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With the development of data acquisition technology, high-dimensional data clustering is
an important yet challenging task in data mining. Despite advances achieved by current
clustering methods, they can be further improved. First, many of them usually unfold
the high-dimensional data into a large matrix, consequently resulting in destroying the
intrinsic structural property. Second, some methods assume that the noise in the dataset
conforms to a predefined distribution (e.g., the Gaussian or Laplacian distribution), which
violates real-world applications and eventually decreases the clustering performance. To
address these issues, in this paper, we propose a novel tensor dictionary learning method
for clustering high-dimensional data with the coexistence of structure noise. We adopt ten-
sors, the natural and powerful tools for the generalizations of vectors and matrices, to char-
acterize high-dimensional data. Meanwhile, to depict the noise accurately, we decompose
the observed data into clean data, structure noise, and Gaussian noise. Furthermore, we use
low-rank tensor modeling to characterize the inherent correlations of clean data and adopt
tensor dictionary learning to adaptively and accurately describe the structure noise instead
of using the predefined distribution. We design the proximal alternating minimization
algorithm to solve the proposed model with the theoretical convergence guarantee.
Experimental results on both simulated and real datasets show that the proposed method
outperforms the compared methods for high-dimensional data clustering.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

Data clustering is a basic and important topic in computer vision and machine learning [1–4]. The main goal is to group
(or segment) the data with similar structures into clusters. A number of data clustering methods have emerged, such as spec-
tral clustering-based methods [5,6], matrix decomposition-based clustering methods [7,8], and deep learning-based cluster-
ing methods [1,9]. With the growth of the amount of high-dimensional data, dimensionality reduction and feature extraction
methods based on sparse and low-rank representations have been widely studied and applied in practical applications.
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The sparse/low-rank representation-based clustering methods [10–13] usually obtain the coefficient matrices first and
then exploit the spectral clustering tool on the coefficient matrices to get the final clustering results. For instance, Elhamifar
et al. [10] used the sparse optimization program to cluster data points lying in a low-dimensional subspace. Liu et al. [11]
introduced the low-rank representation to segment the data into their respective subspaces. Moreover, many variants of
these methods have also been studied. In particular, Brbic et al. [14] combined the advantages of both sparse and low-
rank representations for subspace clustering. Lu et al. [15] studied robust subspace segmentation with the help of least
square regression. Tang et al. [16] proposed the structure-constrained low-rank representation for disjoint subspace cluster-
ing. Although the above clustering methods derived by sparse and low-rank representations achieve good performance, the
data representation matrices obtained by the original data are fixed, thereby being inflexible to various applications.

Owing to the promising performance in sparse representation and low-rank modeling, dictionary learning has received
widespread attention in data clustering [6,17,18]. Dictionary learning assumes that a signal can be described as a linear com-
bination of a few elements (aka atoms). There exists a number of dictionary learning-based methods for handling different
noises, e.g., Gaussian noise [19–21], Laplacian noise [22,23], and mixed noise [24]. Furthermore, Zhou et al. [17] used the
dictionary learning to adaptively learn the complex mixed noise distribution in real applications instead of using predefined
distributions. The above methods are suitable for 1D data but are ineffective for the high-dimensional data. When dealing
with 2D or 3D data, they require transforming the high-dimensional data into vectors, while this vectorization operator
breaks the intrinsic structure of high-dimensional data and limits the performance of dictionary learning.

To deal with the high-dimensional data, based on different tensor decompositions, some tensor dictionary learning tech-
niques were developed [25–27]. Despite merits in improving the representation ability of data, these tensor dictionary learn-
ing methods still have the following limitations. One main concern lies in the common assumption that the noise contained
in the data follows the Gaussian distribution, thereby constraining it with the Frobenius norm. However, in practical appli-
cations, there often exists extremely complex noise while matching the noise in actual data with a predefined distribution
often fails; this inevitably affects the performance of tensor dictionary learning. Moreover, without the full utilization of the
learning capability of data, the fixed dictionary is not adaptive for all datasets.

To address the above limitations, we propose a novel structure noise-aware tensor dictionary learning method for high-
dimensional data clustering in this work. Fig. 1(a) depicts the framework of the proposed method. To preserve the intrinsic
structure of data, each sample is replaced into the lateral slice of the tensor X 2 Rn1�n2�n3 to construct the observed data.
Then, we decompose the observed data into the sum of clean data C, structure noise S, and Gaussian noise G. For clean data
C, since the data usually lie in several low-dimensional subspaces, we use the tensor low-rank constraint to project the orig-
inal data into the potential low-dimensional subspaces. Specifically, based on the idea of subspace clustering, we apply the
tensor nuclear norm (TNN) to characterize the low-rankness of the representation tensor and explore the global correlations
of the underlying data. Moreover, the singular value comparisons in Fig. 1(b) show that applying the low-rank constraint on
the representation Z is more effective than the clean data C. For the structure noise S, since different data contain different
types of structure noise, we adaptively learn the structure noise dictionary instead of a universal dictionary and the structure
noise representation tensor at the same time. More importantly, since the structure noise is distributed along the second
dimension of the tensor, it is structurally sparse. Therefore, we use l2;1;2-norm to constrain the structural sparsity of the rep-
resentation tensor. Meanwhile, we use F-norm to constrain the general Gaussian noise. As a result, the proposed model can
be rewritten as
min
Ac ;As ;Zc ;Zs

1
2 kX�Ac �Zc �As �Zsk2F þ k1kZck� þ k2kZsk2;1;2;

s:t: Ac 2 X;X ¼ Ac : kAc j1ð Þk2F 6 1; j1 ¼ 1; � � � ; kc
n o

;

As 2 H;H ¼ As : kAs j2ð Þk2F 6 1; j2 ¼ 1; � � � ; ks
n o

;

ð1Þ
where k1 and k2 are regularization parameters, Ac j1ð Þ andAs j2ð Þ denote the j1-th and j2-th frontal slices of dictionariesAc and
As, respectively, and each frontal slice represents a dictionary atom. In addition, we design an effective proximal alternating
minimization (PAM) algorithm to solve the proposed model and establish the theoretical convergence guarantee of the pro-
posed algorithm. After that, we exploit the spectral clustering tool (Ncut) [28] on the representation tensor of clean data to
obtain clustering results. Extensive experiments on different datasets show the effectiveness and superiority of the proposed
method. Fig. 1(c) shows that the clustering performance obtained by the representation tensor Zc is better than that
obtained by directly using the observed data X. This implies that the proposed tensor decomposition strategy is effective
for improving the clustering performance. In summary, the main contributions of this work are summarized as follows.

� We propose a novel tensor dictionary learning method for clustering data corrupted by structured complex noise. Com-
pared with the matrix-type dictionary learning methods, the proposed tensor dictionary learning method can preserve
the intrinsic structure of high-dimensional data and fully explore the global correlations embedded in the observed data.

� The proposed method can adaptively learn the dictionary and representation coefficient of structure noise jointly, rather
than presupposing it to follow a specific distribution. Moreover, we introduce l2;1;2-norm to explore the structural sparsity
of structure noise.
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Fig. 1. The overview of the proposed method. (a) The decomposition strategy of the proposed method for structure noise data. Clearly, the representation
tensor Zc of clean data is low-rank and the representation tensor Zs of structure noise is structurally sparse along the second dimension. (b) The low-
rankness comparison between clean data C and representation tensor Zc . (c) The clustering performance of the observed data X and decomposed
representation tensor Zc (in order to clearly see the decomposed structure noise, we display the data after the linear transformation, where black pixels
represent structure noise)..
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� We develop a PAM-based algorithm for solving the proposed optimization problem and establish the theoretical conver-
gence. Extensive experiments on both simulated and real datasets show the effectiveness of the proposed method on
high-dimensional data clustering.

The rest of this work is organized as follows. Section 2 reviews the related dictionary learning and clustering methods.
Section 3 presents the notations used in this work. Section 4 introduces the proposed model. Section 5 designs an effective
algorithm to calculate the proposed model with theoretical convergence analysis. Section 6 presents the experimental
results to show the effectiveness of the proposed method. Section 7 discusses some details of the proposed method. Section 8
summarizes this work.

2. Related Works

In this section, we briefly review some related dictionary learning and clustering methods.

2.1. Matrix Dictionary Learning

Dictionary learning [17] describes a sample as a linear combination of a few atoms. Mathematically, a sample x 2 Rn can
be approximated by
x ¼ Azþ e; ð2Þ

where A 2 Rn�d denotes the dictionary with each column termed as an atom, z 2 Rd denotes the representation coefficient of
data x, and e 2 Rn refers to the additive Gaussian noise. The goal of dictionary learning is to find the sparse representation z,
which has much fewer than n nonzero entries, i.e., kzk0 � n, under dictionary A.

