrangian function is written as
F Z vð Þ
n om

v¼1
; E vð Þ
n om

v¼1
;H; S vð Þ

n om

v¼1
; P vð Þ
n om

v¼1
;F

� �
¼ kHk� þ kkEk2;1 þ b

Xm
v¼1

Tr S vð ÞL vð ÞS vð ÞT
� �

þ a
Xm
v¼1

Tr FTL vð Þ
S vð ÞF

� �

þ
Xm
v¼1

l
2 jjX vð Þ � X vð ÞZ vð Þ � E vð Þ þ J vð Þ

l k2F
� �

þ
Xm
v¼1

q
2 jjZ vð Þ � P vð ÞS vð Þ þ M vð Þ

q jj2F
� �

þ q
2 kS�Hþ K

q k2F ;

ð7Þ
whereH is an auxiliary variable and we haveS ¼ H; J vð Þ
n om

v¼1
; M vð Þ
n om

v¼1
, andK are Lagrange multipliers, l and q are pen-

alty parameters. The details of updating rules for each variable based on ADMM are described below.
(1) Update Z vð Þ: Since each Z vð Þ is solved in the same way, it is sufficient to focus on the solution of only one of them.

When fixing other unrelated items, the Z vð Þ subproblem becomes
min
Z vð Þ

l
2
jjX vð Þ � X vð ÞZ vð Þ � E vð Þ þ J vð Þ

l
jj2F þ

q
2
jjZ vð Þ � P vð ÞS vð Þ þM vð Þ

q
jj2F : ð8Þ
By taking the partial derivative of Z vð Þ and setting the value to zero, we get
Z vð Þ ¼ lX vð ÞTX vð Þ þ qI
� ��1

lX vð ÞTX vð Þ � lX vð ÞTE vð Þ þ X vð ÞT J vð Þ þ qP vð ÞS vð Þ �M vð Þ
� �

: ð9Þ
(2) Update S vð Þ: For optimizing S vð Þ, tensorsS;H, andK are decomposed into matrix forms, i.e., S vð Þ
n om

v¼1
; H vð Þ
n om

v¼1
, and

K vð Þ
n om

v¼1
. Focusing only on the solution of one of S vð Þ

n om

v¼1
and retaining the terms associated with S vð Þ; S vð Þ is solved by
min
S vð Þ

bTr S vð ÞL vð ÞS vð ÞT
� �

þ aTr FTL vð Þ
S vð ÞF

� �
þ q

2
jjZ vð Þ � P vð ÞS vð Þ þM vð Þ

q
jj2F þ

q
2
jjS vð Þ �H vð Þ þ K vð Þ

q
jj2F ; ð10Þ
by setting the partial derivatives of Eq. (10) with respect to S vð Þ to zero, the following formula can be gained
qP vð ÞTP vð Þ þ qI
� �

S vð Þ þ S vð Þ bL vð ÞT þ bL vð Þ
� �

¼ qP vð ÞTZ vð Þ þ P vð ÞTM vð Þ þ qH vð Þ � K vð Þ þ aFFT ; ð11Þ
which satisfies the form of Sylvester equation AS vð Þ þ S vð ÞB ¼ C. Thus, we can update S vð Þ by the off-the-shelf solver [38].

(3) Update P vð Þ: Fixing Z vð Þ
n om

v¼1
; E vð Þ
n om

v¼1
;H; S vð Þ

n om

v¼1
, and F, we have
881
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min
P vð Þ

q
2 jjZ vð Þ � P vð ÞS vð Þ þ M vð Þ

q jj2F ¼ min
P vð Þ

q
2 jj Z vð Þ þ M vð Þ

q

� �
� P vð ÞS vð Þjj2F

s:t: P vð ÞTP vð Þ ¼ I:
ð12Þ
According to [39], the updating formula of P vð Þ can be written as
P vð Þ ¼ U vð ÞV vð ÞT ; ð13Þ
where the solutions of U vð Þ and V vð Þ can be obtained by SVD implemented on the matrix Z vð Þ þ 1
qM

vð Þ
� �

S vð ÞT :
Z vð Þ þ 1
q
M vð Þ

	 

S vð ÞT ¼ U vð ÞR vð ÞV vð ÞT : ð14Þ
(4) Update E: Keeping the relevant terms about E, the problem is transformed into the following form
min
E

kkEk2;1 þ
Xm
v¼1

l
2 jjX vð Þ � X vð ÞZ vð Þ � E vð Þ þ J vð Þ

l k2F
� �

¼ min
E

kjjEjj2;1 þ l
2

Xm
v¼1

jjE vð Þ � X vð Þ � X vð ÞZ vð Þ þ J vð Þ
l

� �
k2F

¼ min
E

kjjEjj2;1 þ l
2 jjE� Bjj2F ;

ð15Þ
where B ¼ B 1ð Þ;B 2ð Þ; � � � ;B mð Þ
h i

and B vð Þ ¼ X vð Þ � X vð ÞZ vð Þ þ 1
l J

vð Þ. According to [6], E is computed by
E�
:;j ¼

jjB:;j jj2�k
l

kB:;j jj2 B:;j; B:;j

�� ��
2 > k

l

0; otherwise:

8<
: ð16Þ
(5) Update H: Retaining the items related of H, we obtain the following problem
¼ min
H

jjHjj� þ q
2 jjS�Hþ K

q jj2F
¼ min

H
jjHjj� þ q

2 jjH� Sþ K
q

� �
jj2F :

ð17Þ
For effectively optimizing the subproblem, we rotate the size of intrinsic subspace tensor representation H from n� n�m
to n�m� n following [12], Fig. 2 presents how tensor rotation is performed. We can see that the low-rank properties are
preserved across views after the rotation operation, which helps to strengthen the global consistency. Moreover, the com-
putational cost can be greatly decreased by the rotation operation, which has been verified in [12]. Following [40], we get
the updating approach of H by the tensor tubal-shrinkage operator
H� ¼ U �Gm=q Dð Þ �VT ; ð18Þ

where Gm=q Dð Þ ¼ D � Q. Q is an f-diagonal tensor and its diagonal element of k-th frontal slice is calculated bybQ i; i; kð Þ ¼ max 1� m=q

D i;i;kð Þ ;0
n o

.

(6) Update F: When Z vð Þ
n om

v¼1
; E vð Þ
n om

v¼1
;H; S vð Þ

n om

v¼1
, and P vð Þ

n om

v¼1
are fixed, we have
Fig. 2. The illustration of tensor rotation.
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min
F

Xm
v¼1

Tr FTL vð Þ
S vð ÞF

� �
¼ min

F
Tr FTLF
� �

s:t: FTF ¼ I;

ð19Þ
where L ¼ Pm
v¼1L

vð Þ
S vð Þ . The updated F� is composed of the eigenvectors corresponding to the first c smallest eigenvalues of L.

(7) Update the Lagrangian multipliers J vð Þ;M vð Þ;K, and penalty parameters l;q:
J vð Þ� ¼ J vð Þ þ l X vð Þ � X vð ÞZ vð Þ � E vð Þ
� �

;

M vð Þ� ¼ M vð Þ þ q Z vð Þ � P vð ÞS vð Þ
� �

;

K� ¼ Kþ q Z�Kð Þ;
l� ¼ min x � l;lmax

� �
;

q� ¼ min x � q;qmaxð Þ:

ð20Þ
We summarize the main steps of the proposed LTALS in Algorithm1. For Algorithm1, the computational complexity lies

mainly in the updating of S vð Þ
n om

v¼1
; P vð Þ
n om

v¼1
;E;H, and F. Specifically, updating S vð Þ

n om

v¼1
via solving Sylvester equation

needs O mn3
� �

. SVD operation is adopted when updating P vð Þ
n om

v¼1
, so it takes O mn3

� �
. Solving the subproblem of E costs

O mn2
� �

. Due to using FFT, inverse FFT, and SVD operations when optimizing H, it takes O m2n2 þmn2log nð Þ� �
. For solving

F;O cn2
� �

is costed. In general, the computational complexity of Algorithm1 is O t mn3 þmn2log nð Þ þ mþm2 þ c
� �

n2
� �� �

,
where t is the number of iterations.

Algorithm1: Low-rank Tensor Approximation with Local Structure for Multi-view Intrinsic Subspace Clustering

Input: Multiple features X mð Þ
n om

v¼1
;X vð Þ 2 Rd vð Þ�n; k; b;a, and number of clusters c.

Output: Label indicator matrix F.

1: Initialize S0 ¼ H0 ¼ K0 ¼ 0;E0 ¼ 0; J vð Þ
0 ¼ 0;M vð Þ

0 ¼ 0;x ¼ 2; e ¼ 10�6;l0;q0;lmax ¼ qmax ¼ 1010; k ¼ 0.
2: whilenot convergentdo
3: for v = 1 : m do

4: Update Z vð Þ
kþ1 by Eq. (9);

5: Update S vð Þ
kþ1 by Eq. (11);

6: Update P vð Þ
kþ1 by Eq. (13);

7: end for
8: Update Ekþ1 by Eq. (16);
9: Update Hkþ1 by Eq. (18);
10: Update Fkþ1 by Eq. (19);

11: Update J vð Þ
kþ1;M

vð Þ
kþ1;Kkþ1;lkþ1, and qkþ1 by Eq. (20);

12: Check the convergence conditions:

jjX vð Þ � X vð ÞZ vð Þ
kþ1 � E vð Þ

kþ1jj1 6 e,

jjS vð Þ
kþ1 �H vð Þ

kþ1jj1 6 e.
13: k ¼ kþ 1;
14: end while 15: return Matrix F;
16: Obtain the data labels by performing the kmeans algorithm on F.
4. Experiments

4.1. Datasets

Six challenging real-world datasets are selected to test the performance of the proposed LTALS, whose information is
described below. Moreover, Table 2 also presents detailed statistics of them.