To handle the image problem, matrix-based dictionary learning is proposed to represent the image data by a set of basis
vectors spanning a low-dimensional space. The representative K-singular value decomposition (KSVD) algorithm [19] learns
the dictionary A 2 Rn1�d and the sparse representation Z 2 Rd�n2 from the image X 2 Rn1�n2 by the following optimization
problem:
89



J.-H. Yang, C. Chen, H.-N. Dai et al. Information Sciences 612 (2022) 87–106
min
A;Z

kX � AZk2F ;

s:t: kA j1ð Þk22 6 1; j1 2 1;2; � � � ;df g;
kZ j2ð Þk0 6 T; j2 2 1;2; � � � ;n2f g;

ð3Þ
where A j1ð Þ denotes the j1-th column of A, and each column denotes a dictionary atom, d is the number of atoms in the dic-
tionary, and kZ j2ð Þk0 6 T means that the representation vector of j2-th sample has fewer than T nonzero entries. For different
tasks, various variants based on model (3) have been developed [21,29]. For example, Jiang et al. [21] used label information
and KSVD for recognition. Furthermore, Feng et al. [29] proposed integrating dimensionality reduction with dictionary learn-
ing for face recognition. These methods have an implicit assumption that the noise in the data follows a Gaussian distribu-
tion. Moreover, the works in [22,23] assumed that both large-scale corruptions and outliers can be approximated from the
Laplacian distribution. In addition, many self-expression-based subspace clustering methods [30,31,25] have been proposed
and choose the observed data as the dictionary. However, these assumptions may not accurately model the data, especially,
when the observed data are heavily corrupted by the structure noise. To accurately characterize the noise, Zhou et al. [17]
decomposed the noise into two parts: structure noise and Gaussian noise. They then used dictionary learning to adaptively
estimate the noise:
min
Ac ;Zc ;As ;Zs

kX � AcZc � AsZsk2F þ k1kZck� þ k2kZsk1;

s:t: kAc j1ð Þk22 6 1; j1 2 1;2; � � � ; dcf g; kAs j2ð Þk22 6 1; j2 2 1;2; � � � ; dsf g;
ð4Þ
where kZck� is the matrix nuclear norm, Ac and As respectively denote the dictionaries of clean data and structure noise, and
Zc and Zs are two corresponding coefficient matrices. When dealing with high-dimensional data, the above matrix-based dic-
tionary learning methods require to transform high-dimensional data into vectors, where the vectorization operator breaks
the intrinsic structure of high-dimensional data, thereby limiting their performance.

2.2. Tensor Dictionary Learning

Tensor dictionary learning techniques [26,27] based on different tensor decompositions were developed to deal with
high-dimensional data. Specifically, the work in [26] used the tensor singular value decomposition [32] and proposed the
following K-tensor singular value decomposition (KTSVD) model:
min
Z

kX�A �Zk2F þ kkZkTS; ð5Þ
where � denotes the tensor-tensor product (see Definition 1), X 2 Rn1�n2�n3 denotes the observed tensor, A 2 Rn1�k�n3 is a
learned tensor dictionary, and kZkTS denotes the tensor tubal sparsity defined as the number of nonzero tubes of Z in
the third dimension. The work in [26] assumed that the noise contained in the data follows a Gaussian distribution, thereby
constraining it with the Frobenius norm. Taking the input data as the dictionary, Zhou et al. [2] introduced TNN to learn the
tensor low-rank representation and applied the l1-norm to constrain the sparse noise. However, the complex noise in prac-
tical applications cannot be accurately described with a predefined distribution.

In Table 1, we compare the related studies with our work from data representation, noise distribution, and dictionary
learning.
3. Notations and Preliminaries

In this section, we list main notations and definitions used in this work.

3.1. Notations

We use the calligraphy letter Z to denote the tensor, the upper case letter Z to denote the matrix, the bold lower case
letter z to denote the vector, and the lower case letter z to denote the scalar. For a third-order tensor Z 2 Rn1�n2�n3 , we
use Zi;j;k to denote its i; j; kð Þ-th entry and the MATLAB notation Z i; :; :ð Þ;Z :; j; :ð Þ, and Z :; :; kð Þ to denote the i-th horizontal,

j-th lateral, and k-th frontal slice, respectively. For convenience, we denote the frontal slice Z :; :; kð Þ by Z kð Þ, the lateral slice
Z :; j; :ð Þ by Z jð Þ, and the tube by Z i; j; :ð Þ. For a matrix Z 2 Rn1�n2 , the i; jð Þ-th entry and the j-th column are denoted as zij and
Z jð Þ, respectively.

Now, we show some norms used in this work. For the third-order tensor Z 2 Rn1�n2�n3 , the l1-norm is defined as

kZk1 ¼Pi;j;kjZi;j;kj, the Frobenius norm is kZkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j;kjZi;j;kj2
q

, and the infinity norm is kZk1 ¼ maxi;j;kjZi;j;kj. For a matrix,

its nuclear norm is kZk� ¼
P

iri Zð Þ, and ri Zð Þ denotes the i-th singular value of Z. The l2-norm of a vector z 2 Rn is defined as

kzk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiP

iz
2
i

q
, and zi is the i-th element of z. The main symbols and their meanings are summarized in Table 2.
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Table 1
Summary of some related works.

Methods Data representation Noise distribution Dictionary learning

K-singular value decomposition [19] Matrix Gaussian Adaptive
Dictionary learning based impulse noise [22] Matrix Laplacian Adaptive
Robust non-negative dictionary learning [23] Matrix Laplacian Adaptive
Dictionary learning with structure noise [17] Matrix Structure and Gaussian Adaptive
Latent multi-view subspace clustering [30] Matrix Sparse Adaptive

Robust subspace segmentation [33] Matrix Gaussian Predefined
Robust kernel low-rank representation [31] Matrix Sparse Predefined
K-tensor singular value decomposition [26] Tensor Gaussian Adaptive

Tensor factorization for dictionary learning [34] Tensor Gaussian Adaptive
Tensor low-rank representation [2] Tensor Sparse Predefined

Structure noise-aware tensor dictionary learning (this paper) Tensor Structure and Gaussian Adaptive

Table 2
The summary of symbols used in our work.

Symbols Meanings

Z; Z; z, and z tensor, matrix, vector, and scalar

Z kð Þ and Z jð Þ the k-th frontal slice and the j-th lateral slice of Z

Zi;j;k the i; j; kð Þ-th element of Z
kZk1; kZkF , and kZk1 l1-norm, Frobenius norm, and infinity norm of Z
kZk� and kZk2;1;2 tensor nuclear norm and l2;1;2-norm of Z
kZk� matrix nuclear norm of Z
kzk2 the l2-norm of the vector z
n2 and n1 � n3 the number and size of samples
X;C;S, and N 2 Rn1�n2�n3 observed data, underlying data, structure noise, and Gaussian noise

Ac 2 Rn1�kc�n3 the dictionary of the clean data

Zc 2 Rkc�n2�n3 the representation tensor of the clean data

As 2 Rn1�ks�n3 the dictionary of the structure noise

Zs 2 Rks�n2�n3 the representation tensor of the structure noise

kc and ks the number of atoms in the dictionaries Ac and As

Ac j1ð Þ 2 Rn1�n3 the j1-th atom of the dictionary Ac

As j2ð Þ 2 Rn1�n3 the j2-th atom of the dictionary As
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3.2. Preliminaries

We introduce some related definitions used in our work.
For Z 2 Rn1�n2�n3 , we denote the discrete Fourier transform (DFT) of Z along the third dimension by �Z, i.e.,

�Z ¼ fft Z; ½�;3ð Þ. Moreover, we can obtain Z by the inverse DFT, i.e., Z ¼ ifft �Z; ½�;3ð Þ. Specifically, the block diagonal matrix
Z 2 Rn1n3�n2n3 of �Z has the following form:
Z ¼ bdiag �Zð Þ ¼
�Z 1ð Þ

. .
.

�Z n3ð Þ

0
B@

1
CA; ð6Þ
where �Z kð Þ denotes the k-th frontal slice of �Z. And the block-circulant matrix of Z 2 Rn1n3�n2n3 is
bcirc Zð Þ ¼

Z 1ð Þ Z n3ð Þ � � � Z 2ð Þ

Z 2ð Þ Z 1ð Þ � � � Z 3ð Þ

..

. ..
. . .

. ..
.

Z n3ð Þ Z n3�1ð Þ � � � Z 1ð Þ

0
BBBB@

1
CCCCA: ð7Þ
Moreover, we define the unfold and fold operators as
unfold Zð Þ ¼

Z 1ð Þ

Z 2ð Þ

..

.

Z n3ð Þ

0
BBBB@

1
CCCCA; fold unfold Zð Þð Þ ¼ Z: ð8Þ
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Definition 1. (Tensor-tensor product) The tensor-tensor product of A 2 Rn1�n2�n3 and B 2 Rn2�l�n3 is defined as
C ¼ A � B ¼ fold bcirc Að Þ � unfold Bð Þð Þ;

where C 2 Rn1�l�n3 and � denotes the matrix product.
Definition 2 (Identity tensor). If the first frontal slice of a tensor I 2 Rn1�n1�n3 is an n1 � n1 identity matrix and other frontal
slices are zero matrix, then it is the identity tensor.
Definition 3 (Transpose tensor). For a tensor Z 2 Rn1�n2�n3 , by transposing each of the frontal slice, the transpose tensor
Z> 2 Rn2�n1�n3 can be obtained by reversing the order of transposed frontal slices 2 through n3.
Definition 4 (Orthogonal tensor). If the tensor Z 2 Rn1�n1�n3 satisfies
Z> � Z ¼ Z � Z> ¼ I;
then it is orthogonal.
Definition 5 (TSVD). Let Z 2 Rn1�n2�n3 ;Z has the following tensor singular value decomposition (TSVD)
Z ¼ U �S �V>; ð9Þ

where S 2 Rn1�n2�n3 is a diagonal tensor, and U 2 Rn1�n1�n3 and V 2 Rn2�n2�n3 are orthogonal.
Definition 6 (TNN). The tensor nuclear norm (TNN) of the tensor Z 2 Rn1�n2�n3 is
kZk� ¼
Xn3
i¼1

k �Z ið Þk�;
where k �Z ið Þk� is the nuclear norm of �Z ið Þ.
Definition 7 (Tensor tubal rank). The tubal rank rank Zð Þ is defined as the number of nonzero singular tubes ofS, whereS is
from the TSVD of Z ¼ U � S � V>, i.e.,
rank Zð Þ ¼ # i : S i; j; :ð Þ– 0f g; ð10Þ

where # denotes the cardinality of a set.
4. The Proposed Model

In this section, we present the proposed tensor dictionary learning model with structure noise for high-dimensional data
clustering. The research significance of the work lies in the fact that structure noise is very common in real applications due
to equipment or environmental factors [17]. Structure noise seriously hinders the tasks of data mining and applications.
Therefore, we focus on improving the data mining algorithm. For convenience, we denote the dictionaries of the clean data
and the structure noise by Ac 2 Rn1�kc�n3 and As 2 Rn1�ks�n3 , respectively and denote the representation tensors of the clean
data and the structure noise by Zc 2 Rkc�n2�n3 and Zs 2 Rks�n2�n3 , respectively.

In Fig. 1, we present the proposed framework and decompose the observed data into three parts: clean data C, structure
noise S, and other Gaussian noise N. In practical applications, since the number of samples is generally greater than the
number of classes, samples belonging to the same class are usually located in a lower-dimensional subspace [19,26]. Since
the dimension of the subspace is same as the rank of the representation tensor, we use the low-rank constraint to charac-
terize the low-rankness of the representation tensor of clean data. For the structure noise, we adaptively learn the dictionary
of structure noise for different data and set the corresponding representation tensor to be sparse. Therefore, we propose the
following model:
min
Ac ;As ;Zc ;Zs

1
2 kX�Ac �Zc �As �Zsk2F þ k1rank Zcð Þ þ k2kZsk0;

s:t: Ac 2 X;X ¼ Ac : kAc j1ð Þk2F 6 1; j1 ¼ 1;2; � � � ; kc
n o

;

As 2 H;H ¼ As : kAs j2ð Þk2F 6 1; j2 ¼ 1;2; � � � ; ks
n o

;

ð11Þ
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where k1 and k2 are regularization parameters, kAc j1ð Þk2F 6 1 and kAs j2ð Þk2F 6 1 normalize each atom in the dictionary Ac and
As, respectively. We use rank Zcð Þ to characterize the global low-rankness of the representation tensor of clean data and
kZsk0 to characterize the sparseness of the representation tensor of structure noise. However, since the corresponding min-
imization problems of rank �ð Þ and k � k0 are NP-hard, we replace rank Zcð Þ and kZsk0 with the corresponding convex relax-
ations kZck� and kZsk2;1;2, respectively.

Finally, we propose the following Tensor Dictionary Learning-based Structure Noise model (TDLSN) for high-dimensional
data clustering:
min
Ac ;As ;Zc ;Zs

1
2 kX�Ac �Zc �As �Zsk2F þ k1kZck� þ k2kZsk2;1;2;

s:t: Ac 2 X;X ¼ Ac : kAc j1ð Þk2F 6 1; j1 ¼ 1; � � � ; kc
n o

;

As 2 H;H ¼ As : kAs j2ð Þk2F 6 1; j2 ¼ 1; � � � ; ks
n o

;

ð12Þ
where kZck� denotes the TNN of the representation tensor Zc , and kZsk2;1;2 denotes the structural sparsity of the represen-
tation tensor Zs, which is defined as
kZsk2;1;2 ¼
X
j

kZs :; j; :ð ÞkF : ð13Þ
The proposed model consists of three terms. The first quadratic term characterizes the Gaussian noise. The second term
adopts the TNN to describe the global low-rankness of the representation tensor of clean data. The third one uses l2;1;2-
norm to constrain the structural sparsity of structure noise along the second dimension.

The proposed TDLSN is a more general and flexible framework than other related methods. In particular, the proposed
TDLSN (12) becomes KTSVD in [26] when the structure noise is ignored and the learning dictionary representation is fixed;
our TDLSN degenerates into tensor low-rank representation (TLRR) clustering [2] when the structure noise is ignored, and
the dictionary is set as the input data. In summary, the advantages of the proposed TDLSN are as follows:

� Compared with matrix-based sparse and/or low-rank representation clustering methods, TDLSN can preserve the intrin-
sic structure of high-dimensional data without the data vectorizing operation. Moreover, the matrix-based methods only
obtain the simple (1-D) consistency information between samples, and cannot explore the complex consistency informa-
tion within samples. By contrast, the proposed tensor method can fully explore the high-order correlation among samples
by TNN to obtain the underlying consistent information for clustering high-dimensional data.

� Compared with existing tensor-based sparse or low-rank representation clustering methods, TDLSN decomposes the data
into the sum of clean data, structure noise, and Gaussian noise, thereby accurately characterizing noise. To characterize
the structure noise distributed in the second dimension of the tensor, we use the l2;1;2-norm to depict the structural
sparsity.

� Compared with the unified dictionary, TDLSN can adaptively learn the dictionaries of the clean data and the structure
noise for different data. Thus, TDLSN can obtain a discriminative data low-dimensional representation to improve the
clustering performance.

Remark. We elaborate on the connection of the proposed method with multi-view clustering. Tensor decomposition and
its related methods [6,35–37] have also been developed for solving the multi-view clustering problem. The differences
between the proposed method and these multi-view clustering methods are summarized as follows:

(1) The processing of high-dimensional data. We focus on the single-view clustering of high-dimensional data. To pro-
cess the data, we directly stack each high-dimensional sample into a tensor in order, which can preserve the intrinsic
structure of high-dimensional data. In contrast, the aforementioned methods all deal with the clustering task of multi-
view data, i.e., each data has multiple feature representations. However, due to the structural inconsistency of multi-
view data, these multi-view clustering methods vectorize the original high-dimensional data and destroy the intrinsic
structure of the data.

(2) The distribution of noise. In practical applications, the observed data are often corrupted by complex noise. In this
work, we decompose the data into the sum of clean data, structure noise, and Gaussian noise. The proposed tensor
dictionary learning method can accurately characterize and separate the complex noise. However, these multi-view
clustering methods assume that the noise in the datasets all follows one specific predefined distribution, resulting
in potentially imprecise separation of clean data.

(3) The choice of dictionary. The self-expression-based multi-view clustering methods [35,36] use the observed data
itself as the dictionary to learn representation coefficient matrices. However, when the observed data are contami-
nated, the learned coefficient matrices are imprecise, resulting in poor clustering performance. In contrast, our method
adopts the tensor dictionary learning to adaptively learn the dictionary to reduce the effect of the complex noise in the
observed data.
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5. The Proposed Algorithm

First, we design PAM [38,39] to solve the proposed model (12). Then, we establish the convergence analysis in theory.
Finally, we analyze the computational complexity of the proposed algorithm.

5.1. PAM Solver

We define the objective function as
F Ac;As;Zc;Zsð Þ ¼ 1
2
kX�Ac �Zc �As �Zsk2F þ k1kZck� þ k2kZsk2;1;2 þW Acð Þ þU Asð Þ; ð14Þ
where W Acð Þ and U Asð Þ are indicator functions defined as
W Acð Þ ¼ 0; if kAc j1ð Þk2F 6 1;
1; otherwise:

(
U Asð Þ ¼ 0; if kAs j2ð Þk2F 6 1;

1; otherwise:

(

According to the framework of the PAM algorithm, the proposed optimization problem (12) can be decomposed into the fol-
lowing four subproblems:
Atþ1
c ¼ argmin

Ac
Q1 AcjAt

c

� � ¼ F Ac;A
t
s;Z

t
c;Z

t
s

� �þ q
2 kAc �At

ck2F
n o

;

Atþ1
s ¼ argmin

As
Q2 AsjAt

s

� � ¼ F Atþ1
c ;As;Z

t
c;Z

t
s

� �þ q
2 kAs �At

sk2F
n o

;

Ztþ1
c ¼ argmin

Zc
Q3 ZcjZt

c

� � ¼ F Atþ1
c ;Atþ1

s ;Zc;Z
t
s

� �þ q
2 kZc �Zt

ck2F
n o

;

Ztþ1
s ¼ argmin

Zs
Q4 ZsjZt

s

� � ¼ F Atþ1
c ;Atþ1

s ;Ztþ1
c ;Zs

� �þ q
2 kZs �Zt

sk2F
n o

;

8>>>>>>>>><
>>>>>>>>>:

ð15Þ
where q denotes a positive constant, and the superscript t denotes the iteration indexes. Since the subproblems ofAc andAs

are similar to each other, and the subproblems of Zc and Zs are similar to each other, we only present the details of opti-
mizing the subproblems of Ac and Zc . For the subproblems of As and Zs, please refer to Appendix A for details.