BBCnews 1 contains 685 news documents consisted of 5 themes, including entertainmentn, sport, business, politics, and
technology. Every sample has four kinds of feature representations.
://mlg.ucd.ie/datasets/bbc.html
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Table 2
Statistics of six datasets.

Feature type BBCnews Caltech NUS-WIDE UCI WikipediaArticles Youtube

1 View1 (4569) Gabor (48) CH (65) PIX (240) View1 (128) CH (2000)
2 View2 (4633) WM (40) CM (226) FOU (76) View2 (10) HME (1024)
3 View3 (4665) CENT (254) CORR (145) MOR (6) - HOG (64)
4 View4 (4684) HOG (1984) ED (74) - - MFCC (512)
5 - GIST (512) WT (129) - - VS (64)
6 - LBP (928) - - - SS (647)

Samples 685 2386 2000 2000 693 2000
Clusters 5 20 31 10 10 10
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Caltech 2 is a collection of object images. A total of 2386 images of 20 classes are selected to form the experimental dataset,
and each image has six features: Gabor feature, WM feature, CENT feature, HOG feature, GIST feature, and LBP feature.

NUS-WIDE 3 contains 2000 web images that are collected from 31 classes, each image is represented by five kinds of fea-
tures: CH feature, CM feature, CORR feature, ED feature, and WT feature.

UCI [41] is comprised of 2000 digit images ranging in [0, 9]. There are three feature representations in this dataset: PIX
feature, FOU feature, and MOR feature.

WikipediaArticles 4 contains 693 documents divided into 10 categories. Each document is represented by two feature
representations.

Youtube 5 is a video dataset with 2000 samples of 10 categories, and each sample is represented by six features, including
CH feature, HME feature, HOG feature, MFCC feature, VS feature, and SS feature.

4.2. Compared Methods

In experiments, a classical clustering algorithm and nine multi-view clustering methods are compared with the proposed
method LTALS, we briefly introduce them below.

SPCbest implemented standard spectral clustering algorithm on the most informative view to obtain the optimal results.
MCGC [42] learned a consistent graph via maximizing agreement among views, whose Laplacian matrix was imposed

with rank constraint.
LMVSC [9] proposed an efficient anchor graph fusion method for dealing with large-scale datasets.
MCLES [43] learned the global structure and the label indicator matrix in a latent embedding space.
LTMSC [11] adopted the sum of nuclear norms (SNN) to constrain the self-representation tensor.
t-SVD-MSC [12] leveraged t-SVD based TNN to capture the high-order correlations between different views.
ETLMSC [17] learned a purity transition probability tensor, then the spectral clustering by Markov chain was used to

obtain the clustering results.
TISRL [18] imposed t-SVD based TNN on the intrinsic representations learned from subspace representations of all views.
HLR-M2VS [44] considered the nonlinear subspace representation problem and imposed the hyper-Laplacian regulariza-

tion on the target tensor.
CGL [45] integrated the low-rank tensor optimization and spectral embedding into a joint learning process to explore a

discriminative label indicator matrix.

4.3. Evaluation Metrics

For quantifying the performance of varying clustering algorithms, the following mainstream evaluation metrics are
employed: clustering accuracy (ACC), normalized mutual information (NMI), purity, adjusted rank index (ARI), F-score,
and precision. For ARI, its value varies in [-1, 1]. For the other metrics, their values range in [0, 1]. The lager values indicate
the better performance. Moreover, for observing the statistic significance of comparison clustering results, we perform t-test
to compute the p-value using the proposed LTALS’s experimental results of ten runs against that of its closest competitor for
each metric. The smaller the p-value, the more it indicates the superiority of the proposed method.

4.4. Experimental Results

Considering the effect of algorithm stability, each experiment is run ten times on Matlab 2018b installed on a PC with
Intel Core i5-9500 CPU @ 3.00 GHz and 24G RAM, we record the means and variances. All clustering results on six datasets
2 http://www.vision.caltech.edu/Image_ Datasets/Caltech101
3 http://lms.comp.nus.edu.sg/research/NUS-WIDE.html
4 http://lig-membres.imag.fr/grimal/data.html
5 http://archive.ics.uci.edu/ml/datasets
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are presented in Tables 3–8. The numerical results are bolded and the suboptimal results are underlined. We have some sig-
nificant observations from these statistics.