Ac-subproblem. The Ac-subproblem is
Atþ1
c ¼ argminAc

1
2
kX�Ac �Zt

c �At
s �Zt

sk2F þ
q
2
kAc �At

ck2F þW Acð Þ: ð16Þ
We use the alternating direction method of multipliers (ADMM) algorithm [40] and covert (16) to the following form by
introducing the auxiliary variable Y1,
min
Ac ;Y1

1
2 kX�Ac �Zt

c �At
s �Zt

sk2F þ q
2 kAc �At

ck2F þW Y1ð Þ;
s:t: Y1 ¼ Ac:

ð17Þ
And the corresponding augmented Lagrangian function of (17) is
L Ac;Y1;C1ð Þ ¼ 1
2
kX�Ac �Zt

c �At
s �Zt

sk2F þ
q
2
kAc �At

ck2F þW Y1ð Þ þ b1

2
kY1 �Ac þ C1

b
k2F ; ð18Þ
where b1 is a penalty parameter, and C1 denotes the Lagrangian multiplier. Then, ADMM alternately updates the three sub-
problems Ac;Y1, and C1. We give details of updating each subproblem as follows.

� Calculation of Ac . Given Y1 and C1, the minimization problem of Ac is
At;kþ1
c ¼ argminAc

1
2
kX�Ac �Zt;k

c �At;k
s �Zt;k

s k2F þ
q
2
kAc �At

ck2F þ
b1

2
kYk

1 �Ac þ Ck
1

b
k2F ; ð19Þ
where the superscript k denotes the inner iteration indices. Its solution satisfies the following equation:
Ac � Zt;k
c � Zt;k

c

� �> þ qþ b1ð ÞI
� �

¼ X�At;k
s �Zt;k

s

� � � Zt;k
c

� �> þ qAt
c þ b1 Yk

1 þ
Ck

1

b

 !
; ð20Þ
which can be solved effectively in the Fourier domain [2].
� Calculation of Y1. Given Ac and C1, the minimization problem of Y1 is
Ykþ1
1 ¼ argminY1

W Y1ð Þ þ b1

2
kY1 �At;kþ1

c þ Ck
1

b
k2F ; ð21Þ
which has the closed form solution
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Ykþ1
1 j1ð Þ ¼

M1 j1ð Þ

max 1; kM1 j1ð Þk22
n o ; j1 ¼ 1;2; . . . ; kc; ð22Þ
where M1 j1ð Þ ¼ At;kþ1
c j1ð Þ � Ck

1 j1ð Þ=b1.

� Update multiplier C1. The multiplier C1 can be updated by
Ckþ1
1 ¼ Ckþ1

1 þ b1 Ykþ1
1 �At;kþ1

c

� �
: ð23Þ
Following, we present the details of solving Zc-subproblem.
Zc-subproblem. The Zc-subproblem is
Ztþ1
c ¼ argminZc

1
2
kX�Atþ1

c �Zc �Atþ1
s �Zt

sk2F þ k1kZck� þ
q
2
kZc �Zt

ck2F : ð24Þ
Since the Zc-subproblem is convex, we also adopt the ADMM solver.
Introducing the variable P, we can convert (24) to the following problem:
min
Zc ;P

1
2 kX�Atþ1

c �P�Atþ1
s �Zt

sk2F þ k1kZck� þ q
2 kZc �Zt

ck2F ;
s:t: P ¼ Zc:

ð25Þ
The optimization problem (25) matches the ADMM framework [41,42]. Thus, we present the augmented Lagrangian function
of (25) as
L Zc;P;Eð Þ ¼ 1
2 kX�Atþ1

c �P�Atþ1
s �Zt

sk2F þ k1kZck� þ q
2 kZc �Zt

ck2F þ b2
2 kPk �Zc þ Ek

b k2F ; ð26Þ

where b2 is a penalty parameter, and E denotes a Lagrangian multiplier. Then, ADMM alternately iterates the three subprob-
lems Zc;P, and E. We give details of solving each subproblem as follows.

� Calculation of Zc . Given P and E, the minimization problem of Zc is
Zt;kþ1
c ¼ argminZc

k1kZck� þ
b2 þ q

2
kZc �

qZt
c þ b2 Pk þ Ek=b

� �
b2 þ q

k2F : ð27Þ
It can be solved via the tensor singular value thresholding operator [43], i.e.,
Zt;kþ1
c ¼ U � C k1

bþq
Sð Þ �V>; ð28Þ
where U � S � V> is the TSVD of qZt
c þ b2 Pk þ Ek=b

� �� �
= b2 þ qð Þ, and C k1

b2þq
Sð Þ ¼ ifft max �S� k1

b2þq ;0
� �

; ½�;3
� �

.

Algorithm1: The PAM solver for (12).

Input: Tensor X 2 Rn1�n2�n3 .

1: Parameters: k1; k2; b1; b2; b3; b4;q; � ¼ 10�5, outer iteration t out ¼ 100, inner iteration k inner ¼ 10.
2: Initialize: Ac;As;Zc;Zs.
3: Outer iteration: While t 6 t out and is not converged do
4: Inner iteration: While k 6 k inner do
5: Update Ac by solving (20);
6: Update Y1 by solving (22);
7: Update C1 by solving (23);
8: End while
9: While k 6 k inner do
10: Update As by solving (40);
11: Update Y2 by solving (42);
12: Update C2 by solving (43);
13: End while
14: While k 6 k inner do
15: Update Zc by solving (28);
16: Update P by solving (30);
17: Update E by solving (31);
18: End while
19: While k 6 k inner do
20: Update Zs by solving (48);
21: Update Q by solving (50);

(continued on next page)
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a (continued)

Algorithm1: The PAM solver for (12).

22: Update F by solving (51);
23: End while
24: Check the convergence condition:

max kAtþ1
c �At

ck1; kAtþ1
s �At

sk1; kZtþ1
c �Zt

ck1; kZtþ1
s �Zt

sk1
� �

6 �;
25: End while
26: Apply the spectral clustering tool (Ncut) with Zc .
Output: The clustering results.

� Calculation of P. Given Zc and E, the P subproblem is
Pkþ1 ¼ argminP

1
2
kX�Atþ1

c �P�Atþ1
s �Zt;k

s k2F þ
b2

2
kP�Zt;kþ1

c þ Ek

b
k2F : ð29Þ
The minimizer of the P satisfies the following equation:
Atþ1
c

� �> �Atþ1
c þ b2I

h i
�P ¼ Atþ1

c

� �> � X�Atþ1
s �Zt;k

s

� �þ b2 Zt;kþ1
c � Ek=b

� �
; ð30Þ
which can be calculated in the Fourier domain [2].
� Update multiplier E. The multiplier E can be updated by
Ekþ1 ¼ Ekþ1 þ b2 Pkþ1 �Zt;kþ1
c

� �
: ð31Þ
Finally, we summarize the proposed algorithm in Algorithm1.

5.2. The Convergence Analysis

Next, we prove the convergence of the proposed algorithm. For convenience, we define the following formulation:
F Ac;As;Zc;Zsð Þ :¼ 1
2 kX�Ac � Zc �As � Zsk2F þ k1kZck� þ k2kZsk2;1;2 þW Acð Þ þU Asð Þ;

W Ac;As;Zc;Zsð Þ :¼ 1
2 kX�Ac � Zc �As � Zsk2F ;

f 1 Zcð Þ :¼ k1kZck�;
f 2 Zsð Þ :¼ k2kZsk2;1;2;
Theorem 1. The bounded sequence At
c ;A

t
s;Z

t
c;Z

t
s

� �
(i.e., iterations in (15)) obtained by Algorithm1 globally converges to the

critical point of (12).
The proof of Theorem 1 follows the line of Theorem 6.2 in [38]. Particularly, we require to show the three conditions:

� F satisfies the KŁ property at each point,
� the sequence At

c;A
t
s;Z

t
c;Z

t
s

� �
satisfies the sufficient decrease condition ((64) in [38]),

� the sequence At
c;A

t
s;Z

t
c;Z

t
s

� �
satisfies the relative error condition ((65)-(66) in [38]).

Before verifying the theorem, we present some related lemmas. We give the detailed proofs of the following Lemmas 1–3
in Appendix B.

First, we prove the KŁ property of F Ac;As;Zc;Zsð Þ.

Lemma 1 (KŁ Lemma). Function F Ac;As;Zc;Zsð Þ has the KŁ property at each point.
Next, we verify that the bounded sequence At

c;A
t
s;Z

t
c;Z

t
s

� �
satisfies the sufficient decrease condition and the relative

error condition.

Lemma 2 (Sufficient decrease Lemma). For q > 0, let At
c;A

t
s;Z

t
c;Z

t
s

� �
be a sequence from Algorithm1, then
F Atþ1
c ;At

s;Z
t
c;Z

t
s

� �þ q
2 kAtþ1

c �At
ck2F 6 F At

c;A
t
s;Z

t
c;Z

t
s

� �
;

F Atþ1
c ;Atþ1

s ;Zt
c;Z

t
s

� �þ q
2 kAtþ1

s �At
sk2F 6 F Atþ1

c ;At
s;Z

t
c;Z

t
s

� �
;

F Atþ1
c ;Atþ1

s ;Ztþ1
c ;Zt

s

� �þ q
2 kZtþ1

c �Zt
ck2F 6 F Atþ1

c ;Atþ1
s ;Zt

c;Z
t
s

� �
;

F Atþ1
c ;Atþ1

s ;Ztþ1
c ;Ztþ1

s

� �þ q
2 kZtþ1

c �Zt
ck2F 6 F Atþ1

c ;Atþ1
s ;Ztþ1

c ;Zt
s

� �
:

ð32Þ
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Lemma 3 (Relative error Lemma). The sequence At
c;A

t
s;Z

t
c;Z

t
s

� �
comes from Algorithm1 and q > 0. Then, there exist

Vtþ1
1 ;Vtþ1

2 ;Vtþ1
3 , and Vtþ1

4 satisfying
1 http
2 http
3 http
kVtþ1
1 þrAcW Atþ1

c ;At
s;Z

t
c;Z

t
s

� �kF 6 qkAtþ1
c �At

ckF ;
kVtþ1

2 þrAsW Atþ1
c ;Atþ1

s ;Zt
c;Z

t
s

� �kF 6 qkAtþ1
s �At

skF ;
kVtþ1

3 þrZcW Atþ1
c ;Atþ1

s ;Ztþ1
c ;Zt

s

� �kF 6 qkZtþ1
c �Zt

ckF ;
kVtþ1

4 þrZsW Atþ1
c ;Atþ1

s ;Ztþ1
c ;Ztþ1

s

� �kF 6 qkZtþ1
s �Zt

skF :

ð33Þ
Finally, we give the detailed proof of Theorem 1.

Proof of Theorem 1. Lemma 1 show that F Ac;As;Zc;Zsð Þ satisfies the KŁ property at each point.
According to Lemmas 2 and 3, the bounded sequence Atþ1

c ;At
s;Z

t
c;Z

t
s

� �
satisfies the sufficient decrease condition and the

relative error condition. Thus, we also verify the (64)-(65)-(66) in [38] by Lemmas 2 and 3. Based on the above analysis, we
have completed the proof that conforms to Theorem 6.2 in [38]. Specifically, the sequence At

c;A
t
s;Z

t
c;Z

t
s

� �
globally con-

verges to the critical point of (12).

5.3. The Computational Complexity

Now we analyze the computational complexity of the proposed Algorithm1. The main computational cost depends on
the calculation of subproblems Ac;As;Zc , and Zs. For Ac and As subproblems, the complexity are
O kc þ ksð Þn1n2n3 þ kcn2

2n3
� �

and O kc þ ksð Þn1n2n3 þ ksn2
2n3

� �
, respectively. ForZc subproblem, the main computation cost lies

in the FFT and TSVD of the tensor with size kc � n2 � n3, the per-iteration complexity is O kcn2n3 logn3 þ kcn2
2n3

� �
. ForZs sub-

problem, the complexity is O kc þ ksð Þn1n2n3ð Þ. Therefore, the total computational complexity is
O t þ kð Þ kc þ ksð Þn1n2n3 þ kcn2n3 logn3 þ kcn2
2n3

� �
;

� ð34Þ
where t and k denote the total numbers of outer and inner iterations, respectively.
6. Experiments

In this section, we evaluate the performance of the proposed tensor dictionary learning method on data clustering. All
numerical experiments are conducted on a computer with 16 GB of RAM and an Intel(R) Core(TM) i5-6600 M CPU and
the installation of MATLAB R2021a.

Initialization and Parameter Settings. For the initialization of four variables Ac;As;Zc , and Zs in Algorithm1, we first
use the TRPCA [43] method to roughly divide the original data into underlying data and noise. Then, based on the decom-
posed data and noise, we randomly choose the dictionaries and the representation coefficients from clean data and structure
noise, respectively. We empirically set the numbers of atoms for clean data and structure noise to be 4 and 3 for each class in
all experiments.

The proposed method involves the following parameters: k1; k2; b1; b2; b3; b4, and q. We empirically adjust the parameter
k1 within the range 0;20½ � with the increment of 2 and the parameter k2 in 0; 0:1½ � with the increment of 0:01. For penalties
b1; b2; b3; b4, and q, we empirically choose b1 and b2 from 0:01;0:05;0:1f g; b3 ¼ 1, and b4 and q from 0:1;0:2;0:3;0:5f g,
respectively. For the compared methods, we tune the parameters according to the authors’ suggestions in their papers to
obtain the best results.

Datasets Description. First, we test the proposed method on simulated datasets, which are contaminated by black blocks,
stripes, sparse noise, and Gaussian noise. Then, we evaluate the proposed method on common real-world databases, includ-
ing face datasets AR, handwritten alphabet dataset Alphadigits1, object image dataset CIFAR2, and environment image dataset
UCSD3. All test data are normalized to 0;1½ �.

Compared Methods. We compared the proposed TDLSN with several relevant and state-of-the-art approaches, namely,
K-means based on Singular Value Decomposition (KSVD) [19], Robust Non-Negative Dictionary Learning (RNNDL) [23], Dic-
tionary Learning with Structure Noise (DLSN) [17], K-means based on Tensor Singular Value Decomposition (KTSVD) [26],
Latent Multi-view Subspace Clustering (LMSC) [30], Robust Subspace Segmentation (RSS) [33], Robust Kernel Low-Rank Rep-
resentation (RKLRR) [31], Tensor Low-Rank Representation (TLRR) [2], Learnable Subspace Clustering (LeaSC) [44], and Deep
Subspace Clustering (DeepSC) [45]. Among them, KSVD and RNNDL assume that the noise obeys the Gaussian distribution
and Laplacian distribution, respectively. DLSN divides the noise into structure noise and additional Gaussian noise, and then
uses the matrix nuclear norm and l1-norm in their model. KTSVD is a tensor-based dictionary learning method and assumes
that the noise follows the Gaussian distribution. The above four comparison methods are representative dictionary learning
://www.cs.toronto.edu/roweis/data.html.
://www.cs.utoronto.ca/ kriz/cifar.html.
://www.svcl.ucsd.edu/projects/backgroundsubtraction/ucsdbgsubdataset.htm.
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methods. The four comparison methods LMSC, RSS, RKLRR, and TLRR are self-expressed subspace clustering methods. TLRR
applies TNN to characterize the low-rankness of underlying data and uses l1-norm to depict the sparsity of noise. The
remaining LeaSC and DeepSC are deep subspace clustering methods.

Evaluation Metrics. For the quantitative measures of clustering results, we utilize the clustering accuracy (ACC) [12,20],
the normalized mutual information (NMI), and the purity (PUR). Higher ACC, NMI, and PUR values indicate more accurate
clustering results.

6.1. Simulation Experiments

We first test the performance of the proposed method on simulation experiments. We randomly select five classes of COIL
dataset4 and five classes of YALE dataset [2] as tested data. Each class contains 30 samples. We simulate structure noisy data by
setting the following five types of noises:

Case1 (Block Structure Noise). This case adds several 3� 3 or 5� 5 occlusion blocks to the selected five data of each class,
and the locations of the occlusion blocks are randomly determined.

Case2 (Block Structure Noise + Gaussian Noise). The Gaussian noise with zero-mean and 0:01 noise standard deviation is
added to each data. The block structure noise is added as described in Case1.

Case3 (Stripe Noise + Gaussian Noise). Five selected images of each class from COIL and YALE datasets are corrupted by
multiple stripes. The location of stripes is randomly determined. Gaussian noise with zero-mean and 0:01 noise stan-
dard deviation is added to each image.

Case4 (Block Structure Noise + Gaussian Noise + Salt and Pepper Noise). The Gaussian noise with zero-mean and 0:01
noise standard deviation, and the salt-and-pepper noise with 0:02 noise proportion are added to each image. The block
structure noise is also added as presented in Case1.

Case5 (Block Structure Noise + Stripe Noise + Gaussian Noise + Salt and Pepper Noise). The block structure noise, Gaus-
sian noise, and salt and pepper noise are added as described in Case4. Furthermore, we randomly select five images of
each class and add multiple stripes to form the corrupted data.

In Fig. 2, we present some examples of different structural noisy data in the simulation experiments.
Tables 3 and 4 show the ACC, NMI, and PUR values of the compared methods and our method on the COIL and YALE data-

sets. For clarity, we use bold to highlight the best clustering results. From two tables, one can see that: (1) The dictionary
learning method KTSVD obtains higher ACC, NMI, and PUR values than other dictionary learning methods KSVD, RNNDL,
and DLSN. (2) The self-expression subspace clustering method TLRR achieves better clustering performance than vector-
based clustering methods LMSC, RSS, and RKLRR. The main reason is that KTSVD and TLRR are tensor-based methods, in
which tensors can well preserve the intrinsic structure of the high-dimensional data. Therefore, they can approximately
explore the potential subspace of the high-dimensional data well. (3) The proposed method TDLSN obtains the highest
ACC, NMI, and PUR values for the structure noise data clustering in most cases. In particular, for Case5with serious structure
noise entries, TDLSN also has obvious advantages compared with the sub-optimal method KTSVD. The reason is that KTSVD
only considers the clustering of the general noise data, which treats the block structure noise, stripe structure noise, sparse
noise, and Gaussian noise as a kind of noise. It also shows that this way of dealing with structure noise is ineffective. In con-
trast, TDLSN is effective in separating structure noise with semantic information from other noises. (4) Compared with the
deep subspace clustering methods LeaSC and DeepSC, our method outperforms them in different cases of structure noise.
Since LeaSC and DeepSC only use the l2 norm to constrain the Gaussian noise, their performance is not satisfied under
the influence of complex structure noise. (5) In the last column of each table, we calculate the p-value according to the
numerical results of all methods. We observe that the p-values are very small, which implies that the improvement of
the proposed method is significant compared with the comparison methods. In summary, the proposed method can adap-
tively learn dictionaries of different structure noises and can accurately estimate the structure noise to obtain better clus-
tering results.