First of all, most of multi-view approaches outperform the single-viewmethod SPCbest. The main reason is that multi-view
approaches can exploit and utilize the hidden complementary information in multi-view data, thus improving the clustering
effects. Although SPCbest uses the data with the most discriminative features from multiple views, it ultimately fails to
achieve the best results because of the information monotonicity of a single view. Secondly, the tensor-based approaches
generally perform well, which aggregate the affinity matrices of all views into a 3-order tensor and attempt to recover
the low-rank part. The final low-rank representations take into account the consistency among multiple views and mine
the complementary information in them, thus obtaining discriminative data information and achieving good clustering per-
formance. Moreover, it can be seen that the results of LTMSC are less favorable than other tensor-based methods, mainly
because the former uses SNN to preserve low-rank properties, while the latter adopts the t-SVD based TNN. Thirdly, the pro-
posed LTALS achieves priority on all datasets. Particularly, LTALS gains excellent results on BBCnews dataset with approxi-
mately 0.990 for each metric, near perfect performance are also achieved on UCI dataset. As for the rest of datasets,
Table 3
Comparison of experimental results on BBCnews dataset.

Methods ACC NMI Purity ARI F-score Precision

SPCbest 0.438 ± 0.002 0.295 ± 0.001 0.548 ± 0.001 0.204 ± 0.001 0.399 ± 0.000 0.382 ± 0.002
MCGC 0.350 ± 0.000 0.039 ± 0.000 0.366 ± 0.000 0.001 ± 0.000 0.373 ± 0.000 0.235 ± 0.000
LMVSC 0.588 ± 0.000 0.503 ± 0.000 0.737 ± 0.000 0.417 ± 0.000 0.546 ± 0.000 0.579 ± 0.000
MCLES 0.706 ± 0.012 0.482 ± 0.017 0.706 ± 0.012 0.474 ± 0.032 0.626 ± 0.021 0.508 ± 0.024
LTMSC 0.579 ± 0.001 0.424 ± 0.006 0.632 ± 0.003 0.401 ± 0.003 0.574 ± 0.003 0.524 ± 0.002

t-SVD-MSC 0.958 ± 0.000 0.866 ± 0.000 0.958 ± 0.000 0.900 ± 0.000 0.923 ± 0.000 0.925 ± 0.000
ETLMSC 0.953 ± 0.005 0.889 ± 0.006 0.953 ± 0.005 0.893 ± 0.010 0.917 ± 0.008 0.949 ± 0.005
TISRL 0.902 ± 0.000 0.785 ± 0.000 0.902 ± 0.000 0.805 ± 0.000 0.849 ± 0.000 0.879 ± 0.000

HLR-M2VS 0.959 ± 0.000 0.875 ± 0.000 0.959 ± 0.000 0.903 ± 0.000 0.926 ± 0.000 0.922 ± 0.000

CGL 0.924 ± 0.000 0.842 ± 0.000 0.924 ± 0.000 0.861 ± 0.000 0.893 ± 0.000 0.907 ± 0.000
LTALS 0.997 ± 0.000 0.988 ± 0.000 0.997 ± 0.000 0.994 ± 0.000 0.995 ± 0.000 0.996 ± 0.000
p-value 1.811e-42 1.601e-20 5.223e-42 1.097e-42 2.251e-42 9.961e-16

Table 4
Comparison of experimental results on Caltech dataset.

Methods ACC NMI Purity ARI F-score Precision

SPCbest 0.424 ± 0.010 0.540 ± 0.006 0.762 ± 0.008 0.310 ± 0.007 0.367 ± 0.007 0.719 ± 0.011
MCGC 0.537 ± 0.000 0.586 ± 0.000 0.721 ± 0.000 0.392 ± 0.000 0.480 ± 0.000 0.541 ± 0.000
LMVSC 0.505 ± 0.000 0.579 ± 0.000 0.774 ± 0.000 0.390 ± 0.000 0.458 ± 0.000 0.672 ± 0.000
MCLES 0.452 ± 0.015 0.595 ± 0.029 0.731 ± 0.000 0.226 ± 0.031 0.333 ± 0.023 0.392 ± 0.017
LTMSC 0.529 ± 0.047 0.598 ± 0.021 0.789 ± 0.019 0.419 ± 0.050 0.476 ± 0.049 0.788 ± 0.036

t-SVD-MSC 0.613 ± 0.029 0.722 ± 0.010 0.702 ± 0.021 0.486 ± 0.032 0.537 ± 0.031 0.385 ± 0.029

ETLMSC 0.476 ± 0.037 0.671 ± 0.022 0.841 ± 0.020 0.362 ± 0.030 0.415 ± 0.027 0.814 ± 0.042
TISRL 0.553 ± 0.035 0.719 ± 0.017 0.829 ± 0.013 0.426 ± 0.034 0.476 ± 0.033 0.803 ± 0.027

HLR-M2VS 0.564 ± 0.032 0.653 ± 0.012 0.826 ± 0.010 0.458 ± 0.034 0.512 ± 0.033 0.834 ± 0.020

CGL 0.608 ± 0.020 0.709 ± 0.007 0.861 ± 0.006 0.509 ± 0.015 0.560 ± 0.014 0.869 ± 0.017
LTALS 0.633 ± 0.023 0.758 ± 0.020 0.899 ± 0.012 0.548 ± 0.019 0.598 ± 0.014 0.883 ± 0.015
p-value 8.173e-3 1.323e-7 3.870e-10 7.767e-3 1.230e-2 1.401e-5

Table 5
Comparison of experimental results on NUS-WIDE dataset.

Methods ACC NMI Purity ARI F-score Precision

SPCbest 0.120 ± 0.006 0.142 ± 0.004 0.206 ± 0.006 0.023 ± 0.003 0.066 ± 0.003 0.090 ± 0.003
MCGC 0.151 ± 0.000 0.159 ± 0.000 0.216 ± 0.000 0.033 ± 0.000 0.092 ± 0.000 0.089 ± 0.000
LMVSC 0.143 ± 0.000 0.159 ± 0.000 0.224 ± 0.000 0.036 ± 0.000 0.077 ± 0.000 0.107 ± 0.000
MCLES 0.169 ± 0.005 0.152 ± 0.003 0.233 ± 0.005 0.039 ± 0.002 0.095 ± 0.002 0.107 ± 0.005
LTMSC 0.147 ± 0.001 0.160 ± 0.003 0.228 ± 0.002 0.035 ± 0.001 0.078 ± 0.002 0.104 ± 0.001

t-SVD-MSC 0.139 ± 0.004 0.163 ± 0.003 0.231 ± 0.003 0.034 ± 0.003 0.077 ± 0.003 0.101 ± 0.003
ETLMSC 0.131 ± 0.005 0.150 ± 0.006 0.234 ± 0.006 0.032 ± 0.004 0.073 ± 0.004 0.102 ± 0.005
TISRL 0.139 ± 0.000 0.165 ± 0.000 0.234 ± 0.000 0.033 ± 0.000 0.076 ± 0.000 0.101 ± 0.000

HLR-M2VS 0.142 ± 0.000 0.164 ± 0.000 0.235 ± 0.000 0.036 ± 0.000 0.078 ± 0.000 0.105 ± 0.000

CGL 0.144 ± 0.004 0.175 ± 0.003 0.239 ± 0.003 0.038 ± 0.002 0.080 ± 0.002 0.109 ± 0.003

LTALS 0.202 ± 0.004 0.084 ± 0.003 0.210 ± 0.004 0.042 ± 0.004 0.143 ± 0.002 0.080 ± 0.003
p-value 4.360e-14 1.349e-7 3.842e-7 3.020e-1 3.386e-11 3.338e-1

885



Table 6
Comparison of experimental results on UCI dataset.

Methods ACC NMI Purity ARI F-score Precision

SPCbest 0.714 ± 0.000 0.649 ± 0.000 0.714 ± 0.000 0.552 ± 0.000 0.596 ± 0.000 0.595 ± 0.000
MCGC 0.836 ± 0.000 0.791 ± 0.000 0.836 ± 0.000 0.732 ± 0.000 0.759 ± 0.000 0.750 ± 0.000
LMVSC 0.825 ± 0.000 0.731 ± 0.000 0.825 ± 0.000 0.662 ± 0.000 0.696 ± 0.000 0.690 ± 0.000
MCLES 0.931 ± 0.012 0.868 ± 0.013 0.931 ± 0.017 0.856 ± 0.011 0.871 ± 0.015 0.869 ± 0.012
LTMSC 0.798 ± 0.009 0.767 ± 0.010 0.815 ± 0.008 0.718 ± 0.014 0.746 ± 0.013 0.733 ± 0.012

t-SVD-MSC 0.955 ± 0.000 0.932 ± 0.000 0.955 ± 0.000 0.924 ± 0.000 0.932 ± 0.000 0.930 ± 0.000
ETLMSC 0.926 ± 0.036 0.923 ± 0.030 0.936 ± 0.030 0.900 ± 0.039 0.911 ± 0.032 0.889 ± 0.040
TISRL 0.953 ± 0.000 0.931 ± 0.000 0.953 ± 0.000 0.912 ± 0.000 0.921 ± 0.000 0.920 ± 0.000

HLR-M2VS 0.856 ± 0.001 0.870 ± 0.001 0.862 ± 0.001 0.819 ± 0.001 0.837 ± 0.001 0.820 ± 0.004

CGL 0.849 ± 0.017 0.931 ± 0.016 0.891 ± 0.018 0.856 ± 0.028 0.871 ± 0.025 0.813 ± 0.028
LTALS 0.995 ± 0.000 0.987 ± 0.000 0.995 ± 0.000 0.989 ± 0.000 0.990 ± 0.000 0.990 ± 0.000
p-value 9.298e-39 2.588e-37 9.298e-39 2.743e-39 2.710e-39 6.965e-39

Table 7
Comparison of experimental results on WikipediaArticles dataset.