Table 5 presents the decomposed data obtained by different dictionary learning methods on the object dataset COIL. We
observe that TDLSN removes not only the Gaussian noise but also the block structure noise. Clearly, KSVD, RNNDL, and
KTSVD cannot separate structure noise from other noises, because they assume that noise only obeys a predefined distribu-
tion. Although DLSN can separate structure noise to a certain extent, the global structure of the decomposed underlying data
is destroyed due to the vectorization operation in their method. As a comparison, TDLSN can preserve the overall structure of
the underlying data. This also demonstrates that the proposed TDLSN can characterize the noise more precisely than the
compared methods.
4 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
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6.2. Real Experiments

In this part, we test the performance of all methods on real data clustering. Four real datasets are considered in our exper-
iments. Some examples of real-world data with structure noise are presented in Fig. 3.

(1) AR face dataset: This dataset has 1300 facial images of 100 subjects under various lighting conditions, where each
subject contains 13 images. Most images are corrupted by glasses, sunglasses, scarves, bright lights, and other
unknown noise.

(2) Alphadigits handwritten dataset: This dataset contains 390 images of 26 alphabets including various forms, where
each alphabet contains 15 images.

(3) CIFAR dataset: This dataset is the object image dataset, which contains 32 by 32 color images in 10 different classes.
(4) UCSD dataset: This dataset contains 1200 different environment images from 18 video sequences, and each image is

normalized to 32 by 32.

Table 6 lists the clustering results of different methods on the real datasets. We can observe that the proposed method
TDLSN gains higher ACC, NMI, and PUR values than the other competitors. Moreover, the lower p-values of the significance
test also show the superiority of the proposed method.

7. Discussions

The effects of structure noise. In this section, we verify the influence of the proposed decomposition technique for han-
dling noise. Specifically, ignoring the dictionary learning of structure noise, we rewrite the model as follows:
Table 3
The clu

Data

Case

Case

Case

Case

Case
min
Ac ;Zc

1
2 kX�Ac �Zck2F þ k1kZck�;

s:t: Ac 2 X;X ¼ Ac : kAc j1ð Þk22 6 1; j1 ¼ 1; � � � ; kc
n o

:
ð35Þ
For convenience, we name the above model tensor dictionary learning with noise model as TDLN. Table 7 shows the numer-
ical experiment results of methods TDLN and TDLSN on three real datasets. Obviously, the ACC, NMI, and PUR values of
TDLSN are higher than those of TDLN. This demonstrates that the decomposition and characterization of structure noise
is crucial for improving the clustering performance.
stering performance (ACC, NMI, and PUR) of different methods on COIL dataset. The best results are highlighted in bold.

set Metrics KSVD RNNDL DLSN KTSVD LMSC RSS RKLRR TLRR LeaSC DeepSC TDLSN p-value

1 ACC 0.4267 0.5180 0.5313 0.6387 0.3107 0.4100 0.5167 0.5093 0.4067 0.4687 0.7233 1.05e-05
NMI 0.2880 0.2849 0.3572 0.5333 0.0649 0.1767 0.3730 0.4369 0.2130 0.3251 0.6030 5.99e-05
PUR 0.4733 0.5180 0.5593 0.6387 0.3153 0.4347 0.5167 0.5453 0.4333 0.4953 0.7233 1.57e-05

2 ACC 0.5067 0.5147 0.5367 0.6600 0.3107 0.3180 0.4073 0.5120 0.3140 0.3667 0.7140 5.20e-05
NMI 0.3072 0.4033 0.3300 0.5842 0.0649 0.0787 0.2514 0.3921 0.0764 0.2037 0.5857 2.23e-04
PUR 0.5067 0.5167 0.5367 0.6733 0.3153 0.3333 0.4207 0.5307 0.3313 0.3800 0.7140 6.17e-05

3 ACC 0.4780 0.4867 0.5413 0.5327 0.3107 0.3260 0.5247 0.5540 0.3120 0.4800 0.7333 9.33e-06
NMI 0.4262 0.3149 0.3657 0.4999 0.0649 0.0979 0.3382 0.3344 0.0949 0.3200 0.5949 1.03e-04
PUR 0.5067 0.5133 0.5413 0.5533 0.3153 0.3527 0.5287 0.5540 0.3253 0.5067 0.7333 1.30e-05

4 ACC 0.5093 0.3087 0.5073 0.6373 0.3107 0.3000 0.3667 0.5207 0.2807 0.3873 0.8133 2.66e-06
NMI 0.3577 0.0687 0.3483 0.5221 0.0649 0.0616 0.1351 0.3586 0.0300 0.2073 0.6791 1.22e-05
PUR 0.5520 0.3160 0.5073 0.6507 0.3153 0.3040 0.3987 0.5340 0.2867 0.4213 0.8133 4.94e-06

5 ACC 0.4667 0.3733 0.5320 0.6540 0.3107 0.2980 0.3480 0.5073 0.2873 0.4400 0.7393 1.52e-05
NMI 0.3272 0.2012 0.3665 0.5395 0.0649 0.0527 0.1027 0.2986 0.0381 0.2580 0.6069 4.23e-05
PUR 0.5133 0.3733 0.5720 0.6540 0.3153 0.3113 0.3527 0.5073 0.2880 0.4600 0.7393 2.97e-05
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Table 4
The clustering performance (ACC, NMI, and PUR) of different methods on YALE dataset. The best results are highlighted in bold.

Dataset Metrics KSVD RNNDL DLSN KTSVD LMSC RSS RKLRR TLRR LeaSC DeepSC TDLSN p-value

Case1 ACC 0.4400 0.5340 0.5007 0.8600 0.3107 0.3640 0.8047 0.9267 0.3733 0.7067 0.9133 1.20e-03
NMI 0.2477 0.4559 0.4134 0.7627 0.0649 0.0922 0.6089 0.8565 0.1486 0.5438 0.8110 1.60e-03
PUR 0.4827 0.5340 0.5840 0.8600 0.3153 0.3640 0.8047 0.9267 0.3733 0.7067 0.9133 1.30e-03

Case2 ACC 0.5593 0.3160 0.4387 0.7133 0.3107 0.2933 0.2713 0.5587 0.6840 0.5467 0.8400 5.84e-05
NMI 0.3563 0.1912 0.3351 0.6406 0.0649 0.0885 0.0445 0.3324 0.4138 0.3412 0.7331 2.96e-05
PUR 0.5733 0.3533 0.5187 0.7133 0.3153 0.3333 0.2740 0.5740 0.6840 0.5467 0.8400 6.22e-05

Case3 ACC 0.5167 0.4447 0.4880 0.6927 0.3107 0.3333 0.3020 0.5687 0.6653 0.5800 0.8200 4.30e-05
NMI 0.3495 0.4124 0.2851 0.5932 0.0649 0.1416 0.0438 0.3544 0.4084 0.4075 0.7182 3.76e-05
PUR 0.5387 0.5493 0.5013 0.6927 0.3153 0.3733 0.3127 0.5753 0.6653 0.5800 0.8200 4.87e-05

Case4 ACC 0.5147 0.5200 0.4627 0.7407 0.3107 0.3400 0.2567 0.5120 0.4000 0.3087 0.8800 4.51e-06
NMI 0.3937 0.5401 0.3795 0.6707 0.0649 0.1206 0.0150 0.2446 0.1776 0.0861 0.7428 7.68e-05
PUR 0.5680 0.5933 0.5427 0.7407 0.3153 0.3400 0.2593 0.5127 0.4220 0.3353 0.8800 1.20e-05

Case5 ACC 0.5200 0.5113 0.4787 0.5940 0.3107 0.3460 0.2547 0.4147 0.3167 0.3953 0.7866 1.89e-06
NMI 0.3938 0.4427 0.2955 0.5266 0.0649 0.0992 0.0145 0.1945 0.0728 0.1269 0.6258 5.80e-05
PUR 0.5600 0.5507 0.5273 0.5940 0.3153 0.3800 0.2580 0.4420 0.3347 0.4087 0.7866 5.55e-06

Table 5
The decomposed data obtained by different methods with case 2 and case 3 on COIL dataset.
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Fig. 3. Some examples of (a) AR datasets and (b) CIFAR datasets..

Table 6
The clustering performance (ACC, NMI, and PUR) of different methods on COIL dataset. The best results are highlighted in bold.