Methods ACC NMI Purity ARI F-score Precision

SPCbest 0.552 ± 0.001 0.519 ± 0.004 0.600 ± 0.001 0.410 ± 0.000 0.473 ± 0.000 0.485 ± 0.000
MCGC 0.502 ± 0.000 0.418 ± 0.000 0.528 ± 0.000 0.265 ± 0.000 0.362 ± 0.000 0.299 ± 0.000
LMVSC 0.556 ± 0.000 0.475 ± 0.000 0.570 ± 0.000 0.331 ± 0.000 0.410 ± 0.000 0.380 ± 0.000

MCLES 0.543 ± 0.003 0.474 ± 0.004 0.563 ± 0.003 0.359 ± 0.005 0.430 ± 0.004 0.421 ± 0.005
LTMSC 0.531 ± 0.003 0.495 ± 0.005 0.575 ± 0.003 0.407 ± 0.002 0.471 ± 0.002 0.479 ± 0.002

t-SVD-MSC 0.556 ± 0.001 0.484 ± 0.002 0.580 ± 0.002 0.408 ± 0.001 0.471 ± 0.001 0.480 ± 0.001

ETLMSC 0.547 ± 0.032 0.495 ± 0.025 0.581 ± 0.036 0.400 ± 0.031 0.464 ± 0.026 0.473 ± 0.037
TISRL 0.547 ± 0.000 0.490 ± 0.000 0.587 ± 0.000 0.394 ± 0.000 0.458 ± 0.000 0.475 ± 0.000

HLR-M2VS 0.546 ± 0.000 0.482 ± 0.000 0.574 ± 0.000 0.408 ± 0.000 0.471 ± 0.000 0.478 ± 0.000

CGL 0.542 ± 0.001 0.498 ± 0.000 0.594 ± 0.001 0.371 ± 0.001 0.441 ± 0.001 0.432 ± 0.001
LTALS 0.564 ± 0.001 0.521 ± 0.002 0.601 ± 0.002 0.420 ± 0.002 0.483 ± 0.002 0.488 ± 0.003
p-value 5.956e-10 3.731e-4 1.412e-4 2.324e-9 2.078e-10 9.094e-2

Table 8
Comparison of experimental results on Youtube dataset.

Methods ACC NMI Purity ARI F-score Precision

SPCbest 0.263 ± 0.000 0.171 ± 0.000 0.290 ± 0.000 0.096 ± 0.000 0.188 ± 0.000 0.183 ± 0.000
MCGC 0.284 ± 0.000 0.137 ± 0.000 0.297 ± 0.000 0.083 ± 0.000 0.176 ± 0.000 0.173 ± 0.000
LMVSC 0.272 ± 0.000 0.148 ± 0.000 0.292 ± 0.000 0.079 ± 0.000 0.173 ± 0.000 0.169 ± 0.000
MCLES - - - - - -
LTMSC 0.300 ± 0.001 0.184 ± 0.000 0.321 ± 0.001 0.112 ± 0.000 0.203 ± 0.000 0.198 ± 0.000

t-SVD-MSC 0.263 ± 0.017 0.162 ± 0.009 0.334 ± 0.011 0.098 ± 0.005 0.193 ± 0.005 0.180 ± 0.005
ETLMSC 0.266 ± 0.015 0.147 ± 0.006 0.294 ± 0.012 0.084 ± 0.006 0.180 ± 0.005 0.171 ± 0.007
TISRL 0.305 ± 0.001 0.178 ± 0.002 0.341 ± 0.001 0.111 ± 0.001 0.201 ± 0.001 0.197 ± 0.001

HLR-M2VS 0.257 ± 0.002 0.143 ± 0.001 0.282 ± 0.001 0.081 ± 0.000 0.177 ± 0.000 0.168 ± 0.000

CGL - - - - - -
LTALS 0.323 ± 0.002 0.199 ± 0.001 0.355 ± 0.002 0.135 ± 0.001 0.230 ± 0.001 0.208 ± 0.001
p-value 5.510e-15 3.037e-9 6.499e-14 1.206e-13 1.959e-16 8.768e-9

Table 9
Running time (in seconds) of diverse multi-view approaches on six datasets.

Method MCGC LMVSC MCLES LTMSC t-SVD-MSC ETLMSC TISRL HLR-M2VS CGL LTALS

BBCnews 3.68 2.22 4205.90 175.75 190.12 10.34 95.16 50.71 23.98 93.59
Caltech 133.78 8.07 93754.21 1968.00 843.05 146.12 1727.90 1344.50 595.05 2342.20

NUS-WIDE 162.89 2.65 14811.21 971.25 311.69 154.34 740.43 740.16 382.82 919.30
UCI 53.58 2.59 46567.20 1143.20 310.20 80.97 449.44 441.40 197.69 587.04

WikipediaArticles 0.26 0.47 141.50 8.63 3.02 0.87 5.51 2.78 13.62 4.24
Youtube 88.56 3.40 - 2029.10 407.60 309.33 1060.30 962.50 - 959.62
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significant improvements compared with other methods can be seen from the clustering results. Fourthly, it can be seen that
the p-value corresponding to each dataset is very small, which means that the proposed LTALS has positive significance in
improving the clustering results compared to its closest competitor. Fifthly, Table 9 shows the running time of each multi-
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view algorithm on six datasets. Obviously, the running efficiency of MCGC, LMVSC, and ETLMSC is much ahead of other
methods. However, on the basis of excellent clustering results, the running efficiency of LTALS is also acceptable. Finally,
compared with t-SVD-MSC, TISRL, and HLR-M2VS, which are the most correlated with our method, LTALS also performs well,
the leading situation may benefit from the unified integration of the rank preserving decomposition, the local structure pro-
tection, and the joint optimization of the label indicator matrix and low-rank tensor representation.