Dataset Metrics KSVD RNNDL DLSN KTSVD LMSC RSS RKLRR TLRR LeaSC DeepSC TDLSN p-value

AR ACC 0.1730 0.1699 0.2717 0.2732 0.1271 0.3479 0.3721 0.3559 0.3405 0.1760 0.3900 1.70e-03
NMI 0.4167 0.4883 0.5518 0.5730 0.4625 0.5556 0.6198 0.6230 0.5980 0.5023 0.6499 6.93e-04
PUR 0.1852 0.1902 0.2921 0.2933 0.1286 0.3757 0.3999 0.3784 0.3694 0.1868 0.4105 2.60e-03

Alphadigits ACC 0.2141 0.1490 0.2003 0.2949 0.1846 0.1841 0.2587 0.2613 0.2167 0.2026 0.3392 9.24e-06
NMI 0.3123 0.2577 0.3144 0.4341 0.3050 0.2993 0.3932 0.3996 0.3450 0.3111 0.4819 1.58e-05
PUR 0.2303 0.1562 0.2126 0.3156 0.2036 0.1987 0.2723 0.2790 0.2272 0.2200 0.3607 9.50e-06

CIFAR ACC 0.1510 0.1349 0.1767 0.1852 - 0.1363 0.1790 0.2032 0.1748 0.1753 0.2266 6.35e-05
NMI 0.0294 0.0199 0.0475 0.0636 - 0.0173 0.0592 0.0715 0.0540 0.0422 0.0878 1.60e-04
PUR 0.1610 0.1390 0.1891 0.1989 - 0.1438 0.1881 0.2083 0.1808 0.1850 0.2317 1.34e-04

UCSD ACC 0.3031 0.1883 0.7628 0.8469 0.1711 0.4296 0.8341 0.8922 0.6826 0.5050 0.9153 3.10e-03
NMI 0.4483 0.1838 0.8249 0.8913 0.1849 0.5415 0.8784 0.9382 0.7575 0.6392 0.9356 7.40e-03
PUR 0.4257 0.1987 0.7769 0.8557 0.1843 0.5206 0.8537 0.9104 0.7385 0.5759 0.9192 4.80e-03

Table 7
Clustering performance (ACC, NMI, and PUR) of the three methods on test datasets.

Method AR Alphadigits CIFAR

ACC NMI PUR ACC NMI PUR ACC NMI PUR

TDLN 0.3425 0.6231 0.3648 0.3090 0.4476 0.3346 0.1619 0.0318 0.1698
TDLSN 0.3900 0.6499 0.4108 0.3392 0.4819 0.3607 0.2266 0.0878 0.2317

Fig. 4. The parameters analysis of the proposed method on COIL dataset with Case5..
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Table 8
The ACC, NMI, PUR, and running time (in seconds) of all algorithms on COIL and YALE datasets with Case5. The best results are highlighted in bold.

Dataset Metrics KSVD RNNDL DLSN KTSVD LMSC RSS RKLRR TLRR LeaSC DeepSC TDLSN

COIL ACC 0.4667 0.3733 0.5320 0.6540 0.3107 0.2980 0.3480 0.5073 0.2873 0.4400 0.7393
NMI 0.3272 0.2012 0.3665 0.5395 0.0649 0.0527 0.1027 0.2986 0.0381 0.2580 0.6069
PUR 0.5133 0.3733 0.5720 0.6540 0.3153 0.3113 0.3527 0.5073 0.2880 0.4600 0.7393
Time 0.49 4.96 4.34 312.15 2.15 0.15 3.76 6.88 0.53 2.94 154.93

YALE ACC 0.5200 0.5113 0.4787 0.5940 0.3107 0.3460 0.2547 0.4147 0.3167 0.3953 0.7866
NMI 0.3938 0.4427 0.2955 0.5266 0.0649 0.0992 0.0145 0.1945 0.0728 0.1269 0.6258
PUR 0.5600 0.5507 0.5273 0.5940 0.3153 0.3800 0.2580 0.4420 0.3347 0.4087 0.7866
Time 18.42 29.60 37.47 2833.80 20.15 0.67 0.32 35.87 0.98 3.18 281.37

Fig. 5. The relative error curves of the proposed method on COIL and YALE datasets with Case2 and Case5..
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Parameters analysis. The proposed method includes regularization parameters k1 and k2 and penalty parameters
b1; b2; b3; b4, and q. Taking the COIL dataset with Case5 as an example, we test the effects of these parameters on the per-
formance of the proposed method. Fig. 4 shows the ACC, NMI, and PUR curves obtained by the proposed method under dif-
ferent parameters. We have the following observations: (1) TDLSN is sensitive to different regularization parameters k1 and
k2, and the highest ACC, NMI, and PUR can be achieved by the hand-tuning strategy; (2) TDLSN is robust for penalty param-
eters b2 and b3. According to the above observations, we empirically adjust the parameter k1 in the range 0;20½ � with an
increment of 2 and the parameter k2 in 0;0:1½ � with an increment of 0:01. We recommend adjusting penalty parameters
b1 and b2 in 0;0:1½ � with an increment of 0:01; b3 in 0;10½ � with an increment of 1, and b4 and q in 0;1½ � with an increment
of 0:1 for satisfactory clustering results.

The running time. In Table 8, we report the running time of different methods on the COIL and YALE datasets with Case5.
One can see that our method achieves the best clustering performance in terms of ACC, NMI, and PUR values although it is
slower than other baselines while is still faster than KTSVD. As one of future directions, we will speed up the proposed
method.

Convergence analysis. In Theorem 1, we have provided the theoretical convergence of the proposed Algorithm1. Next,
taking Case2 and Case5 of COIL and YALE datasets as examples, we study the numerical convergence of the proposed algo-

rithm. Fig. 5 plots the relative error curves of the successive representation tensor Zt
c and Ztþ1

c , i.e., kZtþ1
c �Zt

ck2F=kZt
ck2F . We

observe that the relative error curves decrease as the iteration number increases, demonstrating that the proposed algorithm
also numerically converges.
8. Conclusions

To deal with high-dimensional data clustering with structure noise, we explore the tensor-based dictionary learning in
the decomposition method. In particular, we decompose the tensor data into three parts: clean data, structure noise, and
Gaussian noise. Meanwhile, we apply the adaptive tensor dictionary learning tool to explore the inherent global low-
rankness of underlying data and the structural sparsity of structure noise. An effective algorithm is designed to solve the pro-
posed tensor dictionary learning model with guaranteed convergence analysis. Experimental results show that the proposed
method can accurately remove structure noise, thereby significantly improving the performance of data clustering compared
with the baselines.
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Appendix A

In this section, we present the details of the As and Zs subproblems.
1. As-subproblem. The As-subproblem is
Atþ1
s ¼ argminAs

1
2
kX�Atþ1

c �Zt
c �As �Zt

sk2F þ
q
2
kAs �At

sk2F þU Asð Þ: ð36Þ
We introduce the auxiliary variable Y2,
argminAs
1
2 kX�Atþ1

c �Zt
c �As �Zt

sk2F þ q
2 kAs �At

sk2F þU Y2ð Þ;
s:t: Y2 ¼ As:

ð37Þ
We show the corresponding augmented Lagrangian function of (37) as
L As;Y2;C2ð Þ ¼ 1
2
kX�Atþ1

c �Zt
c �As �Zt

sk2F þ
q
2
kAs �At

sk2F þU Y2ð Þ þ b3

2
kYk

2 �As þ Ck
2

b
k2F ; ð38Þ
where b3 is a penalty parameter, C2 denotes the Lagrangian multiplier. We update As;Y2, and C2 by the following three
subproblems.

� Calculation of As. Given Y2 and C2, the minimization problem of As is
At;kþ1
s ¼ argminAs

1
2
kX�Atþ1

c �Zt
c �As �Zt

sk2F þ
q
2
kAs �At

sk2F þ
b3

2
kYk

2 �As þ Ck
2

b
k2F : ð39Þ
The solution satisfies the following equation:
As � Zt
s � Zt

s

� �T þ qþ b3ð ÞI
� �

¼ X�At
c �Zt

c

� � � Zt
s

� �T þ qAt
s þ b3 Yk

2 þ
Ck

2

b

 !
; ð40Þ
which can be solved in the Fourier domain.
� Calculation of Y2. Given As and C2, the minimization problem of Y2 is
Ykþ1
2 ¼ argminY2

U Y2ð Þ þ b3

2
kY2 �At;kþ1

s þ Ck
2

b3
k2F ; ð41Þ
which has the closed form solution
Y2 j2ð Þ ¼ M2 j2ð Þ

max 1; kM2 j2ð Þk22
n o ; j2 ¼ 1;2; . . . ; ks; ð42Þ
where M2 j2ð Þ ¼ At;kþ1
s j2ð Þ � Ck

2 j2ð Þ=b3.

� Update multiplier C2. The multiplier C2 can be updated by
Ckþ1
2 ¼ C2 þ b3 Ykþ1

2 �At;kþ1
s

� �
: ð43Þ
2. Zs-subproblem. The Zs-subproblem is
Ztþ1
s ¼ argminZs

1
2
kX�Atþ1

c �Ztþ1
c �Atþ1

s �Zsk2F þ k2kZsk2;1;2 þ
q
2
kZs �Zt

sk2F : ð44Þ
Similarly, we employ ADMM to calculate theZs-subproblem. By introducing variable Q, we rewritten the subproblem (44) as
min
Zs ;Q

1
2 kX�Atþ1

c �Ztþ1
c �Atþ1

s � Qk2F þ k2kZsk2;1;2 þ q
2 kZs �Zt

sk2F ;
s:t: Q ¼ Zs:

ð45Þ
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The corresponding augmented Lagrangian function of (45) is
L Zs;Q;Fð Þ ¼ 1
2 kX�Atþ1

c �Ztþ1
c �Atþ1

s � Qk2F þ k2kZsk2;1;2 þ q
2 kZs �Zt

sk2F þ b4
2 kQk �Zs þ Fk

b4
k2F ; ð46Þ
whereF is Lagrangian multiplier and b4 is penalty parameter. Next, we solve every subproblem involved in the optimization
problem (46).