In addition, for observing the algorithm performance intuitively, we visualize the clustering results of eight selected
methods (i.e., SPCbest, LMVSC, LTMSC, t-SVD-MSC, TISRL, ETLMSC, HLR-M2VS, and LTALS) on UCI dataset in Fig. 3. Specifically,
we splice the three feature matrices in UCI together, then the dimension reduction method t-SNE is utilized to map the high-
dimensional features onto a two-dimensional space. In Fig. 3, different colors represent different clusters. It can be seen that
LTALS achieves the clearest segmentation, while SPCbest are the worst, which corresponds to the values of their evaluation
metrics.

4.5. Parameter Sensitivity Analysis

In the proposed LTALS, there are three hyperparameters: k; b, and a. To find the appropriate parameter values, we perform
a two-level grid search strategy, i.e., coarse-grained and fine-grained strategies. In coarse-grained strategy, we randomly
select the BBCnews dataset as the test dataset and empirically vary k; b, and a in {0.0001, 0.001, 0.01, 0.1, 1, 10} to find
approximate parameter intervals, respectively. We observe that the proposed LTALS achieves acceptable numerical results
when k; b, and a are tuned in {0.001, 0.01, 0.1, 1}, {0.001, 0.01, 0.1, 1}, and {0.0001, 0.001, 0.01}, respectively. Since the char-
acteristics of different datasets are not same, in fine-grained strategy, we perform a fine-grained grid search strategy on each
dataset by varying the three papameters according to the intervals obtained in coarse-grained strategy, thus obtaining more
specific and suitable parameter interval for each dataset. In general, k is set in [0.05, 0.2] with a step of 0.01, b is ranged in
[0.01, 0.1] with a step of 0.01, a is tuned in [0.0001,0.005] with a step of 0.0001, then the proposed LTALS can yield the
promising experimental results. In addition, the number of k-nearest neighbors is fixed to 6.

For observing the impact of diverse parameters on the model LTALS, we display the clustering performance with respect
to different parameter settings in Figs. 4, 5. As shown in Fig. 4, k; b, and a are tuned in {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.4,
0.8, 1}, {0.001, 0.01, 0.1, 1}, and {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2}, respectively. Generally, when a is set
large, the performance of LTALS is unsatisfactory. The main reason may be that the label indicator matrix is not accurate
enough in the early stage of optimization, and too large value of a causes the deviation of optimization of both low-rank
tensor and label indicator matrix, thus resulting in inferior performance. For k, which is mainly used to adjust the impact
of noise, its value is not suggested to be set too large from Fig. 4. Fig. 5 exhibits the effect of the numbers of k-nearest neigh-
bors on the performance of LTALS, it can be observed that the performance of LTALS is stable as the number of k-nearest
neighbors continues to increase.

4.6. Ablation Experiments

To illustrate the significance of the rank preserving decomposition, the local structure protection, and the joint optimiza-
tion of label indicator matrix and low-rank tensor representation, we design some ablation experiments to validate. Specif-
Fig. 3. Visualizations of eight clustering methods via t-SNE on UCI dataset.
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Fig. 4. ACC of the proposed method on BBCnews and WikipediaArticles datasets while k ranges in {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.4, 0.8, 1}, a ranges in
{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2}, and b varies in {0.001, 0.01, 0.1, 1}.

Fig. 5. Performance of the proposed LTALS with respect to different numbers of k-nearest neighbors.
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ically, LTALS-OR represents the variant of LTALS that does not use the rank preserving decomposition to learn the intrinsic

subspace representations S vð Þ
n om

v¼1
, LTALS-OL represents the variant of LTALS without protecting the local structure, i.e., the

third term in the objective function Eq. (6) is removed, and LTALS-OF denotes the variant of LTALS removing the joint opti-
mization of label indicator matrix and low-rank tensor representation, that is, the fourth term in the objective function Eq.
(6) is discarded. Furthermore, it is worth noting that if the rank preserving decomposition, the local structure protection, and
the joint optimization of label indicator matrix and low-rank tensor representation are simultaneously cast off, the proposed
LTALS degenerates to the t-SVD-MSC model [12]. Similarly, if the latter two are not considered, the proposed LTALS reduces
to the TISRL model [18]. The clustering results of t-SVD-MSC and TISRL can be seen in Tables 3–8, which are not repeated in
this subscetion. As Table 10 shown, it is notable that the experimental results of LTALS are better than the three variants
LTALS-OR, LTALS-OL, and LTALS-OF on all datasets. For example, LTALS improves the results by 7.5% and 2.9%, 10.9% and
13.4%, 10.8% and 7.1% on Caltech dataset compared with the three variants, respectively, which demonstrates that the three
strategies are essential for boosting the clustering performance.
Table 10
Comparison of clustering results (ACC/NMI) of LTALS and its variants.

Datasets BBCnews Caltech NUS-WIDE UCI WikipediaArticles Youtube

LTALS-OR 0.327/0.005 0.549/0.701 0.123/0.015 0.885/0.814 0.175/0.036 0.102/0.005
LTALS-OL 0.977/0.937 0.515/0.596 0.166/0.069 0.721/0.684 0.549/0.478 0.293/0.195
LTALS-OF 0.945/0.892 0.516/0.659 0.136/0.157 0.866/0.878 0.544/0.496 0.290/0.164
LTALS 0.997/0.988 0.633/0.758 0.202/0.084 0.995/0.987 0.564/0.521 0.323/0.199
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Fig. 6. Convergence curves on the test datasets.
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4.7. Convergence Analysis

According to [46], since Algorithm1 contains three or more blocks variables, it is not certain whether the proposed
method LTALS will converge after iterations in theory. Nevertheless, the experiments can still demonstrate the good conver-
gence property of LTALS. Fig. 6 shows the convergence curves on all datasets, where the x-axis represents the number of

iterations, the y-axis error is defined as the maximum value of
Pm

v¼1jjX vð Þ � X vð ÞZ vð Þ
kþ1 � E vð Þ

kþ1jj1 and
Pm

v¼1jjS vð Þ
kþ1 �H vð Þ

kþ1jj1. As
shown in Fig. 6, the values of error decrease very quickly. On the six datasets, twenty iterations are sufficient to bring the
proposed LTALS to a state of convergence.
5. Conclusion

In this paper, we propose a low-rank tensor approximation with local structure (LTALS) for multi-view intrinsic subspace
clustering. In the proposed LTALS, we perform rank preserving decomposition on the initial self-representation matrices to
factorize out the intrinsic subspace representations, which are assembled into a 3-order target tensor. Then the t-SVD based
TNN is imposed on the target tensor to strength the global consensus. In order to achieve the consistent locality during the
projection of feature space, we adopt the manifold regularization to encode the local structure of data in the initial feature
space. Moreover, we recognize that the learned label indicator matrix contains the cluster structure and use it to boost the
optimization of the low-rank intrinsic subspace representation tensor, thus achieving simultaneous optimization of the two
terms in a unified framework. For solving the proposed LTALS, an optimization algorithm based on ADMM is developed.
Finally, a large number of experimental results on six real-world datasets show that the performance of LTALS is better than
other state-of-the-art methods. In the future, as the size of the datasets continue to grow, we will further optimize the solu-
tion process of the proposed LTALS to accommodate large-scale datasets.
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Appendix A. Preliminaries about Tensors

Definition 1. For a tensor T 2 Rn1�n2�n3 , its several basic operations bdiag �ð Þ; bcirc �ð Þ; bvec �ð Þ, and bvfold �ð Þ are defined as
bdiag Tð Þ ¼

T 1ð Þ

T 2ð Þ

. .
.

T n3ð Þ

2
66664

3
77775; ðA:1Þ

bcirc Tð Þ ¼

T 1ð Þ T n3ð Þ � � � T 2ð Þ

T 2ð Þ T 1ð Þ � � � T 3ð Þ

..

. ..
. . .

. ..
.

T n3ð Þ T n3�1ð Þ � � � T 1ð Þ

2
66664

3
77775; ðA:2Þ

bvec Tð Þ ¼ T 1ð Þ;T 2ð Þ; � � � ;T n3ð Þ� 
; ðA:3Þ

bvfold bvec Tð Þð Þ ¼ T: ðA:4Þ
Definition 2 (t-product). For tensors X 2 Rn1�n2�n3 and Y 2 Rn2�n4�n3 , the t-product A 2 Rn1�n4�n3 is calculated via
A ¼ X �Y ¼ bvfold bcirc Xð Þ � bvec Yð Þð Þ; ðA:5Þ
Definition 3 (Orthogonal tensor). A tensor T 2 Rn1�n1�n2 is orthogonal if it satisfies
TT �T ¼ T �TT ¼ I; ðA:6Þ

where tensor I 2 Rn1�n1�n2 is an identity tensor, whose first frontal slice is a n1 � n1 identity matrix and the other frontal
slices are all zeros.

Definition 4 (t-SVD). A tensor C 2 Rn1�n2�n3 can be decomposed as
C ¼ U �D �VT ; ðA:7Þ

where D 2 Rn1�n2�n3 is a f-diagonal tensor, whose each frontal slice is a diagonal matrix. U 2 Rn1�n1�n3 and V 2 Rn2�n2�n3 are
orthogonal.
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