� Calculation of Zs. Given Q and F, the minimization problem of Zs is
Zt;kþ1
s ¼ argminZs

k2kZsk2;1;2 þ
b4 þ q

2
kZs �

qZt
s þ b4 Qk þFk=b4

� �
b4 þ q

k2F : ð47Þ
The closed-form solution is
Zs jð Þ ¼ max 1� k2
b4 þ qð ÞkU :; j; :ð ÞkF

; 0
	 


U :; j; :ð Þ; j ¼ 1;2; � � � ;n2; ð48Þ
where U ¼ qZt
s þ b4 Qk þFk=b4

� �� �
= b4 þ qð Þ.

� Calculation of Q. Given Zs and F, the Q subproblem is
Qkþ1 ¼ argminQ

1
2
kX�Atþ1

c �Ztþ1
c �Atþ1

s � Qk2F þ
b4

2
kQ�Zt;kþ1

s þFk

b4
k2F : ð49Þ
The minimization problem of Q satisfies the following equation:
Atþ1
s

� �T �Atþ1
s þ b4I

� �
� Q ¼ Atþ1

s

� �T � X�Atþ1
c �Ztþ1

c

� �þ b4 Zt;kþ1
s �Fk=b4

� �
: ð50Þ
Similarly, we solve it in the Fourier domain.
� Update multiplier F. The multiplier F can be updated by
Fkþ1 ¼ Fþ b4 Qkþ1 �Zt;kþ1
s

� �
: ð51Þ
Appendix B

In this section, we present the proofs of Lemmas 1–3. Before we prove Lemmas, we first show an important property of KŁ
function [38] in Lemma 4. Please refer to [38] for more details of the KŁ function.

Lemma 4 (Theorem 3 in [46]). If a function f is a semi-algebraic real valued function, then it satisfies KŁ property and is KŁ
function.

Then, we prove Lemmas 1–3. We first prove the KŁ property of F Ac;As;Zc;Zsð Þ.

Lemma 5 (KŁ Lemma). Function F Ac;As;Zc;Zsð Þ satisfies the KŁ property at each point.
Proof of Lemma 1. We verify that each term of F Ac;As;Zc;Zsð Þ satisfies the KŁ property. Since norms k � kF ; k � k1; k � k2 are

semi-algebraic functions [46], kX�Ac � Zc �As � Zsk2F and kZsk2;1;2 are semi-algebraic. Similarly, k1kZck� is semi-
algebraic. And W Acð Þ and U Asð Þ are semi-algebraic indicator functions [46]. Since the semi-algebraic function satisfies
the KŁ property (see Lemma 4), the function F Ac;As;Zc;Zsð Þ satisfies the KŁ property.

Second, we prove that the bounded sequence At
c;A

t
s;Z

t
c;Z

t
s

� �
satisfies the sufficient decrease condition.

Lemma 6 (Sufficient decrease Lemma). For q > 0, let At
c;A

t
s;Z

t
c;Z

t
s

� �
be a sequence from Algorithm1, then
F Atþ1
c ;At

s;Z
t
c;Z

t
s

� �þ q
2 kAtþ1

c �At
ck2F 6 F At

c;A
t
s;Z

t
c;Z

t
s

� �
;

F Atþ1
c ;Atþ1

s ;Zt
c;Z

t
s

� �þ q
2 kAtþ1

s �At
sk2F 6 F Atþ1

c ;At
s;Z

t
c;Z

t
s

� �
;

F Atþ1
c ;Atþ1

s ;Ztþ1
c ;Zt

s

� �þ q
2 kZtþ1

c �Zt
ck2F 6 F Atþ1

c ;Atþ1
s ;Zt

c;Z
t
s

� �
;

F Atþ1
c ;Atþ1

s ;Ztþ1
c ;Ztþ1

s

� �þ q
2 kZtþ1

c �Zt
ck2F 6 F Atþ1

c ;Atþ1
s ;Ztþ1

c ;Zt
s

� �
:

ð52Þ
Proof of Lemma 2. According to Q1;Q2;Q3, and Q4 defined in (15), when Atþ1
c ;Atþ1

s ;Ztþ1
c , and Ztþ1

s are minimizers of
Q1;Q2;Q3, and Q4, we have
F Atþ1
c ;At

s;Z
t
c;Z

t
s

� �þ q
2 kAtþ1

c �At
ck2F ¼ Q1 Atþ1

c jAt
c

� �
6 Q1 At

cjAt
c

� � ¼ F At
c;A

t
s;Z

t
c;Z

t
s

� �
;

F Atþ1
c ;Atþ1

s ;Zt
c;Z

t
s

� �þ q
2 kAtþ1

s �At
sk2F ¼ Q2 Atþ1

s jAt
s

� �
6 Q2 At

sjAt
s

� � ¼ F Atþ1
c ;At

s;Z
t
c;Z

t
s

� �
;

F Atþ1
c ;Atþ1

s ;Ztþ1
c ;Zt

s

� �þ q
2 kZtþ1

c �Zt
ck2F ¼ Q3 Ztþ1

c jZt
c

� �
6 Q3 Zt

cjZt
c

� � ¼ F Atþ1
c ;Atþ1

s ;Zt
c;Z

t
s

� �
;

F Atþ1
c ;Atþ1

s ;Ztþ1
c ;Ztþ1

s

� �þ q
2 kZtþ1

s �Zt
sk2F ¼ Q4 Ztþ1

s jZt
s

� �
6 Q4 Zt

sjZt
s

� �
¼ F Atþ1

c ;Atþ1
s ;Ztþ1

c ;Zt
s

� �
:

ð53Þ
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Third, we prove that the bounded sequence At
c;A

t
s;Z

t
c;Z

t
s

� �
satisfies the relative error condition.

Lemma 7 (Relative error Lemma). The sequence At
c;A

t
s;Z

t
c;Z

t
s

� �
comes from Algorithm1 and q > 0. There exist

Vtþ1
1 ;Vtþ1

2 ;Vtþ1
3 , and Vtþ1

4 satisfying
kVtþ1
1 þrAcW Atþ1

c ;At
s;Z

t
c;Z

t
s

� �kF 6 qkAtþ1
c �At

ckF ;
kVtþ1

2 þrAsW Atþ1
c ;Atþ1

s ;Zt
c;Z

t
s

� �kF 6 qkAtþ1
s �At

skF ;
kVtþ1

3 þrZcW Atþ1
c ;Atþ1

s ;Ztþ1
c ;Zt

s

� �kF 6 qkZtþ1
c �Zt

ckF ;
kVtþ1

4 þrZs
W Atþ1

c ;Atþ1
s ;Ztþ1

c ;Ztþ1
s

� �kF 6 qkZtþ1
s �Zt

skF :

ð54Þ
Proof of Lemma 3. Note that Atþ1
c ;Atþ1

s ;Ztþ1
c , and Ztþ1

s are optimal solutions of Q1;Q2;Q3, and Q4, respectively. For each
subproblem, we have
0 2 @AcW Atþ1
c

� �þrAcW Atþ1
c ;Atþ1

s ;Ztþ1
c ;Ztþ1

s

� �þ q Atþ1
c �At

c

� �
;

0 2 @AsU Atþ1
s

� �þrAsW Atþ1
c ;Atþ1

s ;Ztþ1
c ;Ztþ1

s

� �þ q Atþ1
s �At

s

� �
;

0 2 @Zc f 1 Ztþ1
c

� �þrZcW Atþ1
c ;Atþ1

s ;Ztþ1
c ;Ztþ1

s

� �þ q Ztþ1
c �Zt

c

� �
;

0 2 @Zs f 2 Ztþ1
s

� �þrZsW Atþ1
c ;Atþ1

s ;Ztþ1
c ;Ztþ1

s

� �þ q Ztþ1
s �Zt

s

� �
:

8>>>><
>>>>:

ð55Þ
Then, we define Vtþ1
1 ;Vtþ1

2 ;Vtþ1
3 , and Vtþ1

4 as
Vtþ1
1 :¼ �rAcW Atþ1

c ;Atþ1
s ;Ztþ1

c ;Ztþ1
s

� �� q Atþ1
c �At

c

� �
;

Vtþ1
2 :¼ �rAsW Atþ1

c ;Atþ1
s ;Ztþ1

c ;Ztþ1
s

� �� q Atþ1
s �At

s

� �
;

Vtþ1
3 :¼ �rZcW Atþ1

c ;Atþ1
s ;Ztþ1

c ;Ztþ1
s

� �� q Ztþ1
c �Zt

c

� �
;

Vtþ1
4 :¼ �rZsW Atþ1

c ;Atþ1
s ;Ztþ1

c ;Ztþ1
s

� �� q Ztþ1
s �Zt

s

� �
:

8>>>>><
>>>>>:

ð56Þ
It is clear that Vtþ1
1 2 @AcW Atþ1

c

� �
;Vtþ1

2 2 @AsU Atþ1
s

� �
, Vtþ1

3 2 @Zc f 1 Ztþ1
c

� �
, and Vtþ1

4 2 @Zs f 2 Ztþ1
s

� �
. Therefore, we have
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